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Context

For those of you who saw Jim Berger’s first Wald Lecture
yesterday. . .

This talk is related to the LHC Physics problem he discussed – the
upper confidence limits part. . .

. . . and is the same setting as Paul Edlefsen’s talk (first talk of this
session)
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Motivating Example

Consider the following common problem arising in LHC Physics:

ni ∼ Pois(εi s + bi )

yi ∼ Pois(tibi )

zi ∼ Pois(uiεi )

with i = 1, . . . ,M indexing the decay channels.

s: The Poisson rate of ‘source’ counts (common to all channels)

b: The Poisson rate of ‘background’ counts per channel

ε: The decay rate per channel.

In this talk we focus on M = 1 & M = 10: the single &
ten-channel cases.
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The Problem

Goal:

Find a method for producing ‘reliable interval
estimates’ for a univariate parameter of interest
(i.e. s) in the presence of nuisance parameters
(i.e. b, ε)
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Coverage Criterion

One-sided: Pθ
(
s < s(1−α)|s, b, ε

)
= 1− α

where P is the Frequentist probability measure and s(1−α) is the
(1− α)th-percentile produced by a given method i.e. a
data-dependent random variable.

Two-sided: P
(
s ∈ S (1−α)|s, b, ε

)
= 1− α

where S (1−α) is the set of s values contained in the
(1− α)th-percentile interval produced by a given method i.e. a
data-dependent random interval. e.g. (s(0.025), s(0.975)).
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‘Default’ priors

Here we focus on Bayesian approaches. There are a plethora of
‘default’ or ‘non-subjective’ priors in the literature, including:

1. Flat Priors: (Laplace) Notorious problems

2. Jeffrey’s Prior: Problems in multi-dimensions

3. Probability Matching Priors: More later. . .

4. Reference Priors: More later. . .

5. Trade-Off Priors: (Clarke & Wasserman, 1993)

6. Haar Measures: Based on invariance considerations

7. MDIP Priors: (Zellner, 1971)

8. Indifference Prior: (Novick & Hall, 1965)

These are not distinct classes of priors, they frequently coincide.
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An Aside. . .

The challenge posed by the Physicists is essentially to provide a
baseline solution. The ‘best’ prior for this purpose may not be the
preferred prior for actual data analysis though.

It may be of interest to combine subjective priors for nuisance
parameters with a ‘non-subjective’ prior for the interest parameter.
See Demortier (2005) for details of this within the reference prior
framework.

Since the Physicists primary interest is in coverage we focus on. . .

Paul Baines (joint work with Xiao-Li Meng) JSM07



Introduction to PMP Challenges Methods Reference Priors Results Conclusion

An Aside. . .

The challenge posed by the Physicists is essentially to provide a
baseline solution. The ‘best’ prior for this purpose may not be the
preferred prior for actual data analysis though.

It may be of interest to combine subjective priors for nuisance
parameters with a ‘non-subjective’ prior for the interest parameter.
See Demortier (2005) for details of this within the reference prior
framework.

Since the Physicists primary interest is in coverage we focus on. . .

Paul Baines (joint work with Xiao-Li Meng) JSM07



Introduction to PMP Challenges Methods Reference Priors Results Conclusion

Probability Matching Priors

Probability Matching Priors (PMP) are a bridge between Bayesian
and Frequentist methodologies (with some qualifications).

I Provide posterior intervals with Frequentist validity

I Can be used as a formal rule for selecting the prior distribution

I Can be used as a constructive tool for Frequentist inference
(e.g. Levine & Casella, 2003)
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Formal Definition

Definition

(Exact) Probability Matching Prior: Let {f (·|θ) : θ ∈ Θ} be a
parametric family where θ = (ψ, φ) ∈ Rp. Let ψ ∈ R be the
parameter of interest, with φ ∈ Rp−1 considered to be a
(p − 1)-dimensional nuisance parameter. Let ψ(1−α)(π,Y) denote
the 100(1− α)th (marginal) posterior percentile for ψ with
observed data Y, and under the prior π. A prior distribution π(θ)
is said to be (exact) probability matching for ψ if:

