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Motivation

A group of researchers claim that their treatment, when performed
during the ages 1-2 of a child, results in much lesser chance of them
developing diabetes later. The data presented by the researchers show
that among the people who went through the treatment during their
childhood, the incidence of diabetes is indeed very low.

WOULD
YOU RECOMMEND THIS TREATMENT TO OTHERS?

Plot twist: You find that most of children who get the treatment die
before the age of 40.

Lessons: We did observe that there is a high correlation between
getting treated and having lower chances of diabetes. But that is not
enough to guarantee that getting treated causes this.
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The Philosophy of Causality

Logically, how to establish that a treatment caused an effect?

Whatever we observe only establishes correlation/association.

Key idea: Ask the counterfactual question - What would have
happened had the treatment not been administered?

Suppose you have n subjects, you collect a response Yi and treatment
status Ti , from each of the subject. We know that Cor(Yi ,Ti )
establish association between them.

We need different quantities that establish causation.
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The Potential Outcomes Framework

Assume we have n subjects and for each one of them, we have a
treatment status, Ti ∈ {0, 1}.
We assume that there are two unobserved Potential Outcomes -
{Yi (0),Yi (1)} for the i th individual depending on whether they
received the treatment or not.

The administration of treatment picks one of the potential outcomes,
which we observe, Yi . We usually assume Consistency: Yi = Yi (Ti ).

We define the Average Treatment Effect (ATE): τ = E[Yi (1)−Yi (0)].

The above is a causal quantity that includes an expectation over a
counterfactual quantity - we do not observe both Yi (1) and Yi (0)
together.

We are interested in estimating τ , testing H0 : τ = 0, etc.
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Randomized Control Trials and Estimation of ATE

You are a researcher designing an experiment to estimate the ATE.

Ideal thing to do - For each subject, do an independent coin toss and
decide whether you want to treat or not.

Observe the treated potential outcome for the treated people and the
un-treated (or control) potential outcome for the un-treated.

Then,

Ê[Yi (1)] =
1

#{i : Ti = 1}

n∑
i=1

TiYi

Ê[Yi (0)] =
1

#{i : Ti = 0}

n∑
i=1

(1− Ti )Yi

=⇒ τ̂ =
1

#{i : Ti = 1}

n∑
i=1

TiYi −
1

#{i : Ti = 0}

n∑
i=1

(1− Ti )Yi
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Observational Studies : When things are not in our control

RCTs are gold standard of scientific experiments as the scientist in
completely under control of the treatment assignment.

A more challenging, and often, more encountered situation is when
the scientist observes data from an experiment done in retrospect.
Such experiments are called Observational Studies.

Suppose this is the case and we observe iid data, {(Yi ,Ti )}ni=1. How
should we estimate τ?

A simpler question: Is the following an unbiased estimator of
E[Yi (1)]?

τ̂1 =
1

#{i : Ti = 1}

n∑
i=1

TiYi =
1

#{i : Ti = 1}

n∑
i=1

TiYi (1).

No! It estimates E[Yi (1) | Ti = 1].

In RCT, we deliberately broke the association between the association
between {Yi (1),Yi (0)} and Ti , so that, E[Yi (1) | Ti = 1] = E[Yi (1)].
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What went wrong?

In general, τ̂1 is only a good estimator under the assumption
{Yi (1),Yi (0)} ⊥⊥ Ti , which in general is not the case for observational
studies. What should we do now?

We assume that the association between {Yi (1),Yi (0)} is due to a
confounder - a set of covariates, X i , that influence both
{Yi (1),Yi (0)} and Ti . For example, rich people have access to better
health-care facilities and hence have better chances of surviving a
disease.

We make the Unconfoundedness assumption, which states that X i

quantifies all systematic associations between {Yi (1),Yi (0)} and Ti :

{Yi (1),Yi (0)} ⊥⊥ Ti | X i .

Does Unconfoundedness help us obtain an unbiased estimator of τ .
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IPW estimators

Let’s revisit the problem of estimating E[Yi (1)].

Under the unconfoundedness assumption, we can define the
propensity score:

π(x) = P(Ti = 1 | X i = x).

Assume Positivity: 0 < π(x) < 1,∀x .
If we know π(x), then we can define the Inverse Probability Weighted
(IPW) estimator:

τ̂1,IPW =
1

n

n∑
i=1

TiYi

π(X i )
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IPW estimators are unbiased

We have the following chain of equalities

E
[
TiYi

π(X i )

]
= E

[
TiYi (1)

π(X i )

]
=EE

[
TiYi (1)

π(X i )
| X i

]
=E

[
E[Yi (1) | X i ]

π(X i )
E(Ti | X i )

]
[Unconfoundedness]

=E
[
E[Yi (1) | X i ]

π(X i )
π(X i )

]
= E[Yi (1)],

so that, E[τ̂1,IPW ] = E[Yi (1)].

The following is the IPW estimator of τ :

τ̂IPW =
1

n

n∑
i=1

TiYi

π(X i )
− 1

n

n∑
i=1

(1− Ti )Yi

1− π(X i )

April 17, 2024 9 / 21



IPW estimators are unbiased

We have the following chain of equalities

E
[
TiYi

π(X i )

]
= E

[
TiYi (1)

π(X i )

]
=EE

[
TiYi (1)

π(X i )
| X i

]
=E

[
E[Yi (1) | X i ]

π(X i )
E(Ti | X i )

]
[Unconfoundedness]

=E
[
E[Yi (1) | X i ]

π(X i )
π(X i )

]
= E[Yi (1)],

so that, E[τ̂1,IPW ] = E[Yi (1)].

