AstroStat Talks 2021-2022
Last Updated: 20210917

International CHASC AstroStatistics Centre

Topics in Astrostatistics

AY 2020-2021

Archive


Schedule Tuesdays Noon - 1:30PM Eastern Time
Location Remote



Presentations
Lucas Makinen (Sorbonne & CfA)
Sep 14 2021
Noon EDT
Zoom
Lossless Neural Compression for Cosmological Simulations: How to compress a universe into a handful of numbers
Abstract: We present a comparison of simulation-based inference to full, field-based analytical inference in cosmological data analysis. To do so, we explore parameter inference for two cases where the information content is calculable analytically: Gaussian random fields whose covariance depends on parameters through the power spectrum; and correlated lognormal fields with cosmological power spectra. We compare two inference techniques: i) explicit field-level inference using the known likelihood and ii) implicit likelihood inference with maximally informative summary statistics compressed via Information Maximising Neural Networks (IMNNs). We find that a) summaries obtained from convolutional neural network compression do not lose information and therefore saturate the known field information content, both for the Gaussian covariance and the lognormal cases, b) simulation-based inference using these maximally informative nonlinear summaries recovers nearly losslessly the exact posteriors of field-level inference, bypassing the need to evaluate expensive likelihoods or invert covariance matrices, and c) even for this simple example, implicit, simulation-based likelihood incurs a much smaller computational cost than inference with an explicit likelihood. This work uses a new IMNNs implementation in JAX that can take advantage of fully-differentiable simulation and inference pipeline. We also demonstrate that a single retraining of the IMNN summaries effectively achieves the theoretically maximal information, enhancing the robustness to the choice of fiducial model where the IMNN is trained.
Presentation slides [.pdf]
Presentation video [!yt]
arXiv:2107.07405 [arxiv.org]
Code Tutorial [collab.research.google.com]
 
Willow Fox-Fortino (UPenn)
Nov 9 2021
12:30pm EST
Zoom
Reducing ground-based astrometric errors with Gaia and Gaussian processes
2021, AJ 162, 106 [ADS]
 
Karthik Reddy (UMBC & CfA)
Noon EST
Zoom
LIRA
 
 
 
 