Pθ
(
ψ ≤ ψ(1−α)(π,Y)

)
= 1− α (1)

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Formal Definition

Definition

r th Order Probability Matching Prior: Let {f (·|θ) : θ ∈ Θ} be a
parametric family where θ = (ψ, φ) ∈ Rp. Let ψ ∈ R be the
parameter of interest, with φ ∈ Rp−1 considered to be a
(p − 1)-dimensional nuisance parameter. Let ψ(1−α)(π,Y) denote
the 100(1− α)th (marginal) posterior percentile for ψ with
observed data Y, and under the prior π. A prior distribution π(θ)
is said to be r th order probability matching for ψ if:

Pθ
(
ψ ≤ ψ(1−α)(π,Y)

)
= 1− α+ o(n−r/2) (2)

Paul Baines (joint work with Xiao-Li Meng) JSM07



Introduction to PMP Challenges Methods Reference Priors Results Conclusion

The Reward

Some background:

I There are a plethora of methods in the Physics literature:
some standard (e.g. profile likelihood), some ad hoc (e.g.
hybrid Frequentist-Bayes)

I This led to the ‘Banff Challenge’! (see Paul Edlefsen’s talk)

I PMPs offer an ‘optimal’ solution (when they exist, and up to
the desired order of approximation. . . )

I There often exists a class of PMP’s ⇒ select on other criteria

I Accessible to both Frequentist and Bayesians Physicists!
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Characterization, Orthogonality & Implementation

Characterization Theorem I

Theorem

(Peers, 1965) First Order Matching Prior Condition:

(a) A prior π(ψ, φ), ψ ∈ R, φ ∈ Rp−1 is first order probability
matching for ψ if and only if it satisfies the PDE:

∂

∂ψ

n
π(ψ, φ) · (Iψψ)1/2

o
+

p−1X
j=1

∂

∂φj

n
π(θ)Iφjψ(Iψψ)−1/2

o
= 0 (3)

where I ij is the entry of the inverse Fisher Information matrix
corresponding to the parameters (i , j).
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Characterization, Orthogonality & Implementation

Characterization Theorem II

Theorem

(Mukerjee & Ghosh, 1997) Second Order Matching:

(b) The prior π(·) is also second probability matching for ψ if and
only if it satisfies the additional PDE:

p−1X
j=0

p−1X
r=0

�
∂

∂φj

∂

∂φr

"
π(θ)

 
Iφj ,ψ Iφr ,ψ

Iψ,ψ

!#
−

1

3

p−1X
u=0

p−1X
s=0

∂

∂φu

∂

∂φs

�
π(·)

 
Iφj ,ψ Iφr ,ψ

Iψ,ψ

!
Eθ
�

∂3

∂φj∂φr∂φs
log f (Y1;ψ, φ)

�
·

�
3

�
Iφsφu −

�
Iφs ,ψ Iφu ,ψ

Iψ,ψ

��
+

�
Iφs ,ψ Iφu ,ψ

Iψ,ψ

����
= 0

where φ0 is defined to be ψ for notational convenience.
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Characterization, Orthogonality & Implementation

Challenges

I Potentially high-dimensional and non-linear PDE

I Analytic solutions rarely possible

I Standard software for solving PDE’s (Mathematica, Maple)
can rarely solve these equations (even numerically in many
cases)

I Where solutions are possible, parts of the prior are often
specified only up to an arbitrary function.
(This can be dealt with though. . . )
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Existing Approaches

To date, there appear to only have been two (direct) approaches to
find a framework for implementing PMP’s:

(1) Levine & Casella (2003): Numerical solution of PDE’s via
method of characteristics, embedded in an MCMC scheme.

I Specific to p = 2 setting (i.e. univariate nuisance parameter)

(2) Sweeting (2005): Seek local probability matching priors,
using data-dependent approximations.

I More generally applicable, but requires a non-trivial condition
on the parameterization

I Both are recent work (no applications of either method
published to date)

Jump to orthogonality/reference priors. . .

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Alternative Approaches

Recall that Iψ,φ are the coefficients in the PMP PDE. What if a
parameterization is ‘almost orthogonal’?

