The sherpa.utils moduleΒΆ

Functions

Knuth_close(x, y, tol[, myop]) Check whether two floating-point numbers are close together.
_guess_ampl_scale float(x) -> floating point number
apache_muller(fcn, xa, xb[, fa, fb, args, ...])
bisection(fcn, xa, xb[, fa, fb, args, ...])
bool_cast(val) Converts a string (true|False|on|OFF|etc...) to a boolean value
calc_ftest(dof1, stat1, dof2, stat2) Compare two models using the F test.
calc_mlr(delta_dof, delta_stat) Compare two models using the Maximum Likelihood Ratio test.
calc_total_error([staterror, syserror]) Add statistical and systematic errors in quadrature.
create_expr(vals[, mask, format, delim]) collapse a list of channels into an expression using hyphens
dataspace1d(start, stop[, step, numbins]) Populates an integrated grid
dataspace2d(dim) Populates a blank image dataset
demuller(fcn, xa, xb, xc[, fa, fb, fc, ...]) A root-finding algorithm using Muller’s method [1]_.
erf
export_method(meth[, name, modname]) Given a bound instance method, return a simple function that wraps it.
extract_kernel
filter_bins(mins, maxes, axislist)
gamma(z) Calculate the Gamma function.
get_error_estimates(x[, sorted]) Compute the median and (-1,+1) sigma values for the data.
get_fwhm(y, x[, xhi])
get_keyword_defaults(func[, skip]) Return the keyword arguments and their default values.
get_keyword_names(func[, skip]) Return the names of the keyword arguments.
get_midpoint(a)
get_num_args(func) Return the number of arguments for a function.
get_peak(y, x[, xhi])
get_position(y, x[, xhi]) Get 1D model parameter positions pos (val, min, max)
get_valley(y, x[, xhi])
guess_amplitude(y, x[, xhi]) Guess model parameter amplitude (val, min, max)
guess_amplitude2d(y, x0lo, x1lo[, x0hi, x1hi]) Guess 2D model parameter amplitude (val, min, max)
guess_amplitude_at_ref(r, y, x[, xhi]) Guess model parameter amplitude (val, min, max)
guess_bounds(x[, xhi]) Guess model parameters xlo, xhi (val, min, max)
guess_fwhm(y, x[, xhi, scale])
guess_position(y, x0lo, x1lo[, x0hi, x1hi]) Guess 2D model parameter positions xpos, ypos ({val0, min0, max0},
guess_radius(x0lo, x1lo[, x0hi, x1hi]) Guess 2D model parameter radius (val, min, max)
guess_reference(pmin, pmax, x[, xhi]) Guess model parameter reference (val, min, max)
histogram1d(x, x_lo, x_hi) Create a 1D histogram from a binned grid (x_lo, xhi) and array of samples (x).
histogram2d(x, y, x_grid, y_grid) Create 21D histogram from a binned grid (x_grid, y_grid) and array of samples (x, and y).
igam(a,x) Calculate the regularized incomplete Gamma function (lower).
igamc(a,x) Calculate the complement of the regularized incomplete Gamma function (upper).
incbet(a,b,x) Calculate the incomplete Beta function
interpolate(xout, xin, yin[, function]) One-dimensional interpolation.
is_binary_file(filename) Estimate if a file is a binary file.
lgam(z) Calculate the log (base e) of the Gamma function.
linear_interp(xout, xin, yin) Linear one-dimensional interpolation.
multinormal_pdf(x, mu, sigma) The PDF of a multivariate-normal.
multit_pdf(x, mu, sigma, dof) The PDF of a multivariate student-t.
nearest_interp(xout, xin, yin) Nearest-neighbor one-dimensional interpolation.
neville(xout, xin, yin) Polynomial one-dimensional interpolation using Neville’s method [1]_.
neville2d(xinterp, yinterp, x, y, fval)
new_muller(fcn, xa, xb[, fa, fb, args, ...])
normalize
numpy_convolve(a, b)
pad_bounding_box
parallel_map(function, sequence[, numcores]) A parallelized version of the native Python map function that utilizes the Python multiprocessing module to divide and conquer sequence.
param_apply_limits(param_limits, par[, ...]) apply the dictionary of guess values to parameter, also, save the
parse_expr(expr) parse a filter expression into numerical components for notice/ignore
poisson_noise(x) Draw samples from a Poisson distribution.
print_fields(names, vals[, converters]) Given a list of strings names and mapping vals, where names is a subset of vals.keys(), return a listing of name/value pairs printed one per line in the format ‘<name> = <value>’.
quantile(sorted_array, f) Return the quantile element from sorted_array, where f is [0,1] using linear interpolation.
rebin(y0, x0lo, x0hi, x1lo, x1hi) Rebin a histogram.
sao_arange
sao_fcmp(x, y, tol) Compare y to x, using an absolute tolerance.
set_origin
sum_intervals
zeroin(fcn, xa, xb[, fa, fb, args, maxfev, tol]) Obtain a zero of a function of one variable using Brent’s root finder.

Classes

NoNewAttributesAfterInit() Prevents attribute deletion and setting of new attributes after __init__ has been called.