unpack_arrays¶
-
sherpa.astro.ui.
unpack_arrays
(*args)¶ Create a sherpa data object from arrays of data.
The object returned by unpack_arrays can be used in a set_data call.
Parameters: - args (array_like) – Arrays of data. The order, and number, is determined by the dstype parameter, and listed in the load_arrays routine.
- dstype – The data set type. The default is Data1D and values include: Data1D, Data1DInt, Data2D, Data2DInt, DataPHA, and DataIMG. The class is expected to be derived from sherpa.data.BaseData.
Returns: The data set object matching the requested dstype parameter.
Return type: instance
See also
get_data()
- Return the data set by identifier.
load_arrays()
- Create a data set from array values.
set_data()
- Set a data set.
unpack_data()
- Create a sherpa data object from a file.
Examples
Create a 1D (unbinned) data set from the values in the x and y arrays. Use the returned object to create a data set labelled “oned”:
>>> x = [1,3,7,12] >>> y = [2.3,3.2,-5.4,12.1] >>> dat = unpack_arrays(x, y) >>> set_data("oned", dat)
Include statistical errors on the data:
>>> edat = unpack_arrays(x, y, dy)
Create a “binned” 1D data set, giving the low, and high edges of the independent axis (xlo and xhi respectively) and the dependent values for this grid (y):
>>> hdat = unpack_arrays(xlo, xhi, y, Data1DInt)
Create a 3 column by 4 row image:
>>> ivals = np.arange(12) >>> (y, x) = np.mgrid[0:3, 0:4] >>> x = x.flatten() >>> y = y.flatten() >>> idat = unpack_arrays(x, y, ivals, (3,4), DataIMG)