If the structure of the prior remains largely determined by the first
term (with Iψ,ψ coefficient) then, subject to a certain ‘smoothness’
of the PDE, we may expect the coverage properties of ‘orthogonal’
PMP’s to be ‘good’.

i.e. π(ψ, φ) ∝
√

Iψ,ψ(ψ, φ)

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Orthogonality Index

The concept of being ‘almost orthogonal‘ can be made rigorous.
We propose the following criteria. . .

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Relative Information (RI)

Definition

Relative Information: Consider a parameterization θ = (ψ, φ)
with ψ interest, φ nuisance. Denote the elements of the
partitioned Fisher Information matrix by Iij , i , j = ψ, φ. Define the
relative information (RI) for ψ in the θ−parameterization to be:

RI (θ) :=
Iψ,ψ(θ)− Iψ,φ(θ) (Iφ,φ(θ))

−1 Iφ,ψ(θ)

Iψ,ψ(θ)
(4)
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Orthogonality Index

Orthogonality Index (OI)

Definition

Orthogonality index: Consider a parametric family {fθ(·)},
θ ∈ Θ, with θ = (ψ, φ). The orthogonality index of the
parameterization θ with respect to the measure π is defined to be,
for dim (ψ) = 1:

OIfθ (π) := Eπ [RI (θ)]

OIfθ (π) :=

∫
Θ

Iψ,ψ(θ)− Iψ,φ(θ) (Iφ,φ(θ))
−1 Iφ,ψ(θ)

Iψ,ψ(θ)
π(θ)dθ

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Multivariate OI Definition

The extension to the dim (ψ) = p case is taken to be:

OIfθ (π) :=

∫
Θ

(
Ip − I

−1/2
ψ,ψ (θ)Iψ,φ(θ) (Iφ,φ(θ))

−1 Iφ,ψ(θ)I
−1/2
ψ,ψ (θ)

)
π(θ)dθ

where Ip is the pxp identity matrix. Hence, OI ∈ Rdim (ψ)x dim (ψ).

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Variance Interpretation of RI

Consider two models. First, the full model, is where the
parameter is (ψ, φ), with ψ interest, φ nuisance.

The asymptotic variance of the MLE ψ̂full is then given by:

lim
n→∞

Var
(√

nψ̂full

)
= Iψ,ψ(ψ, φ) =

(
Iψ,ψ − Iψ,φI

−1
φ,φIφ,ψ

)−1
(5)
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Orthogonality Index

Variance Interpretation cont. . .

Now consider the reduced model where the nuisance parameters
are considered to be known. In this model the only parameter is ψ.

In this setting the asymptotic variance of the MLE ψ̂red is given by:

lim
n→∞

Var
(√

nψ̂red | φ
)

= Iψ,ψred (ψ, φ) = (Iψ,ψ)−1 (6)

Note that this is also the asymptotic variance for an orthogonal
parameterization.

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Variance Interpretation cont. . .

The asymptotic relative efficiency (ARE) of the MLE in the joint
case relative to the known (orthogonal) case is thus given by:

lim
n→∞

Var(ψ̂red)

Var(ψ̂full)
=

Iψ,ψ − Iψ,φI
−1
φ,φIφ,ψ

Iψ,ψ
(7)

Hence, providing some intuition behind RI and the OI .
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Orthogonality Index

Computation

I The index is simple to compute numerically by evaluating the
information matrix over a grid of θ points.

I The Fisher Information, I , need only be computed in the
original parameterization.

