International CHASC Astro-Statistics Collaboration
This page lists resources of specific interest to astronomers.
For detailed descriptions and reports of C-BAS/ICHASC activities, see
https://www.ma.imperial.ac.uk/~dvandyk/astrostat.php
- BEHR: Bayesian estimation of Hardness Ratios
- BEHR github repository
- Park, T., Kashyap, V.L., Siemiginowska, A., van Dyk, D., Zezas, A., Heinke, C., & Wargelin, B.J., 2006, ApJ, 652, 610
- LIRA: Image reconstruction with error estimates (nee EMC2)
- github repository for PyLIRA
- github repository for original R and C code (not being updated)
- Connors, A., Stein, N.M., van Dyk, D., Kashyap, V., & Siemiginowska, A., ADASS XX, ASPC (Eds. Ian N. Evans, Alberto Accomazzi, Douglas J. Mink, and Arnold H. Rots), v442, p463 (2011ASPC..442..463C)
- Connors, A. & van Dyk, D.A., 2007, SCMA IV, ASPC (Eds. G.J.Babu and E.D.Feigelson), v371, p101 (2007ASPC..371..101C)
- Esch, D.N., Connors, A., Karovska, M., & van Dyk, D.A., 2004, ApJ, 610, 1213
- jolideco : Joint Likelihood Deconvolution
- PyPI repository for jolideco
- Donath, A., Siemiginowska, A., Kashyap, V.L., van Dyk, D.A., & Burke, D., 2024, AJ, accepted (arXiv:2403.13933)
- BLoCXS: Bayesian low-Counts X-ray spectral analysis
- pyBLoCXS: python version of BLoCXS, optimized for use in Sherpa
- github repository
- Protassov, R., van Dyk, D.A., Connors, A., Kashyap, V.L., & Siemiginowska, A., 2002, ApJ, 571, 545
- van Dyk, D.A., Connors, A., Kashyap, V.L., & Siemiginowska, A., 2001, ApJ, 548, 224
- Documentation for early standalone version (v0.0.3): hea-www.harvard.edu/AstroStat/pyBLoCXS/
- Documentation for Sherpa implementation (get_draws()): cxc.harvard.edu/sherpa/ahelp/pyblocxs.html
- BRoaDem: Bayesian reconstruction of a Differential Emission Measure
- Kang, H., van Dyk, D.A., Kashyap, V.L., & Connors, A., 2005, in ``X-Ray Diagnostics of Astrophysical Plasmas: Theory, Experiment, and Observation'', AIP Conference Proceedings, Volume 774, p.373
- see also MCMC_DEM: Differential Emission Measure reconstruction using Markov-Chain Monte Carlo
- Kashyap, V. & Drake, J.J., 1998, ApJ, 503, 450
- bayesstack: stacks counts from many weak sources to infer the intrinsic flux or luminosity distribution
- Automark: Changepoint detection in marked Poisson Processes
- github repository
- Wong, R.K.W., Kashyap, V.L., Lee, T.C.M., & van Dyk, D.A., 2016, Annals of Applied Statistics, v10, p1107 (AOAS933)
- Xu, C., Guenther, H.M., Kashyap, V.L., Lee, T.C.M., & Zezas, A., 2021, AJ, 161, 184
- manuscript [.pdf]
- arXiv:1508.07083 [url]
- 2016ascl.soft02001W [url]
- XAP: X-ray Aperture Photometry
- github repository
- Primini, F.A., and Kashyap, V.L., 2014, ApJ, 796, 24
- BASCS: Bayesian Separation of Close Sources
- github repository
- Jones, D.E., Kashyap, V.L., & van Dyk, D.A., 2015, ApJ, 808, 137
- Meyer, A.D., van Dyk, D.A., Kashyap, V.L., Campos, L.F., Jones, D.E., Siemiginowska, A., & Zezas, A., 2021, MNRAS, 506, 6160
- timedelay: Time Delay Estimation for Stochastic Time Series of Gravitationally Lensed Quasars
- CRAN package
- Tak, H., Mandel, K., van Dyk, D.A., Kashyap, V.L., Meng, X.L., and Siemiginowska, A., 2017, AoAS 11, 1309
- SoDDA: Soft Data Driven Allocation classification
- Stampoulis, V., van Dyk, D.A., Kashyap, V.L., & Zezas, A., 2019, MNRAS, accepted
- SRGonG: Seeded Region Growing on Graph
- Fan, M., Wang, J., Kashyap, V.L., Lee, T.C.M., van Dyk, D.A., & Zezas, A., 2023, AJ 165, 66
-
- Stat 310 / Topics in AstroStatistics (AY 2024-2025)
- Talks and seminars arranged as part of CHASC activities
-
- JSM 2024
- Sessions with CHASC involvement at JSM 2024
- [Mon Aug 5 at 8:30am PDT] Astrostatistics Interest Group: Student Paper Award (Organizer K. Mandel, Speaker M. Autenrieth)
- [Mon Aug 5 at 2:00pm PDT] Computationally Tractable Solutions for Signal Detection in Searches for New Physics (Organizer and Chair S. Algeri, Discussant V. Kashyap, Speakers G. Eadie, X. Zhang, H. Sun)
- [Tue Aug 6 at 10:30am PDT] Opportunities and Challenges in Data Sciences with Diverse Imaging Technology (Speaker Y. Chen)
- [Tue Aug 6 at 2:00pm PDT] Section on Statistics in Imaging Student Paper Award Winners (Speaker J. Wang)
- [Wed Aug 7 at 10:30am PDT] The Promises and Perils of Long Time: Recent Advances in Astronomical Time Series (Organizers V. Kashyap and A. Siemiginowska, Chair Y. Chen, several speakers)
-
- Stat 310 / Topics in AstroStatistics (AY 2023-2024)
- Talks and seminars arranged as part of CHASC activities
-
- JSM 2023
- Sessions organized by CHASC collaborators at JSM 2023
- [7 Aug at 8:30am EDT] IOL: Astronomers Speak Statistic (Organizer H. Tak)
