NormGauss2D¶
-
class
sherpa.models.basic.NormGauss2D(name='normgauss2d')[source]¶ Bases:
sherpa.models.model.ArithmeticModelTwo-dimensional normalised gaussian function.
-
fwhm¶ The Full-Width Half Maximum of the gaussian along the major axis. It is related to the sigma value by: FWHM = sqrt(8 * log(2)) * sigma.
-
xpos¶ The center of the gaussian on the x0 axis.
-
ypos¶ The center of the gaussian on the x1 axis.
-
ellip¶ The ellipticity of the gaussian.
-
theta¶ The angle of the major axis. It is in radians, measured counter-clockwise from the X0 axis (i.e. the line X1=0).
-
ampl¶ The amplitude refers to the integral of the model over the range -infinity to infinity for both axes.
See also
Notes
The functional form of the model for points is:
f(x0,x1) = 4 * log(2) * ampl * exp(-4 * log(2) * r(x0,x1)^2) ------------------------------------------------- pi * fwhm * fwhm * sqrt(1 - ellip * ellip) r(x0,x1)^2 = xoff(x0,x1)^2 * (1-ellip)^2 + yoff(x0,x1)^2 ------------------------------------------- fwhm^2 * (1-ellip)^2 xoff(x0,x1) = (x0 - xpos) * cos(theta) + (x1 - ypos) * sin(theta) yoff(x0,x1) = (x1 - ypos) * cos(theta) - (x0 - xpos) * sin(theta)
The grid version is evaluated by adaptive multidimensional integration scheme on hypercubes using cubature rules, based on code from HIntLib ([1]) and GSL ([2]).
References
[1] HIntLib - High-dimensional Integration Library http://mint.sbg.ac.at/HIntLib/ [2] GSL - GNU Scientific Library http://www.gnu.org/software/gsl/ Attributes Summary
thawedparhardmaxesthawedparhardminsthawedparmaxesthawedparminsthawedparsMethods Summary
apply(outer, \*otherargs, \*\*otherkwargs)calc(\*args, \*\*kwargs)get_center()guess(dep, \*args, \*\*kwargs)reset()set_center(xpos, ypos, \*args, \*\*kwargs)startup()teardown()Attributes Documentation
-
thawedparhardmaxes¶
-
thawedparhardmins¶
-
thawedparmaxes¶
-
thawedparmins¶
-
thawedpars¶
Methods Documentation
-
apply(outer, *otherargs, **otherkwargs)¶
-
reset()¶
-
startup()¶
-
teardown()¶
-