I User-supplied Jacobian matrix is only other requirement (& π)

I With symbolic computation only the transformation needs to
be specified ⇒ easy to try many different parameterizations

I π must satisfy
∫
πdθ <∞

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Usage of OI

I First exhaust all other possibilities (i.e. both sets of PDE’s)

I If unsuccessful, then considering searching for either:

I An ‘approximately orthogonal’ parameterization i.e. OI ≈ 1
for general π, or,

I A ‘locally orthogonal’ parameterization i.e. OI ≈ 1 for π > 0
only on some subset of Θ

I If this can be achieved then investigate coverage properties of

the class of priors: π(θ) ∝
(
I 11

)1/2
d(θ2)

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Orthogonality Index

Example: (s, b, ε)−parameterization
Relative Information Surface: epsilon=0.8, 0.1<s<50, 0.1<b<5

s

b

RI(s,b,epsilon)
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Orthogonality Index

Example: (s, λ1, λ2) = (s, b, sε)−parameterization
Rel. Inf. Surface: (s,b,se)−Par. e=0.8, 0.1<s<50, 0.1<b<5

s

b

RI(s,b,epsilon)
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Orthogonality Index

Orthogonality

Note that if the parameterization is orthogonal then the first order
PMP equation simplifies to:

∂

∂ψ

{
π(ψ, φ)I

−1/2
ψ,ψ

}
= 0 (8)

The solution is seen to be:

π(ψ, θ) = I
1/2
ψ,ψ · d(φ) (9)

where d(φ) is an arbitrary smooth function of the nuisance
parameter (Tibshirani, 1989).

Arbitrariness: good or bad? An interesting connection can help. . .
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Introduction & Algorithm

Reference Priors

Reference priors were first proposed by Bernardo (1979). Extended
to ordered group reference priors in Berger & Bernardo (1989).

Idea: Divide parameters into groups of ‘equal’ (inferential)
interest. θ(i) is i th most important of m groups. Generalization of
interest/nuisance dichotomy.

Let m = 2, θ(1) = ψ be interest, with θ(2) = φ nuisance. . .
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Berger-Bernardo Reference Prior Algorithm

1. Find the conditional reference prior for the nuisance
parameter:

π(φ|ψ) = |Iφ,φ(ψ, φ)|1/2

2. Typically this is improper. Choose a sequence of subsets of
the parameter space Ωi ,ψ over which to normalize:

pi (φ|ψ) = π(φ|ψ) · Ki (ψ) · 1ψ∈Ωi,ψ

where:

Ki (ψ) =

[∫
Ωi,ψ

π(φ|ψ)dφ

]−1
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Introduction to PMP Challenges Methods Reference Priors Results Conclusion

Introduction & Algorithm

B-B Algorithm cont. . .

3. Find the marginal reference prior for ψ wrt pi (φ|ψ):

πi (b, ε) = exp

{
1

2

∫
Ωi,ψ

pi (φ|ψ) · log

[
|I (ψ, φ)|
|Iφ,φ(ψ, φ)|

]
dφ

}

4. Finally, the reference prior is defined to be:

π(ψ, φ) = lim
i→∞

[
Ki (ψ)πi (ψ)

Ki (ψ0)πi (ψ0)

]
π(φ|ψ)

where ψ0 is any fixed point within the chosen compact
subsets.
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Properties/Connections

Important things to note:

Def. The ‘reverse reference prior’ (RRP) switches roles of ψ, φ

I Under an orthogonal parameterization the RRP is first
order probability matching (Berger [via J.K.Ghosh], 1992)

I ψ−dependence is determined entirely though:

π(ψ|φ) ∝ |Iψ,ψ(ψ, φ)|1/2

So it is just of the Tibshirani class!

I PM property not guaranteed outside orthogonality, but prior
still derived from sound information-theoretic principles.
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Special Cases of PMPs

(1) In the univariate case (p = 1), Jeffreys prior is the unique PMP!

(2) Jeffreys prior is NOT necessarily probability matching for p > 1

(3) For orthogonal settings, the RRP is first order matching

(4) The regular reference prior need not be (but often is)

(5) In some cases, it can be proved that there is no PMP!

(6) Two-sided intervals are first order PM for any prior (Hartigan, 1966)

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Why not just orthogonalize?

I So, we have a nice class of priors (Tibshirani), with the RRP
one potentially appealing case within this class. They will be
PMPs under orthogonality. . .

II Datta & Ghosh (1996) and Mukerjee & Ghosh (1997) noted
the invariance of matching priors under reparametrization

I Cox & Reid (1987) showed that, in theory, we can always
orthogonalize a univariate interest parameter and a
(p − 1)−dimensional nuisance parameter

I Unfortunately, in practice, this is often not feasible as a set of
p − 1 PDE’s must be solved. . .