- [7 Aug at 2:00pm EDT] Uncertainty Quantification in Astronomy (Organizer A. Siemiginowska and G. Eadie, Chair A. Siemiginowska, Discussant D. van Dyk)
- [8 Aug at 10:30am EDT] True North Strong and... Amazing at Astrostatistics! (Organizer D. Stenning, Chair G. Eadie, Discussant D. Stenning)
- [8 Aug at 10:30am EDT] Pulling Signal out of Noise for Data-Driven Discoveries in Astronomy (Organizer H. Tak, Chair S. Algeri, Discussant A. Siemiginowska)
- [9 Aug at 10:30am EDT] Best Student-led Astrostatistics Papers of 2022 (Organizer H. Tak)
- Talks by CHASC collaborators at JSM 2023
- [7 Aug at 8:30am EDT] Hyungsuk Tak on Incorporating Measurement Error in Astronomical Object Classification (Modeling techniques for astrostatistical datasets)
- [7 Aug at 8:30am EDT] Kaisey Mandel on Astronomers Speak Statistics: Statistical Challenges of Supernova Cosmology (IOL: Astronomers Speak Statistics)
- [7 Aug at 8:30am EDT] Vinay Kashyap on Pragmatic Approaches to Modeling Multi-Dimensional Astronomical Data (Modeling techniques for astrostatistical datasets)
- [7 Aug at 8:30am EDT] Yang Chen on Model fitting and goodness-of-fit in astrophysics (Modeling techniques for astrostatistical datasets)
- [7 Aug at 2:00pm EDT] Sara Algeri on On computationally efficient methods for testing multivariate distributions with unknown parameters (Uncertainty Quantification in Astronomy)
- [9 Aug at 10:30am EDT] Antoine Meyer on TD-CARMA: Painless, accurate, and scalable estimates of gravitational-lens time delays with flexible CARMA processes (Best Student-led Astrostatistics Papers of 2022)
-
- Stat 310 / Topics in AstroStatistics (AY 2022-2023)
- Talks and seminars arranged as part of CHASC activities
-
- Statistics for Astronomy
- Session IPS-266 at the International Statistical Institute World Statistical Congress 2023 at Ottawa, Canada
- 19 Jul 2023, 10am-Noon EDT, Room 211
-
- Stat 310 / Topics in AstroStatistics (AY 2021-2022)
- Talks and seminars arranged as part of CHASC activities
-
- CHASC/RISE-ASTROSTAT Workshop
- A hybrid workshop for CHASC and RISE-ASTROSTAT collaborators to discuss current projects and future directions
- Tue Aug 2 - Wed Aug 3
-
- Unaccounted Uncertainties: The Role of Systematics in Astrophysics
- Special Session 107 at AAS 238
- 7 June 2021, Noon-1:30pm EDT
-
- Stat 310 / Topics in AstroStatistics (AY 2020-2021)
- Talks and seminars arranged as part of CHASC activities
-
- Ask-an-Astro/Statistician at AAS 237
- One-on-one discussions with statisticians and astrostatisticians at the Chandra Booth in the Interactive Exhibit Hall
- Jan 11-15, 2020
-
- Astronomical(ly) Big Data for Statisticians
- Invited Session at JSM 2020
- Thu Aug 6 2020, 10am-11:50am EDT
- Innovations in AstroStatistics on Exploring Large Public Data
- Topic-Contributed Session at JSM 2020
- Thu Aug 6 2020, 1pm-2:50pm EDT
-
- Ask-an-Astro/Statistician at AAS 236
- One-on-one discussions with statisticians and astrostatisticians at the Chandra Booth in the Interactive Exhibit Hall
- June 1-3, 2020
-
- Stat 310 / Topics in AstroStatistics (AY 2019-2020)
- Talks and seminars arranged as part of CHASC activities
-
- CANCELED Unaccounted Uncertainties: The Role of Systematics in Astrophysics
- Special Session at AAS 236, Madison WI, May 31 - Jun 4, 2020
- Monday June 1 2020
-
- into the 2020s
- Splinter Session of the Working Group on Astrostatistics and Astroinformatics at AAS 235
- Sunday Jan 5 2020, 9:30am-11:30am HST, Room 303 B, Convention Center, Honolulu, HI
- Ask-a-Statistician Table
- Discussion Table at AAS 235
- Jan 5,6,7,8 afternoons, Chandra Booth at CfA Street, Exhibit Hall, Convention Center, Honolulu, HI
- Sign-up sheet: https://forms.gle/eEwMgVDb8MwWrsmm6
-
- 2nd RISE-ASTROSTAT Collaboration Meeting
- 2019 July 18-19, at Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA
-
- Stat 310 / Topics in AstroStatistics (AY 2018-2019)
- Talks and seminars arranged as part of CHASC activities
-
- 126. Machine Learning in Data Analysis
- Special Session at AAS 233 focusing on ML techniques in astronomy
- Monday, 2019 Jan 7, 2:00-3:30pm, at Room 607, Washington State Convention & Trade Center, Seattle WA
- Astroinformatics and Astrostatistics in the Age of Big Data
- Splinter Meeting at AAS 233 focusing on technologies for Big Data analysis
- Monday, 2019 Jan 7, 4:00-6:00pm, at Room 4C-2, Washington State Convention & Trade Center, Seattle WA
-
- Applied Statistical Methods in Astronomy: Gaussian Processes and Machine Learning
- A Special Session at the 231st AAS meeting in Washington, DC. January 10, 2018.