Archive
Fall/Winter 2004-2005
Siemiginowska, A. / Connors, A. / Kashyap, V. / Zezas, A. / Devor, J. / Drake, J. / Kolaczyk, E. / Izem, R. / Kang, H. / Yu, Y. / van Dyk, D.
Fall/Winter 2005-2006
van Dyk, D. / Ratner, M. / Jin, J. / Park, T. / CCW / Zezas, A. / Hong, J. / Siemiginowska, A. & Kashyap, V. / Meng, X.-L.
Fall/Winter 2006-2007
Lee, H. / Connors, A. / Protopapas, P. / McDowell, J., / Izem, R. / Blondin, S. / Lee, H. / Zezas, A., & Lee, H. / Liu, J.C. / van Dyk, D. / Rice, J.
Fall/Winter 2007-2008
Connors, A., & Protopapas, P. / Steiner, J. / Baines, P. / Zezas, A. / Aldcroft, T.
Fall/Winter 2008-2009
H. Lee / A. Connors, B. Kelly, & P. Protopapas / P. Baines / A. Blocker / J. Hong / H. Chernoff / Z. Li / L. Zhu (Feb) / A. Connors (Pt.1) / A. Connors (Pt.2) / L. Zhu (Mar) / E. Kolaczyk / V. Liublinska / N. Stein
Fall/Winter 2009-2010
A.Connors / B.Kelly / N.Stein, P.Baines / D.Stenning / J. Xu / A.Blocker / P.Baines, Y.Yu / V.Liublinska, J.Xu, J.Liu / Meng X.L., et al. / A. Blocker, et al. / A. Siemiginowska / D. Richard / A. Blocker / Xie X. / Xu J. / V. Liublinska / L. Jing
AcadYr 2010-2011
Astrostat Haiku / P. Protopapas / A. Zezas & V. Kashyap / A. Siemiginowska / K. Mandel / N. Stein / A. Mahabal / Hong J.S. / D. Stenning / A. Diaferio / Xu J. / B. Kelly / P. Baines & I. Udaltsova / M. Weber
AcadYr 2011-2012
A. Blocker / Astro for Stat / B. Kelly / R. D'Abrusco / E. Turner / Xu J. / T. Loredo / A. Blocker / P. Baines / A. Zezas et al. / Min S. & Xu J. / O. Papaspiliopoulos / Wang L. / T. Laskar
AcadYr 2012-2013
N. Stein / A. Siemiginowska / D. Cervone / R. Dawson / P. Protopapas / K. Reeves / Xu J. / J. Scargle / Min S. / Wang L. & D. Jones / J. Steiner / B. Kelly / K. McKeough
AcadYr 2013-2014
Meng X.-L. / Meng X.-L., K. Mandel / A. Siemiginowska / S. Vrtilek & L. Bornn / Lazhi W. / D. Jones / R. Wong / Xu J. / van Dyk D. / Feigelson E. / Gopalan G. / Min S. / Smith R. / Zezas A. / van Dyk D. / Hyungsuk T. / Czerny, B. / Jones D. / Liu K. / Zezas A.
AcadYr 2014-2015
Vegetabile, B. & Aldcroft, T., / H. Jae Sub / Siemiginowska, A. & Kashyap, V. / Pankratius, V. / Tak, H. / Brenneman, L. / Johnson, J. / Lynch, R.C. / Fan, M.J. / Meng, X.-L. / Gopalan, G. / Jiao, X. / Si, S. / Udaltsova, I. & Zezas, A. / Wang, L. / Tak, H. / Eadie, G. / Czekala, I. / Stenning, D. / Stampoulis, V. / Aitkin, M. / Algeri, S. / Barnacka, A.
AcadYr 2015-2016
DePasquale, J. / Tak, H. / Meng, X.-L. / Jones, D. / Huang, J. / Blanchard, P. / Chen, Y. & Wang, X. / Tak, H. / Mandel, K. / Jiao, X. / Wang, X. & Chen, Y. / IACHEC WG / Si, S. / Drake, J. / Stampoulis, V. / Algeri, S. / Stein, N. / Chunzhe, Z. / Andrews, J. / Vrtilek, S. / Udaltsova, I. & Stampoulis, V.
AcadYr 2016-2017
Wang, X. & Chen, Y. / Kashyap, V., Siemiginowska, A., & Zezas, A. / Stampoulis, V. / Portillo, S. / Zhang, K. / Mandel, K. / DiStefano, R. / Finkbeiner, D. & Meade, B. / Gong, R. / Shihao Y. / Zhirui, H. / Xufei, W. / Campos, L. / Tak, H. / Xufei, W. / Jones, D. / Algeri, S. / Speagle, J. / Czekala, I.
AcadYr 2017-2018
AstroStat Day / Speagle, J. / Collin, G. / McKeough, K. & Yang, S. / McKeough, K. & Campos, L. / M. Ntampaka / H. Marshall / D. Huppenkothen / X. Yu / R. DiStefano / J. Yee / H. Tak / A. Avelino
AcadYr 2018-2019
Stenning, D. / Dvorkin, C. / Sottosanti, A. / Yu, X. / Chen, Y. / Jones, D. / Lee, T.C.-M. / Tak, H. / Kashyap, V., McKeough, K., Campos, L., et al. / Baines, P. / Collin, G. / Muthukrishna, D. / Zhang, D. / Algeri, S. / Janson, L. / Ward, S. / de Beurs, Z.
AcadYr 2019-2020
McKeough, K. / Astudillo, J. & Protopapas, P. / Zezas, A. / Speagle, J. / Meng, X.-L., Siemiginowska, A., & Kashyap, V. / Bonfini, P. / Liu, C. / Guenther, H. / Castrillon, J. / McKeough, K. / Broekgaarden, F. / Autenrieth, M. / Motta, G. / Zucker, C. / Tak, H. / Kashyap, V. & Wang, X. / Wang, J. / Wang, X. & Ingram, J.
AcadYr 2020-2021
Diaz Rivero, A. / Marshall, H. & Chen, Y. / McKeough, K. / Chen, Y. / Patil, A. / Jerius, D. / Wang, X. / Siemiginowska, A. / Xu, C. / Picquenot, A. / Jacovich, T. / Geringer-Sameth, A. / Toulis, P. / Donath, A. / Ergin, T. / Phillipson, R. / Sun, H. / Autenrieth, M.
AcadYr 2021-2022
Makinen, T.L. / Fox-Fortino, W. / Reddy, K.

CHASC