Paul Baines (joint work with Xiao-Li Meng) JSM07
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The Problem in a Nutshell

Both obvious routes to finding probability matching priors:

1. Directly from the characterization theorem (3), or,

2. Via orthogonal parameterization

are blocked by the obstacle of an intractable (set of) PDE(’s)!

The third possible route – (Reverse) Reference priors – is also
often overwhelmingly complicated to compute!

“the theory of Bayesian objectivity cannot be a simple one”

Efron (1986), quoted in Berger & Bernardo (1992).

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Applications

LHC Example

Recall the three-Poisson example earlier. In this case the PMP
equation is:

∂

∂s

(
π(s, b, ε)

s
b

εtu

�
st(u + s)

b
+

u(1 + t)

ε

�)
+

∂

∂b

(
−b · π(s, b, ε)

εt

�
b

εtu

�
st(u + s)

b
+

u(1 + t)

ε

��−1/2
)

+

∂

∂ε

(
− s · π(s, b, ε)

u

�
b

εtu

�
st(u + s)

b
+

u(1 + t)

ε

��−1/2
)

= 0
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Computational Difficulties

The previous equation has so far proved too complex to solve even
using Mathematica, Maple etc. The multi-channel is even more
daunting. . .

The regular reference prior is also brutal to compute (limits in 4M2

competing directions and 4M integrations). However, the RRP
frequently has better matching properties and has yielded some
luck. . .

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Any Hope?

Conjecture

My Conjecture: There exists no PMP for this particular example.

Proof.

No formal proof. . . hence it is just a conjecture!

Paul Baines (joint work with Xiao-Li Meng) JSM07
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RRP Computation

Derivation for general M−channel setting:
1. Conditional reference prior:

π(s|b, ε) ∝

vuut MX
j=1

ε2j

sεj + bj

2. Normalizing constant on (s(li ), s(ui )):

Ki (b, ε) = s
1/2
(ui )

2
42

vuut MX
j=1

εj

3
5− s(li )

vuut MX
j=1

ε2j

bj
+ O

�
s
−1/2
(ui )

�
+ O

�
s2
(li )

�
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RRP Computation cont. . .

3. The marginal prior:

∝ exp

8>>>>><
>>>>>:

s
1/2
(ui )

hqP
εj

i
·
 

2 log s(ui )
+ log

" �Q
tj

�P
εj uj�Q

bj εj

�P
εj

#
− 4

!
+

s
O

�
s−1
(ui )

�
+ O(s( li ))

s
1/2
(ui )

h
2
qP

εj

i
+ O

�
s
−1/2
(ui )

�
+ O

�
s
(li )

2

�

9>>>>>=
>>>>>;

4. The limit can be shown to yield the RRP:

π(s, b, ε) ∝

vuut MX
j=1

ε2j

sεj + bj
·

1PM
j=1 εj

·

vuutPM
j=1 εjujQM
j=1 bj εj
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The Regular Reference Prior

The regular reference prior for the ordered parameterization
(ψ = s, φ = (b, ε)), if it exists, will be of the form:

π(s,b, ε) ∝ g(s)

√√√√ M∏
j=1

bjuj(1 + tj) + εjstj(s + uj)

bjεj(bj + εjs)
(10)

Where g(·) is a smooth function of s alone (that could, in principle,
be determined by complicated limit calculations). Heuristics
suggest that g(s) ≈ s−δ with δ > 1 although this is not rigorous!

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Relating to the conjecture

For the single-channel setting (M = 1):

1. The reference prior cannot be a PMP!
[for the ordered parameterization (ψ = s, φ = (b, ε))]

2. Priors of the Tibshirani class π(s,b, ε) cannot be PMPs!

3. Hence, the reverse reference prior cannot be a PMP!
[for the ordered parameterization (ψ = s, φ = (b, ε))]

Prospects look grim for standard priors. May wish to consider
data-dependent priors as a mathematical tool.

