igamc¶
-
sherpa.utils.
igamc
(a, x)¶ Calculate the complement of the regularized incomplete Gamma function (upper).
The function is defined using the regularized incomplete Gamma function - igam(a,x) - and the Gamma function - gamma(a) - as:
igamc(a,x) = 1 - igam(a,x) = 1/gamma(a) Int_x^Inf e^(-t) t^(a-1) dt
Parameters: - a (scalar or array) – a > 0
- x (scalar or array) – x > 0
Returns: val
Return type: scalar or array
Notes
In this implementation, which is provided by the Cephes Math Library [1], both arguments must be positive. The integral is evaluated by either a power series or continued fraction expansion, depending on the relative values of a and x. Using IEEE arithmetic, the relative errors are
domain domain # trials peak rms 0.5,100 0,100 200000 1.9e-14 1.7e-15 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 References
[1] Cephes Math Library Release 2.0: April, 1987. Copyright 1985, 1987 by Stephen L. Moshier. Direct inquiries to 30 Frost Street, Cambridge, MA 02140. Examples
>>> igamc(1, 2) 0.1353352832366127
>>> igamc([1,1], [2,3]) array([ 0.13533528, 0.04978707])