-
- Topics in AstroStatistics (AY 2017-2018)
- Talks and seminars arranged as part of CHASC activities
-
- AstroStat Day
- A forum for astronomers at the CfA to discuss AstroStatistics
-
- Advances in Bayesian Astrostatistics: Applications to High-Energy Astrophysics
- AAS/HEAD 2017 Special Session
- Monday, 2017 August 21, 7:30pm-9:00pm, at Limelight B
- Sun Valley, ID
-
- 1st RISE-ASTROSTAT Collaboration Meeting
- 2017 June 26-28 June, at University of Crete, Heraklion, Crete
-
- AAS 230 Special Session: Topics in AstroStatistics
- Monday, 2017 June 5, 10am-11:30am at the JW Austin
- Courses and seminars of interest for 2016-2017:
- Stat 310 and Stat 281: Topics in AstroStatistics (AY 2016-2017)
- Astro 193 (Spring Semester 2016-2017)
- AAS 229 Special session:
- Special Session: 409. Statistical, Mathematical, and Computational Methods for Astronomy. SAMSI 2016-1017 (Jan 7, 2017)
- Courses and seminars of interest for 2015-2016:
- Stat 310 and Stat 281: Topics in AstroStatistics (AY 2015-2016)
- CfA/ITC Pizza Lunch Talk series on AstroStatistics (2016)
- AAS 227 sessions of interest:
- Special Session: 213. Lectures in AstroStatistics (Jan 6, 2016)
- Splinter Session: Topics in AstroStatistics (Jan 6, 2016)
- Special Session: 310. Time-Domain and Applicable Methodologies (Jan 7, 2016)
- Courses of interest for 2014-2015:
- Astro 193: Noise and Data Analysis in Astrophysics (Spring 2014-2015)
- Stat 310 and Stat 281: Topics in AstroStatistics (AY 2014-2015)
- AAS 224 Special Session : Topics in AstroStatistics (Jun 2, 2014)
- Courses of interest for 2013-2014:
- Stat 310 and Stat 281: Topics in AstroStatistics (AY 2013-2014)
- Seminar course for CfA/Harvard/UCI/UCD/ICL astrostatistical collaborative projects
- Tutorial on AstroStatistics & R, by Eric Feigelson (Jan 29 and 31, 2014)
-
- Special Session on Astrostatistics in High Energy Astrophysics in memory of Alanna Connors
- AAS/HEAD Monterey, 7:30pm-9pm, 8 Apr 2013
- Courses of interest for 2012-2013:
- Stat 310 and Stat 281: Topics in AstroStatistics (AY 2012-2013)
- Seminar course for CfA/Harvard/UCI/UCD/ICL astrostatistical collaborative projects
- mini-Workshop on Solar Statistics: Feb 16-17 2011
- Courses of interest for 2011-2012:
- Stat 310 and Stat 281: Topics in AstroStatistics (AY 2011-2012)
- Seminar course for CfA/Harvard/UCI/ICL astrostatistical collaborative projects
- Applied Mathematics 207: Advanced Scientific Computing: Stochastic Optimization Methods (requires Harvard ID to view)
- To develop skills for computational research with focus on stochastic approaches.
-
- Special Session on Time Series in High Energy Astrophysics: Techniques Applicable to Multi-Dimensional Analysis at AAS-HEAD, 2011-Sep-07, 7:30am-9:10pm
- Talks
- [06.01] Joseph Richards, New Techniques in Light Curve Analysis [.pdf]
- [06.02] Pavlos Protopapas, Period Estimation in Astronomical Time Series [.pptx]
- [06.03] Ashish Mahabal, Classification with Sparse Timeseries [.pdf]
- [06.04] Eric Gotthelf, Optimized Timing Searches for Gamma-ray Pulsars Using New Technology [.key]
- Brandon Kelly, Commentary [.pptx]
- Posters
- [17.01] Alanna Connors et al., Incorporating Spectra Into Periodic Timing: Bayesian Energy Quantiles [.pdf]
- Courses of interest for 2010-2011:
- Applied Mathematics 205b: Advanced Scientific Computing: Stochastic Optimization Methods
- Pavlos Protopapas and Efthimios Kaxiras
- Talks schedule for 2010-2011
- Unofficial seminar course for CfA-Harvard-UCI astrostatistical collaborative projects
- mini-Workshop on Computational Astrostatistiscs
- Aug 24-25, 2010, at CfA
- AstroStatistics Special Session AAS 215 (2:00pm - 3:30pm, 17 Jan 2010, Washington, DC)
- Beyond simple models-New methods for complex data
- Description
- Presentations from the special session:
- Meng [.ppt]
- Kelly [.ppt]
- Pesenson [.ppt]
- Heitman [.ppt]
- Djorgovski [.ppt]
- Schafer [.pdf]
- Courses of interest for 2009-2010:
- Stat 310: Topics in Astrostatistics (Fall/Winter 2009/2010)
- Seminar course in Astrostatistics taught by Prof. Xiao-li Meng with assistance from CHASC members
- AstroStatistics Special Session AAS 2009 (2:00pm - 3:30pm, 5 Jan 2009, Long Beach, CA)
- Meaning from Surveys and Population Studies: BYOQ*
- AAS abstract
- Courses of interest for 2008-2009:
- Stat 310: Topics in Astrostatistics (Fall/Winter 2008/2009)
- Seminar course in Astrostatistics taught by Prof. Xiao-li Meng with assistance from CHASC members
- AstroStatistics Special Session HEAD 2008 (31 March 2008, Los Angeles, CA)
- Courses of interest for 2007-2008:
- Stat 310: Topics in Astrostatistics (Fall/Winter 2007/2008)
- Seminar course in Astrostatistics taught by Prof. Xiao-li Meng with assistance from CHASC members
- Special Session at GLAST Symposium
- Courses of interest for 2006-2007:
- Stat 310: Topics in Astrostatistics (Fall/Winter 2006/2007)
- Seminar course in Astrostatistics taught by Prof. Xiao-li Meng with assistance from CHASC members
- Astronomy 97hf. Introductory Tutorial
- Christopher Stubbs and members of the Department
- Astronomical optics, to detectors, signal to noise considerations, and image analysis.
