get_covariance_results¶
-
sherpa.ui.get_covariance_results()¶ Return the results of the last covar run.
Returns: results Return type: sherpa.fit.ErrorEstResults object Raises: sherpa.utils.err.SessionErr– If no covar call has been made.See also
get_covar_opt()- Return one or all of the options for the covariance method.
set_covar_opt()- Set an option of the covar estimation object.
Notes
The fields of the object include:
datasets- A tuple of the data sets used in the analysis.
methodname- This will be ‘covariance’.
iterfitname- The name of the iterated-fit method used, if any.
fitname- The name of the optimization method used.
statname- The name of the fit statistic used.
sigma- The sigma value used to calculate the confidence intervals.
percent- The percentage of the signal contained within the
confidence intervals (calculated from the
sigmavalue assuming a normal distribution). parnames- A tuple of the parameter names included in the analysis.
parvals- A tuple of the best-fit parameter values, in the same
order as
parnames. parmins- A tuple of the lower error bounds, in the same
order as
parnames. parmaxes- A tuple of the upper error bounds, in the same
order as
parnames.
nfitsThere is also an
extra_outputfield which is used to return the covariance matrix.Examples
>>> res = get_covar_results() >>> print(res) datasets = (1,) methodname = covariance iterfitname = none fitname = levmar statname = chi2gehrels sigma = 1 percent = 68.2689492137 parnames = ('bgnd.c0',) parvals = (10.228675427602724,) parmins = (-2.4896739438296795,) parmaxes = (2.4896739438296795,) nfits = 0
In this case, of a single parameter, the covariance matrix is just the variance of the parameter:
>>> res.extra_output array([[ 6.19847635]])