DataIMGInt

class sherpa.astro.data.DataIMGInt(name, x0lo, x1lo, x0hi, x1hi, y, shape=None, staterror=None, syserror=None, sky=None, eqpos=None, coord='logical', header=None)[source]

Bases: sherpa.astro.data.DataIMG

Attributes Summary

coord Coordinate system of independent axes
filter Filter for dependent variable
mask Mask array for dependent variable

Methods Summary

apply_filter(data)
eval_model(modelfunc)
eval_model_to_fit(modelfunc)
filter_region(data)
get_axes()
get_bounding_mask()
get_dep([filter])
get_dims([filter])
get_error([filter, staterrfunc]) Return the total error on the dependent variable.
get_filter()
get_filter_expr()
get_image()
get_img([yfunc])
get_imgerr()
get_indep([filter])
get_logical()
get_max_pos([dep])
get_physical()
get_staterror([filter, staterrfunc]) Return the statistical error on the dependent axis of a data set.
get_syserror([filter]) Return the statistical error on the dependent axis of a data set.
get_wcs()
get_world()
get_x([filter]) Return linear view of independent axis/axes
get_x0([filter])
get_x0label() Return label for first dimension in 2-D view of independent axis/axes
get_x1([filter])
get_x1label() Return label for second dimension in 2-D view of independent axis/axes
get_xerr([filter]) Return linear view of bin size in independent axis/axes
get_xlabel() Return label for linear view of independent axis/axes
get_y([filter, yfunc]) Return dependent axis in N-D view of dependent variable
get_yerr([filter, staterrfunc]) Return errors in dependent axis in N-D view of dependent variable
get_ylabel([yfunc]) Return label for dependent axis in N-D view of dependent variable
ignore(\*args, \*\*kwargs)
notice([x0lo, x0hi, x1lo, x1hi, ignore])
notice2d([val, ignore])
set_coord(coord)
set_dep(val) Set the dependent variable values
to_contour([yfunc])
to_fit([staterrfunc])
to_guess()
to_plot([yfunc, staterrfunc])

Attributes Documentation

coord

Coordinate system of independent axes

filter

Filter for dependent variable

mask

Mask array for dependent variable

Methods Documentation

apply_filter(data)
eval_model(modelfunc)
eval_model_to_fit(modelfunc)
filter_region(data)
get_axes()[source]
get_bounding_mask()
get_dep(filter=False)
get_dims(filter=False)
get_error(filter=False, staterrfunc=None)

Return the total error on the dependent variable.

Parameters:
  • filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is False.
  • staterrfunc (function) – If no statistical error has been set, the errors will be calculated by applying this function to the dependent axis of the data set.
Returns:

axis – The error for each data point, formed by adding the statistical and systematic errors in quadrature.

Return type:

array or None

See also

get_dep()
Return the independent axis of a data set.
get_staterror()
Return the statistical errors on the dependent axis of a data set.
get_syserror()
Return the systematic errors on the dependent axis of a data set.
get_filter()
get_filter_expr()
get_image()
get_img(yfunc=None)
get_imgerr()
get_indep(filter=False)[source]
get_logical()[source]
get_max_pos(dep=None)
get_physical()[source]
get_staterror(filter=False, staterrfunc=None)

Return the statistical error on the dependent axis of a data set.

Parameters:
  • filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is False.
  • staterrfunc (function) – If no statistical error has been set, the errors will be calculated by applying this function to the dependent axis of the data set.
Returns:

axis – The statistical error for each data point. A value of None is returned if the data set has no statistical error array and staterrfunc is None.

Return type:

array or None

See also

get_error()
Return the errors on the dependent axis of a data set.
get_indep()
Return the independent axis of a data set.
get_syserror()
Return the systematic errors on the dependent axis of a data set.
get_syserror(filter=False)

Return the statistical error on the dependent axis of a data set.

Parameters:filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is False.
Returns:axis – The systematic error for each data point. A value of None is returned if the data set has no systematic errors.
Return type:array or None

See also

get_error()
Return the errors on the dependent axis of a data set.
get_indep()
Return the independent axis of a data set.
get_staterror()
Return the statistical errors on the dependent axis of a data set.
get_wcs()
get_world()[source]
get_x(filter=False)

Return linear view of independent axis/axes

get_x0(filter=False)[source]
get_x0label()

Return label for first dimension in 2-D view of independent axis/axes

get_x1(filter=False)[source]
get_x1label()

Return label for second dimension in 2-D view of independent axis/axes

get_xerr(filter=False)

Return linear view of bin size in independent axis/axes

get_xlabel()

Return label for linear view of independent axis/axes

get_y(filter=False, yfunc=None)

Return dependent axis in N-D view of dependent variable

get_yerr(filter=False, staterrfunc=None)

Return errors in dependent axis in N-D view of dependent variable

get_ylabel(yfunc=None)

Return label for dependent axis in N-D view of dependent variable

ignore(*args, **kwargs)
notice(x0lo=None, x0hi=None, x1lo=None, x1hi=None, ignore=False)
notice2d(val=None, ignore=False)
set_coord(coord)[source]
set_dep(val)

Set the dependent variable values

to_contour(yfunc=None)
to_fit(staterrfunc=None)
to_guess()
to_plot(yfunc=None, staterrfunc=None)