- CHASC members are also involved in
the SAMSI Workshops on AstroStatistics and
the Banff Challenge
- Courses of interest for 2005-2006:
- Stat 310: Topics in Astrostatistics
- ES 251: Signal and Image processing and inference using wavelets (course description)
- joint course by the Statistics and Engineering departments, taught by Profs. Patrick Wolfe, Xiao-Li Meng, and Thomas Lee
- ES 255: Detection and Estimation Theory & Applications (course description)
- joint course by the Statistics and Engineering departments
- Incorporating Calibration Uncertainties into Data Analysis (Nov 1, 2005; special Session at the Chandra Calibration Workshop)
- Stat 310: Astro-Statistics Seminar (Fall/Winter 2004/2005, Harvard University)
- AstroStatistics Workshop at HEAD 2004 (September 2004, New Orleans, LA)
- AstroStatistics Session at Case Studies in Bayesian Analysis, Penn State, September 2003
- Data Analysis Challenges in Solar and Stellar Astrophysics at AAS/SPD 2003 (April 2003, College Park, MD)
- Current Challenges in Poisson Multi-Scale Deconvolution Methods (January 2003, Cambridge, MA)
- Making it Work: Principled ``Model Free Deconvolution" via Multiscale Methods at AAS 2003 (January 2003, Seattle, WA)
- Data Analysis Challenges in Solar and Stellar Coronal Astrophysics at AAS 199 (January 2002, Washington, DC)
- New Results From 'Back-to-Basics' Data Analysis: Special Tutorials on Timing and Fitting at AAS 197 (January 2001)
- On Beyond Chi^2 (and Bevington): Making the Most of Your Poisson Data at HEAD 2000 (November 2000, Honolulu, HI)
- New Statistics for New Missions: Progress and Opportunities for Breakthrough Thinking at AAS 196 (June 2000, Rochester, NY)
- Recent Revolutions in Bayesian and Related Likelihood Techniques: Progress at the Boundaries of Astronomy and Statistics at AAS 194 (June 1999, Chicago, IL)
- Bayesian Analysis Workshop at HEAD 1997 (August 1997, Estes Park, CO)
- Tak, H., Kashyap, V.L., Mandel, K., Meng, X.-L., Siemiginowska, A., & van Dyk D., Statistical Maxims for Sound Astronomical Data Analysis, 2024, ApJ, under review
- arXiv:2409.16179
- Zimmerman, R., van Dyk, D.A., Kashyap, V.L., & Siemiginowska, A., Separating States in Astronomical Sources Using Hidden Markov Models: With a Case Study of Flaring and Quiescence on EVLac, 2024, MNRAS, under review
- arXiv:2405.06540
- Donath, A., Siemiginowska, A., Kashyap, V.L., van Dyk, D.A., & Burke, D., Joint Deconvolution of Astronomical Images in the Presence of Poisson Noise, 2024, AJ, accepted
- arXiv:2403.13933
- Autenrieth, M., Wright, A.H., Trotta, R., van Dyk, D.A., Stenning, D.S., & Joachimi, B., Improved Weak Lensing Photometric Redshift Calibration via StratLearn and Hierarchical Modeling, 2024, MNRAS, under review
- arXiv:2401.04687
- Zimmerman, R., van Dyk, D.A., Kashyap, V.L., & Siemiginowska, A., Separating States in Astronomical Sources Using Hidden Markov Models: With a Case Study of Flaring and Quiescence on EV Lac, 2024, submitted to MNRAS
- arXiv:2405.06540
- Sottosanti, A. Bernardi, M., Brazzale, A.R., Geringer-Sameth, A., Stenning, D.C., Trotta, R., & van Dyk, D.A., Identification of High-Energy Astrophysical Point Sources via Hierarchical Bayesian Nonparametric Clustering, 2024, Annals of Applied Statistics, under review
- arXiv:2104.11492
- Yu, X., Kashyap, V.L., Del Zanna, G., van Dyk, D.A., Stenning, D.C., Ballance, C.P., & Warren, H.P., Effect of Systematic Uncertainties on Density and Temperature Estimates in Coronae of Capella, 2024, ApJ 968, 73
- DOI 10.3847/1538-4357/ad4108
- arXiv:2404.10427
- Autenrieth, M., van Dyk, D.A., Trotta, R., & Stenning D., Stratified Learning: A General-Purpose Statistical Method for Improved Learning Under Covariate Shift, 2024, Statistical Analysis and Data Mining - The ASA Data Science Journal, 17, 1-16.