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Simulation study results: LHC example

Simulation Study

Details:

I 110,000 datasets generated, corresponding to 22 different s
values: 0.1 to 50.0

I Fixed ε = 1, b = 3

I Coverage properties computed for each percentile:
{s(0.01), . . . , s(0.99)}.

Compare performance based on coverage surfaces
(Goal: 45° plane). . .

Single-channel results Ten-channel results

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Simulation study results: LHC example

Results
Coverage surface for d()=1 prior: e=1,b=3
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Results
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Simulation study results: LHC example

Summary Results Format

(Simulated data specification) M = 1 : (b = 3, ε = 1, s = 0.5)
Fictional Coverage table (actual coverage of the percentiles):

Percentile Prior 1 Prior 2 Prior 3 Prior 4 Prior 5
s(0.05) 0.05 0.10 0.01 0.16 0.08
s(0.10) 0.10 0.25 0.03 0.33 0.15
s(0.25) 0.25 0.75 0.21 0.51 0.28
s(0.50) 0.50 0.95 0.40 0.55 0.51
s(0.75) 0.75 1.00 0.62 0.64 0.77
s(0.90) 0.90 1.00 0.80 0.76 0.91
s(0.95) 0.95 1.00 0.88 0.80 0.95
s(0.99) 0.99 1.00 0.92 0.90 0.98

Perfect! Overcover Undercover Over&Under Typical

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Results: Original parameterization

M = 1 : (b = 3, ε = 1, s = 0.5)
Coverage table:

Jeff RRP Jeff/ε d = 1 Flat Pseudo

s(0.05) 0.11 0.15 0.11 0.15 0.16 0.15
s(0.10) 0.25 0.33 0.25 0.33 0.33 0.33
s(0.25) 0.70 0.82 0.71 0.81 0.81 0.81
s(0.50) 1.00 1.00 1.00 1.00 1.00 1.00
s(0.75) 1.00 1.00 1.00 1.00 1.00 1.00
s(0.90) 1.00 1.00 1.00 1.00 1.00 1.00
s(0.95) 1.00 1.00 1.00 1.00 1.00 1.00
s(0.99) 1.00 1.00 1.00 1.00 1.00 1.00

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Simulation Results: M = 1, s = 8

M = 1 : (b = 3, ε = 1, s = 8)
Coverage table:

Jeff RRP Jeff/ε d = 1 Flat Pseudo

s(0.05) 0.05 0.07 0.05 0.06 0.07 0.07
s(0.10) 0.10 0.13 0.11 0.13 0.13 0.13
s(0.25) 0.24 0.29 0.25 0.28 0.29 0.29
s(0.50) 0.49 0.55 0.50 0.54 0.55 0.55
s(0.75) 0.75 0.80 0.76 0.79 0.80 0.80
s(0.90) 0.91 0.93 0.91 0.93 0.93 0.93
s(0.95) 0.96 0.97 0.96 0.97 0.97 0.97
s(0.99) 0.99 1.00 0.99 0.99 1.00 1.00

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Simulation study results: LHC example

Simulation Results: M = 1, s = 50

M = 1 : (b = 3, ε = 1, s = 50)
Coverage Table:

Jeff RRP Jeff/ε d = 1 Flat Pseudo

s(0.05) 0.05 0.06 0.06 0.05 0.06 0.06
s(0.10) 0.10 0.12 0.11 0.11 0.12 0.12
s(0.25) 0.25 0.28 0.28 0.26 0.28 0.28
s(0.50) 0.52 0.55 0.54 0.52 0.55 0.55
s(0.75) 0.76 0.78 0.77 0.77 0.78 0.78
s(0.90) 0.90 0.91 0.91 0.90 0.91 0.91
s(0.95) 0.95 0.96 0.95 0.95 0.96 0.96
s(0.99) 0.99 0.99 0.99 0.99 0.99 0.99
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Simulation study results: LHC example

M = 10-Channel Example
Now, we return to the multi-channel example with M = 10.

