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The Challenge
• Cosmology has entered the era of precision 

science, from order of magnitude estimates 
to measurements at the 10% level

• Next step: measurements at the 1% level 
accuracy, theory and predictions have to 
keep up!

• Nonlinear regime of structure formation as 
measured by galaxy surveys holds wealth of 
new information on cosmology

‣ Matter power spectrum P(k), 3-point function, mass 
function...

• For cosmological constraints from e.g. SDSS:

‣ Run your favorite MCMC code, e.g. CosmoMC

‣ Need to calculate different statistics, e.g. P(k), 
~10,000 - 100,000 times for different models 

‣ Current fitting functions for these statistics (tuned 
to simulations) accurate at the 10% level for 
different cosmologies, not good enough!

‣ Brute force simulations: ~30 years on 2000 
processor Beowulf Cluster... 

Structure formation simulation

Movie



Large scale structure simulation carried out 
on Roadrunner, one of the world’s largest 
supercomputers. Shown is the distribution 

of dark matter halos which has to be 
connected to the distribution of galaxies in 

the observed Universe. 
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• Start with a “simple” example, dark matter power spectrum P(k)

• Aim: predict P(k) out to scales of k~1 h/Mpc at 1% accuracy between z=0 and z=1

‣ Regime of interest for current weak lensing surveys

‣ Baryon physics at these scales sub-dominant

‣ Dynamic range for simulations manageable

• Step 1: Show that simulations can be run at the required accuracy (arXiv:0812.1052)

‣ Initial conditions, force and mass resolution, ...

‣ Minimal requirement: 1 billion particles, 1.3 Gpc volume, 50 kpc force resolution, ~ 20,000 CPU 
hours, few days on 250 processors + wait time in queue ~ 1 week per simulation on “Coyote”, LANL 
cluster

• Step 2: Cosmic Calibration Framework (arXiv:0902.0429)

‣ Build -- with a small number of high-precision simulations -- a prediction scheme (“emulator”) which 
provides the power spectrum for any cosmology within the parameter space under consideration

‣ Showed that ~ 40 cosmological models sufficient 

• Step 3: Cosmic Emulator (arXiv:0912.4490)

‣ Carry out large number of simulations (~1,000) at varying resolution for 38 cosmologies, one high-
resolution run per cosmology, emulator is an instantaneous “look-up” table

‣ Emulator available at: www.lanl.gov/projects/cosmology/CosmicEmu

A First Step to a Solution
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The Coyote Universe

• 37 model runs + ΛCDM 

‣ 16 low resolution realizations (green)

‣ 4 medium resolution realizations (red)

‣ 1 high resolution realization (blue)

‣ 11 outputs per run between z=0 - 3

• Restricted priors to minimize 
necessary number of runs

• 1.3 Gpc boxes, mp ~10¹¹M

• ~1000 simulations, 60TB °
.

0.020 ≤ ω  ≤ 0.025
0.11 ≤ ω   ≤ 0.15 
0.85 ≤  n   ≤ 1.05
-1.3 ≤  w  ≤ -0.7
0.6 ≤  σ  ≤ 0.9

Priors:
b

m

8

s

Coyote III, Process convolution
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pη

The Cosmic Calibration Framework

• Simulation design: for a given set of parameters to be 
varied and a fixed number of runs that can be done, at 
what settings should the simulations be performed?

‣ Orthogonal-array Latin hypercubes (OA-LH) design

• Interpolation scheme that allows for predictions of the 
power spectrum for any cosmology within the priors

‣ Model simulation outputs using a       - dimensional basis 
representation 

‣ Find suitable set of orthogonal basis vectors              , here: 
Principal Component Analysis

‣ Model the weights, here: Gaussian Process modeling

• Uncertainty and sensitivity analysis

• Calibration: combining simulations with observations

θ [0,1]pθ∈ln
{

∆2(k,z)
2πk3/2

}
=

pη

∑
i=1

φi(k,z)wi(θ)+ ε

Number of basis 
function, here: 5

Basis functions, 
here:  PC basis

Weights, here:  
GP model

Cosmological
parameters

Number
parameters, 5

φi(k,z)

Simulation Design 
         for  5 parameters
         and 37 models

Dimensionless 
power spectrum

Gaussian Process Modeling:
• Nonparametric regression 
  scheme, particularly well 
  suited for interpolation of
  smooth functions
• Local interpolator
• Extending the notion of a
  Gaussian distribution over 
  scalar or vector variables 
  into function space
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The Cosmic Emu(lator)

• Prediction tool for matter power 
spectrum has been built

• Accuracy within specified priors 
between z=0 and z=1 out to k=1 h/Mpc 
at the 1% level reached

• Emulator has been publicly released 
as a C code

• Next steps 

‣ Extend k-range

‣ Include more physics, e.g. neutrinos

‣ Other statistics, e.g. shear spectrum

http://www.lanl.gov/projects/cosmology/CosmicEmu

1%

1%

Emulator performance:
Comparison of prediction 
and simulation output for
 a model not used to build 

emulator at 6 redshifts.
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Summary and Outlook

• Nonlinear regime of structure formation requires simulations

‣ No error controlled theory

‣ Simulated skies/mock catalogs essential for survey analysis

• Simulation requirements are demanding, but can be met

‣ Only a finite number of simulations can be performed

• Cosmic Calibration Framework 

‣ Accurate emulation of several statistics, accuracy comparable to simulation errors

‣ Allows fast calibration of models vs. data

• Challenges for the future

‣ More physics needs to be taken into account

‣ Computational and storage capacities will be demanding

‣ Simulation infrastructure, running very large number of simulation requires automation

‣ Serving the data, simulation results should be available to broader community

‣ Communication with other communities: statisticians, computer scientists, applied 
mathematicians, it takes some time to learn each other’s language!
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