- doi:10.1002/sam.11643
- arxiv.org:2106.11211
- Meyer, A.D., van Dyk, D.A., Tak, H., & Siemiginowska, A., TD-CARMA: Painless, Accurate, and Scalable Estimates of Gravitational Lens Time Delays with Flexible CARMA Processes, 2023, ApJ 950, 37
- DOI 10.3847/1538-4357/acbea1 [IOP]
- Zhang, X., Algeri, S., Kashyap, V., & Karovska, M., A novel approach to detect line emission under high background in high-resolution X-ray spectra, 2023, MNRA, 521, 969
- 2023MNRAS.521..969Z
- Fan, M., Wang, J., Kashyap, V.L., Lee, T.C.M., van Dyk, D.A., & Zezas, A., Identifying Diffuse Spatial Structures in High-energy Photon Lists, 2023, AJ 165, 66
- doi.org/10.3847/1538-3881/aca478/ [doi]
- Baines, P.D., Meng, X.-L., Zezas, A., & Kashyap, V., Bayesian Analysis of Stellar Populations, in Statistics in the Public Interest: In Memory of Stephen Fienberg, eds. A.L.Carriquiry, W.Eddy, J.M.Tanur, Springer Nature, New York
- Marshall, H.L., Chen, Y., Drake, J.J., Guainazzi, M., Kashyap, V.L., Meng, X.-L., Plucinsky, P.P., Ratzlaff, P., van Dyk, D.A., & Wang, X., Concordance: In-flight Calibration of X-Ray Telescopes without Absolute References, 2021, AJ 162, 254
- article [AJ]
- 2021AJ....162..254M [ADS]
- Algeri, S. & van Dyk, D.A., Testing One Hypothesis Multiple Times, 2021, Statistica Sinica, 31, 959
- doi:10.5705/ss.202018.0027
- arXiv:1701.06820
- Meyer, A.D., van Dyk, D.A., Kashyap, V.L., Campos, L.F., Jones, D.E., Siemiginowska, A., & Zezas, A., eBASCS: Disentangling overlapping astronomical sources II, using spatial, spectral, and temporal information, 2021, MNRAS, 506, 6160
- 2021MNRAS.506.6160M [ADS]
- Yan, Y., Stenning, D.C., Kashyap, V.L., & Yu, Y., Forecasting Solar Cycle 25 with a Principled Bayesian Two-stage Statistical Model, 2021, Res. Notes of AAS, 5, 192
- 2021RNAAS...5..192Y [ADS]
- Xu, C., Guenther, H.M., Kashyap, V.L., Lee, T.C.M., & Zezas, A., Change point detection and image segmentation for time series of astrophysical images, 2021, AJ, 161, 184
- 2021AJ....161..184X [ADS]
- Publisher [IOP/pdf]
- manuscript
-
- Algeri, S., Detecting new signals under background mismodeling, 2020, Phys.Rev.D. 101, 015003
- Publisher [APS]
- Stampoulis, V., van Dyk, D.A., Kashyap, V.L., & Zezas, A., MNRAS, Multidimensional Data Driven Classification of Emission-line Galaxies, 2019, MNRAS, 485, 1085
- Manuscript [.pdf]
- arXiv:1802.02133 [url]
- Chen, Y., Meng, X.-L., Wang, X., van Dyk, D.A., Marshall, H.L., & Kashyap, V.L., Calibration Concordance for Astronomical Instruments via Multiplicative Shrinkage, 2019, Journal of the American Statistical Association, 114:527, 1018
- doi.org/10.1080/01621459.2018.1528978 [citation]
- 1711.09429 [arXiv preprint]
- Manuscript [.pdf]
- BibTex [.bib]
- Yu, X., Del Zanna, G., Stenning, D.C., Cisewski-Kehe, J., Kashyap, V.L., Stein, N., van Dyk, D.A., Warren, H.P., & Weber, M., Incorporating Uncertainties in Atomic Data into the Analysis of Solar and Stellar Observations: A Case Study in FeXIII, 2018, ApJ, 866, 146
- DOI:10.3847/1538-4357/aadfdd [url]
- manuscript [.pdf]
- Tak, H., Mandel, K., van Dyk, D.A., Kashyap, V.L., Meng, X.-L., & Siemiginowska, A., Bayesian Estimates of Astronomical Time Delays between Gravitationally Lensed Stochastic Light Curves, 2017, Annals of Applied Statistics, v11, p1309 to AoAS
- arXiv:1602.01462 [arXiv]
- dx.doi.org/10.1214/17-AOAS1027 [Euclid]
- bibTeX [.bib]
- reprint [.pdf]
- McKeough, K., Siemiginowska, A., Cheung, C.C., Lukasz, S., Kashyap, V.L., Stein, N., Stampoulis, V., van Dyk, D.A., Wardle, J.F.C., Lee, N.P., Harris, D.E., Schwartz, D.A., Donato, D., Maraschi, L., & Tavecchio, F., Detecting Relativistic X-ray Jets in High-Redshift Quasars, 2016, ApJ, 833, 123
- arXiv:1609.03425
- 2016ApJ...833..123M [ADS]
- Manuscript [.pdf]
- Stein, N.M., van Dyk, D.A., & Kashyap, V.L., Preprocessing Solar Images while Preserving their Latent Structure, 2016, in Statistical and Computational Theory and Methodology for Big Data, Statistics and Its Interface, 9, 535
- arXiv:1512.04273
- preprint
- Wong, R.K.W., Kashyap, V.L., Lee, T.C.M., & van Dyk, D.A., Detecting Abrupt Changes in the Spectra of High-Energy Astrophysical Sources, 2016, Annals of Applied Statistics, v10, p1107
- arXiv:1508.07083
- manuscript [.pdf]
- Automark on github [.url]
- Stenning, D.C., van Dyk, D.A., Yu, Y., & Kashyap, V., A Bayesian Analysis of the Solar Cycle Using Multiple Proxy Variables, 2015, in Current Trends in Bayesian Methodology with Applications,
- ISBN 9780429172373 [Taylor&Francis]
- manuscript [.pdf]
- Stein, N.M., van Dyk, D.A., Kashyap, V.L., & Siemiginowska, A., Detecting Unspecified Structure in Low-Count Images, 2015, ApJ, 813, 66
- Manuscript [.pdf]
- Gopalan, G., Vrtilek, S.D., & Bornn, L., Classifying X-Ray Binaries: A Probabilistic Approach, 2015, ApJ, 809, 40
- 2015ApJ...809...40G [ADS]
- Jones, D., Kashyap, V.L., & van Dyk, D.A., Disentangling Overlapping Astronomical Sources using Spatial and Spectral Information, 2015, ApJ, 808, 137
- arXiv:1411.7447 [arXiv]
- 2015ApJ...808..137J [ADS]
- IOP [url]
- eprint [.pdf]
- McKeough, K., Kashyap, V., McKillop, S., van Dyk, D., & Stein, N., Quantifying the Likelihood of Substructure in Coronal Loops, 2014, AGU, SH13C-4127
- poster [.pdf]
- Wong, R., Baines, P., Aue, A., Lee, T.C.M., & Kashyap, V.L., Automatic Estimation of Flux Distributions of
Astrophysical Source Populations, 2014, Annals of Appl. Stats., v8, 1690
- manuscript [.pdf] ; @imstat
- http://dx.doi.org/10.1214/14-AOAS750 (Euclid)
- arXiv:1305.0979 (arXiv)
- Primini, F., & Kashyap, V.L., Determining X-Ray Source Intensity and Confidence Bounds in Crowded Fields, 2014, ApJ, 796, 24
- arXiv:1410.2564
- 2014 ApJ 796, 24 (IOPScience)
- [.pdf]
- Xu, J., van Dyk, D.A., Kashyap, V.L., Siemiginowska, A., Connors, A., Drake, J., Meng, X.-L., Ratzlaff, P., & Yu, Y., A Fully Bayesian Method to Simultaneously Fit Calibration Products and Model Parameters in X-ray Spectral Analyses, 2014, ApJ, 794, 97
- manuscript [.pdf]
- Stenning, D.C., van Dyk, D.A., Yu, Y., & Kashyap, V., A Bayesian Analysis of the Solar Cycle Using Multiple Proxy Variables,, 2014, in Current Trends in Bayesian Methodology with Applications, Editors: S. Upadhyay, D.K. Dey, U. Singh and A. Loganathan, Chapman & Hall/CRC Press, 2014. To appear.