(1) Flat: π1(s, b, ε) ∝ 1

(2) Jeffreys: π2(s, b, ε) ∝
√

det (I (s, b, ε))

(3) Reverse Reference:

π3(s, b, ε) ∝
√∑M

j=1

ε2j
sεj+bj

· 1PM
j=1 εj

·
√PM

j=1 εjujQM
j=1 bj εj

(4) π4(s, b, ε) ∝
√

Iss(s, b, ε)

(5) π5(s, b, ε) ∝
√

Iss(s, b, ε)
1√

ε1···εM

(6) π6(s, b, ε) ∝
√

Iss(s, b, ε)
1

ε1···εM

(7) π7(s, b, ε) ∝
√

Iss(s, b, ε)
1

ε1···εM ·b1···bM

Again, compare over 22 values of s, with bi ∼ N(0.3, 0.042),
εi ∼ N(0.1, 0.0252).
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Simulation study results: LHC example

Performance: Ten-Channel Results
(M=10) Coverage surface for Flat prior (b=3,e=1)
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d(·) = 1 prior: Ineffective!
(M=10) Coverage surface for d()=1 prior (b=3,e=1)
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Simulation study results: LHC example

Numerical Results: Ten-Channel

M = 10 : (b = 3, ε = 1, s = 0.5)
Coverage Table:

Flat Jeff RRP d = 1 d = 1√
ε

d = 1
ε

d = 1
ε·b

s(0.05) 0.11 0.08 0.10 0.08 0.13 0.09 0.10

s(0.10) 0.22 0.18 0.21 0.17 0.26 0.20 0.22

s(0.25) 0.53 0.51 0.52 0.48 0.60 0.53 0.55

s(0.50) 0.93 0.94 0.94 0.92 0.97 0.95 0.97

s(0.75) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

s(0.90) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

s(0.95) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

s(0.99) 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Simulation study results: LHC example

Numerical Results: Ten-Channel

M = 10 : (b = 3, ε = 1, s = 10)
Coverage table:

Flat Jeff RRP d = 1 d = 1√
ε

d = 1
ε

d = 1
ε·b

s(0.05) 0.06 0.04 0.05 0.03 0.04 0.06 0.07

s(0.10) 0.11 0.07 0.09 0.05 0.07 0.11 0.13

s(0.25) 0.23 0.19 0.20 0.15 0.18 0.23 0.26

s(0.50) 0.41 0.37 0.38 0.31 0.37 0.41 0.45

s(0.75) 0.63 0.58 0.60 0.53 0.58 0.63 0.66

s(0.90) 0.79 0.76 0.78 0.72 0.77 0.80 0.82

s(0.95) 0.87 0.84 0.85 0.81 0.85 0.87 0.89

s(0.99) 0.96 0.95 0.95 0.93 0.95 0.96 0.97
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Simulation study results: LHC example

Ten-Channel Summary

(1) Much harder than the one-channel case

(2) Far more important to appropriately select the d(·) function

(3) Improved choices of d(·) are available but further simulation
studies required
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Simulation study results: LHC example

Future Work

This is certainly a topic with much room for development, and
(hopefully) rich rewards...

I Analytic approximations to PMP (‘closest’ PMP: metric?)

I Utilize the huge literature on asymptotic statistics. . .

I Reduce computational burden/improve efficiency

I Explore deep connections with other aspects of asymptotic/Bayesian
theory e.g. SOUP (Meng & Zaslavsky, 2002)

I Extensive simulation studies

I ‘The Holy Grail of PMP’: A general framework to implement first
and second order PMP’s (unlikely anytime soon. . . )

Paul Baines (joint work with Xiao-Li Meng) JSM07
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Conclusion & Future Work

Conclusion
In summary:

1. (Where they exist. . . ) PMP’s may offer an ‘optimal solution’. . .
(. . . depending on the criteria. . . )

2. No PMP ; No good Bayesian inference! Other criteria. . .

3. Computational challenges for PMPs yet to be overcome in the
general case (much work to be done!)

4. PMP’s are simple to obtain in orthogonal settings. . .
(. . . but are somewhat arbitrary)

5. Even reference priors, usually considered the ‘gold standard’ in
default priors, struggle to provide an entirely satisfactory solution

6. May apply PMP’s from the orthogonal setting in ‘almost
orthogonal’ parameterizations
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