get_pvalue_plot¶
-
sherpa.ui.
get_pvalue_plot
(null_model=None, alt_model=None, conv_model=None, id=1, otherids=(), num=500, bins=25, numcores=None, recalc=False)¶ Return the data used by plot_pvalue.
Parameters: - null_model – The model expression for the null hypothesis.
- alt_model – The model expression for the alternative hypothesis.
- conv_model (optional) – An expression used to modify the model so that it can be compared to the data (e.g. a PSF or PHA response).
- id (int or str, optional) – The data set that provides the data. The default is 1.
- otherids (sequence of int or str, optional) – Other data sets to use in the calculation.
- num (int, optional) – The number of simulations to run. The default is 500.
- bins (int, optional) – The number of bins to use to create the histogram. The default is 25.
- numcores (optional) – The number of CPU cores to use. The default is to use all the cores on the machine.
- recalc (bool, optional) – The default value (
False
) means that the results from the last call to plot_pvalue or get_pvalue_plot are returned. IfTrue
, the values are re-calculated.
Returns: plot
Return type: a sherpa.plot.LRHistogram instance
See also
get_pvalue_results()
- Return the data calculated by the last plot_pvalue call.
plot_pvalue()
- Compute and plot a histogram of likelihood ratios by simulating data.
Examples
Return the values from the last call to plot_pvalue:
>>> pvals = get_pvalue_plot() >>> pvals.ppp 0.472
Run 500 simulations for the two models:
>>> pvals = get_pvalue_plot(mdl1, mdl2, recalc=True, num=500)