-
- Kashyap, V.L., pyBLoCXS: Strategy to deal with known errors in effective areas and Demo, 2014, IACHEC 2014, 12 May 2014
- Slides [.pdf]
- Demo walkthrough
- Stenning, D.C., Lee, T.C.M., van Dyk, D.A., Kashyap, V., Sandell, J., & Young, C.A., Morphological feature extraction for statistical learning with applications to solar image data, 2013, Statistical Analysis and Data Mining, Vol. 6, Issue 4, p329
- Abstract
- manuscript [.pdf]
- Blocker, A.W., & Protopapas, P., Semi-parametric Robust Event Detection for Massive Time-Domain Databases, 2013, SCMA V
- arXiv:1301.3027
- Yu, Y., van Dyk, D.A., Kashyap, V.L., & Young, C.A., A Bayesian Analysis of the Correlations Among Sunspot Cycles, 2012, Solar Physics, 281, 847
- manuscript [.pdf]
- Connors, A., Hong, J.S., Protopapas, P., Kashyap, V., Incorporating Spectra Into Periodic Timing: Bayesian Energy Quantiles,
2011, AAS-HEAD, 17.01, 7-8 Sep 2011, Newport, RI
- Poster [.pdf]
- Presented at SCMA V (June 13-17 2011):
- Baines, P., Udaltsova, I., Zezas, A., & Kashyap, V., log(N)-log(S): A Measuring Stick for the Universe
- Blocker, A., et al., Semi-Parametric robust event detection for massive time-domain databases
- Kashyap, V., et al., Systematic Errors in High-Energy Astrophysics
- Kelly, B., Measurement error models in astronomy
- Lee, T., Stenning, D., van Dyk, D., Young, A., & Kashyap, V., Automatic Detection and Classification of Sunspot Images
- Stein, N., von Hippel, T., van Dyk, D., DeGennaro, S., Jeffery, E., & Jefferys, B., Bayesian flux reconstruction in one and two bands
- Xu, J., et al., Using pyBLoCXS for a Fully Bayesian Analysis of Calibration Uncertainty in High Energy Spectral Analysis
- Lee, H., Kashyap, V.L., van Dyk, D.A., Connors, A., Drake, J.J., Izem, R., Meng, X.-L., Min, S., Park, T., Ratzlaff, P., Siemiginowska, A., & Zezas, A., Accounting for Calibration Uncertainties in X-ray Analysis: Effective Areas in Spectral Fitting 2011, ApJ, 731, 126
- ArXiv: arxiv/1102.4610
- Paper [.pdf]
- Connors, A., van Dyk, D., Stein, N.M., Kashyap, V., & Siemiginowska, A., LIRA - the Low-count Image Restoration and Analysis Package: A Teaching Version via `R', 2010, ADASS XX, 7-11 Nov, Boston, MA
- [.pdf]
- Siemiginowska, A., Kashyap, V., Refsdal, B., van Dyk, D., Connors, A., Park, T., et al., pyblocxs: Bayesian Low-Counts X-ray Spectral Analysis in Sherpa, 2010, ADASS XX, 7-11 Nov, Boston, MA
- poster [.pdf]
- proceedings [.pdf]
- Kashyap, V.L., van Dyk, D.A., Connors, A., Freeman, P.E., Siemiginowska, A., Xu, J., & Zezas, A., On Computing Upper Limits to Source Intensities, 2010, ApJ, 719, 900
- [.pdf]
- ArXiV: arxiv/1006.4334
- Kashyap, V., Lee, H., Siemiginowska, A., van Dyk, D., Drake, J., Connors, A., Zezas, A., Park, T., Min, S., McDowell, J., Rots, A.,
Ratzlaff, P., Kramer, J., Burke, D., & Refsdal, B., 2010, IACHEC, Woods Hole
- presentation: [.pdf]
- Drake, J., Ratzlaff, P., Kashyap, V., Jerius, D., Grant, C., Edgar, D., Marshall, H., Vikhlinin, A., et al., Monte Carlo Grand Prix: Parameter Estimation Including Calibration Uncertainties, 2010, IACHEC, Woods Hole
- presentation: [.pdf]
- Blocker, A.W., Protopapas, P., & Alcock, C.R., A Bayesian Approach to the Analysis of Time Symmetry in Light Curves: Reconsidering Scorpius X-1 Occultations, 2009, ApJ, 701, 1742
- abstract: @ApJ
- Lee, H., Kashyap, V., Drake, J., Ratzlaff, P., Siemiginowska, A., Zezas, A., Connors, A., van Dyk, D., Park, T., & Izem, R., 2009, A Semiparametric Approach to Incorporating Systematic Uncertainties into Bayesian X-Ray Spectral Fitting, at the Workshop o n Semiparametric Methodology, Jan. 8-10, 2009, U of Florida, FL
- abstract: [ascii]
- poster: [.pdf]
- Park, T., van Dyk, D.A., & Siemiginowska, A., 2008, Searching for Narrow Emission Lines in X-ray Spectra: Computation and Methods, ApJ, 688, 807
- manuscript: [.pdf]
- ADS: 2008ApJ...688..807P [.url]
- Kashyap, V., Lee, H., Siemiginowska, A., MacDowell, J., Rots, A., Drake, J., Ratzlaff, P., Zezas, A., Izem, R., Connors,
