get_confidence_results¶
-
sherpa.ui.
get_confidence_results
()¶ Return the results of the last conf run.
Returns: results Return type: sherpa.fit.ErrorEstResults object Raises: sherpa.utils.err.SessionErr
– If no conf call has been made.See also
get_conf_opt()
- Return one or all of the options for the confidence interval method.
set_conf_opt()
- Set an option of the conf estimation object.
Notes
The fields of the object include:
datasets
- A tuple of the data sets used in the analysis.
methodname
- This will be ‘confidence’.
iterfitname
- The name of the iterated-fit method used, if any.
fitname
- The name of the optimization method used.
statname
- The name of the fit statistic used.
sigma
- The sigma value used to calculate the confidence intervals.
percent
- The percentage of the signal contained within the
confidence intervals (calculated from the
sigma
value assuming a normal distribution). parnames
- A tuple of the parameter names included in the analysis.
parvals
- A tuple of the best-fit parameter values, in the same
order as
parnames
. parmins
- A tuple of the lower error bounds, in the same
order as
parnames
. parmaxes
- A tuple of the upper error bounds, in the same
order as
parnames
.
nfits
Examples
>>> res = get_conf_results() >>> print(res) datasets = (1,) methodname = confidence iterfitname = none fitname = levmar statname = chi2gehrels sigma = 1 percent = 68.2689492137 parnames = ('p1.gamma', 'p1.ampl') parvals = (2.1585155113403327, 0.00022484014787994827) parmins = (-0.082785567348122591, -1.4825550342799376e-05) parmaxes = (0.083410634144100104, 1.4825550342799376e-05) nfits = 13
The following converts the above into a dictionary where the keys are the parameter names and the values are the tuple (best-fit value, lower-limit, upper-limit):
>>> pvals1 = zip(res.parvals, res.parmins, res.parmaxes) >>> pvals2 = [(v, v+l, v+h) for (v,l,h) in pvals1] >>> dres = dict(zip(res.parnames, pvals2)) >>> dres['p1.gamma'] (2.1585155113403327, 2.07572994399221, 2.241926145484433)