A., van Dyk, D., \& Park, T., How to handle calibration uncertainties in high-energy Astrophysics, 2008, SPIE 7016, 7016OP
- manuscript: [.pdf]
- presentation:
[.ppt] ;
[.pdf]
- Lee, H., Kashyap, V., Drake, J., Ratzlaff, P., Siemiginowska, A., Zezas, A., Connors, A., van Dyk, D., Park, T., Izem, R., Incorporating Effective Area Uncertainties Into Spectral Fitting, AAS-HEAD, #10, #41.15
- abstract
- 2008HEAD...10.4115L
- Kashyap, V., van Dyk, D., Connors, A., Freeman, P., Siemiginowska, A., Zezas, A., & the SAMSI-SaFeDe Collaboration, What Is An Upper Limit?, AAS-HEAD, #10, #03.02
- abstract
- 2008HEAD...10.0302C
- Connors, A., van Dyk, D., & Chiang, J., Quantifying Doubt and Confidence in Image "Deconvolution", AAS-HEAD, #10, #03.01
- abstract
- 2008HEAD...10.0301C
- Kashyap, V., Lee, H., Drake, J.J., Ratzlaff, P., Siemiginowska, A., Zezas, A., Connors, A., van Dyk, D., Park, T., & Izem, R., 2007, Incorporating Effective Area Uncertainties in Spectral Fitting, Chandra Calibration Workshop, #117, 25 Oct 2007, Huntsville, AL
- [.pdf]
- Drake, J.J., Ratzlaff, P., Kashyap, V., Edgar, R., Izem, R., Jerius, D., Marshall, H., Siemiginowska, A., & Vikhlinin, A., 2007, Monte Carlo methods for including correlated systematic calibration uncertainties in astrophysical analysis: Chandra ACIS, Chandra Calibration Workshop, #109, 25 Oct 2007, Huntsville, AL
- [.pdf]
- Connors, A. & van Dyk, D.A., 2007, How to Win With Non-Gaussian Data: Poisson Goodness-of-Fit, in Statistical Challenges in Modern Astronomy IV (Eds. G.J.Babu and E.D.Feigelson), Astronomical Society of the Pacific Conference Series, San Francisco, in press
- [.pdf]
- Talks presented by CHASC collaborators at the AstroStat sessions of the Joint Statistical Meeting 2007, July 29 - Aug 2, 2007, Salt Lake City, UT
- 367: Bayesian Applications in Astronomy and Physics (Chair: David van Dyk)
* Paul Edlefsen, A Dempster-Shafer Bayesian Solution to the Banff A1 Challenge
[pdf]
* Jingchen Liu, An Exploratory Statistical Study of the Measured Motion of the Guide Star Used in a New Test of Einstein's Universe
* Paul Baines, Probability Matching Priors in LHC Physics: A Pragmatic Approach
[pdf]
* Hyunsook Lee, A Statistical Approach to Stellar Archaeology
[pdf]
- 411: Image Analysis in Solar- and Astro-physics (Chairs: Yaming Yu & Thomas Lee)
* James Chiang, stronomical Imaging Using the GLAST Large-Area Telescope
[pdf]
* David van Dyk, Fully Bayesian Analysis of Low-Count Astronomical Images
[pdf]
* Alex Young, Multiscale Solar Image Processing
* Thomas Lee, Automatic Detection and Classification of Sunspot Images
[pdf]
* Vinay Kashyap, How to Find Loops in the Solar Corona
[pdf]
[ppt]
- Kashyap, V., Lee, H., Westbrook, O., Wolk, S., Evans, N., Nichols, J., Mendygral, P., Slavin, J., & Waldron, W., 2007,
Summarizing Coronal Spectra, at X-Ray Grating Spectroscopy, July 11-13, 2007, Cambridge, MA
- Abstract
- [.pdf]
- Park, T., Kashyap, V.L., Siemiginowska, A., van Dyk, D., Zezas, A., Heinke, C., & Wargelin, B.J., 2006, Bayesian Estimation of Hardness Ratios, ApJ, 652, 610
- [.pdf]
- van Dyk, D., Park, T., & Siemiginowska, A., 2007, Fitting narrow spectral lines in high-energy astrophysics using incompatible Gibbs samplers, in Statistical Challenges in Modern Astronomy IV (Eds. G.J.Babu and E.D.Feigelson), Astronomical Society of the Pacific Conference Series, San Francisco, in press
-
- Drake, J.J., Ratzlaff, P., Kashyap, V., Edgar, R., Izem, R., Jerius, D., Siemiginowska, A., & Vikhlinin, A., 2006, Monte Carlo Processes for Including Chandra Instrument Response Uncertainties in Parameter Estimation Studies, Proc. SPIE, v6270, p49
- 2006SPIE.6270E..49D
- [.ps]
- van Dyk, D.A., 2006, at Statistical Inference in High Energy Physics and Astrophysics, Banff International Research Station Workshop, Jul 15-20, 2006, Banff, BC
- presentation [.pdf]
- Park, T., van Dyk, D.A., & Siemiginowska, A., 2006, SAMSI Opening Workshop, Jan 23-25, 2006, Raleigh, NC
- poster [.pdf]
- van Dyk, D.A., 2006, SAMSI Opening Workshop, Jan 23-25, 2006, Raleigh, NC
- poster [.pdf]
- Drake, J., Ratzlaff, P., Edgar, R., Izem, R., Jerius, D., Kashyap, V., & Siemiginowska, A., 2005, in Proc. of 4th Chandra Calibration Workshop, Oct 31-Nov 1, 2005, Cambridge, MA
- presentation
- Izem, R., in Proc. of 4th Chandra Calibration Workshop, Oct 31-Nov 1, 2005, Cambridge, MA
- presentation
- Kang, H., van Dyk, D.A., Kashyap, V.L., & Connors, A., 2005, in ``X-Ray Diagnostics of Astrophysical Plasmas: Theory, Experiment, and Observation'', AIP Conference Proceedings, Volume 774, p.373
- 2005AIPC..774..373K
- manuscript [.pdf]
- Kang, H., van Dyk, D., Kashyap, V., & Connors, A., 2004, HEAD, 5.01
- 2004HEAD....8.0501K
- poster : [.ps] ; [.pdf]
- van Dyk, D.A., Park, T., Kashyap, V.L., & Zezas, A., 2004, HEAD, 16.27
- 2004HEAD....8.1627V
- poster [.pdf]
- Yu, Y., Meng, X.L., van Dyk, D.A., Kashyap, V., & Zezas, A., 2004, HEAD, 16.31
- 2004HEAD....8.1631Y
- poster [.ps]
- Sourlas, E., Kashyap, V., Zezas, A., & van Dyk, D., 2004, HEAD, 16.32
- 2004HEAD....8.1632S
- poster : [.pdf] ; [.ps]
- Park, T., van Dyk, D., & Siemiginowska, A., 2004, HEAD, 16.33
- 2004HEAD....8.1633P
- poster [.pdf]
- Yu, Y., van Dyk, D., Siemiginowska, A., Freeman, P., Zezas, A., Kashyap, V., & Connors, A., 2004, HEAD, 16.35
- 2004HEAD....8.1635Y
- Poster [.ps]
- Esch, D.N., Connors, A., Karovska, M., & van Dyk, D.A., 2004, ApJ, 610, 1213
- 2004ApJ...610.1213E
- Kang, H., et al., 2003, SPD 34, 02.01
- 2003SPD....34.0201K
- Karovska, M., Esch, D., & van Dyk, D., 2003, HEAD 35, 22.29
- 2003HEAD...35.2229K
- Sourlas, N., et al., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.489
- 2003sca..book..489S
- Kashyap, V., et al., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.451
- 2003sca..book..451K
- Kang, H., et al., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.449
- 2003sca..book..449K
- Hans, C., & van Dyk, D.A., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.429
- 2003sca..book..429H
- Freeman, P.E, et al., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.365
- 2003sca..book..365F
- van Dyk, D.A., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.124
- 2003sca..book..124V
- van Dyk, D.A., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.70
- 2003sca..book...70V
- van Dyk, D.A., 2001, SCMA III, Eds. Eric D. Feigelson, G. Jogesh Babu, New York: Springer, ISBN 0-387-95546-1, 2003, p.41
- 2003sca..book...41V
- Kashyap, V.L., & Siemiginowska, A., 2003, Chandra Newsletter, Vol. 10, p.16
- 2003ChNew..10...16K;
Lies, True Lies and Astrostatistics
- Kashyap, V.L., Drake, J.J., Guedel, M., & Audard, M., 2002, ApJ, 580, 1118
- 2002ApJ...580.1118K
- Protassov, R., van Dyk, D.A., Connors, A., Kashyap, V.L., & Siemiginowska, A., 2002, ApJ, 571, 545
- 2002ApJ...571..545P
- van Dyk, D.A., et al., 2001, AAS 199, 112.01
- 2001AAS...19911201V
- van Dyk, D.A., Connors, A., Kashyap, V.L., & Siemiginowska, A., 2001, ApJ, 548, 224
- 2001ApJ...548..224V
- Protassov, R., et al., 2000, AAS 197, 16.04
- 2000AAS...197.1604P
- Yu, Y., et al., 2000, HEAD 32, 16.10
- 2000HEAD...32.1610Y
- Yu, Y., et al., 2000, HEAD 32, 16.03
- 2000HEAD...32.1603Y
- Protassov, R.S, et al., 2000, AAS 196, 60.04
- 2000AAS...196.6004P
- Sourlas, E., et al., 2000, AAS 196, 54.02
- 2000AAS...196.5402S
- Protassov, R.S., & van Dyk, D.A., 1999, AAS 196, 54.01
- 2000AAS...196.5401P
- van Dyk, D.A., et al., 1999, AAS 194, 26.04
- 1999AAS...194.2604V
- van Dyk, D.A., et al., 1999, HEAD 31, 33.06
- 1999HEAD...31.3306V
- Esch, D., et al., 1999, HEAD 31, 33.05
- 1999HEAD...31.3305E
- Kashyap, V., & Drake, J.J., 1998, ApJ, 503, 450
- 1998ApJ...503..450K
- Siemiginowska, A., Elvis, M., Connors, A., Freeman, P., Kashyap, V., & Feigelson, E., 1997, SCMA II, Eds. C.J.Babu, E.Feigelson, p241
- 1997scma.conf..241S
- manuscript [.pdf]
Acknowlegements:
This material is based upon work
partially supported by NASA AISR grant NCC2-1206, and
National Science Foundation under Grant Nos. DSM 01-04129,
04-38240, and 04-06085 and by NASA Contract NAS8-39073 (CXC).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.
People