The following is the IPW estimator of τ :

τ̂IPW =
1

n

n∑
i=1

TiYi

π(X i )
− 1

n

n∑
i=1

(1− Ti )Yi

1− π(X i )

April 17, 2024 9 / 21



IPW estimators are unbiased

We have the following chain of equalities

E
[
TiYi

π(X i )

]
= E

[
TiYi (1)

π(X i )

]
=EE

[
TiYi (1)

π(X i )
| X i

]
=E

[
E[Yi (1) | X i ]

π(X i )
E(Ti | X i )

]
[Unconfoundedness]

=E
[
E[Yi (1) | X i ]

π(X i )
π(X i )

]
= E[Yi (1)],

so that, E[τ̂1,IPW ] = E[Yi (1)].

The following is the IPW estimator of τ :

τ̂IPW =
1

n

n∑
i=1

TiYi

π(X i )
− 1

n

n∑
i=1

(1− Ti )Yi

1− π(X i )

April 17, 2024 9 / 21



But we do not know π(x)!

In general we won’t know π(x).

We might try to use an estimate
π̂(x), but how good the resulting estimator,

1

n

n∑
i=1

TiYi

π̂(X i )
− 1

n

n∑
i=1

(1− Ti )Yi

1− π̂(X i )
,

is, would depend on many strong assumptions, which we have no way
of verifying!

What’s a way out?

Propensity scores have this Balancing Property:

E
[
Ti f (X i )

π(X i )

]
= E[f (X i )], ∀ bounded f .

Furthermore, IPW estimators belong to a class of weighing
estimators:

∑
wiYiTi , with wi = 1/(nπ(X i )).
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Weighing Estimators

When the exact propensity score is unknown, people try to find
weights that directly try to achieve the balancing property.

That is, for a class of functions, M, they choose weights ŵi , such
that,

sup
f ∈M

∣∣∣∣∣
n∑

i=1

Ti ŵi f (X i )−
1

n

n∑
i=1

f (X i )

∣∣∣∣∣ < δ,

and then use

τ̂1,ŵ =
n∑

i=1

ŵiYiTi ,

as an estimator for E[Yi (1)].

In fact, if m1(x) = E[Yi (1) | X i = x ] ∈ M, the bias in the above
weighing estimator is controlled within δ.

In general, people try to balance the first few moments by taking,
f (x) = x , x2, and so on.
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In general, people try to balance the first few moments by taking,
f (x) = x , x2, and so on.
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Outcome Regression estimators

Another class of approach stems if we have access to the Outcome
Regression functions,

m1(x) = E[Yi (1) | X i = x ]
and m0(x) = E[Yi (0) | X i = x ].

Then an estimate of τ is given by,

τ̂OR =
1

n

n∑
i=1

m1(X i )−
1

n

n∑
i=1

m0(X i ).

In general, we can use the Yi ’s to obtain estimates: m̂0(x) and
m̂1(x), by training on the control and treatment groups - there can
be several strategies here.
Then, an estimate of E[Yi (0) | Ti = 1] is given by,

1

#{i : Ti = 1}

n∑
i=1

Tim̂0(X i ).
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There can be several strategies of estimating τ with these regression
estimators:

τ̂reg =
1

n

n∑
i=1

(m̂1(X i )− m̂0(X i ))

τ̂reg−imp =
1

n

n∑
i=1

{Ti (Yi − m̂0(X i ) + (1− Ti )(m̂1(X i )− Yi )}

One can use a variety of machine learning algorithms for training
these models.

Can use for estimation of Conditional Average Treatment Effect
(CATE):

τ(x) = E[Yi (1)− Yi (0) | X i = x ].
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Sensitivity Analysis

The full set of confounders might not be observed - this is generally
the case! Thus unconfoundess no longer holds.

We assume that unconfoundedness holds if we include the unobserved
confounder (U i ):

{Yi (1),Yi (0)} ⊥⊥ Ti | (X i ,U i )

Under the above assumptions, our inference methods are not valid.
There’s not much we can do since U i ’s are not observed.

However, we can try to assess what effect the unobserved confounder
has on our method - Sensitivity Analysis.

A historical account: Fisher once argued that the association
between smoking and lung cancer is due to a common gene. Cornfield
argued that if Fisher were right, then this gene should have had a
very high association with propensity to smoke which is unrealistic.

This sort of outlines the basis of argument for sensitivity analysis.
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Assume the following setup where we have, binary treatment, binary
outcomes and a binary confounder:

▶ Confounder U ∼ Ber(π)
▶ Treatment assignment: logit (P(Z = 1 | u)) = γ + αu.
▶ Outcome model: logit (P(Y (z) = 1 | u)) = βz + δzu

The sensitivity parameters, (π, α, δ1, δ0) are unobserved.

But for a fixed value of the sensitivity parameters, can obtain
treatment effects.

Idea: Vary π, α, δ1, δ0 over a grid of possible values and see how much
they need to be varied for our inference to change significantly.

If there needs to be a drastic change in the sensitivity parameters to
bring about this change in inference, our conclusions are pretty robust
to the presence of un-measured confounders.
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Causal Estimands and Their identifiability

In general, because causal estimands are stated in terms of the
distribution of counter-factual quantities, not all of them can be
estimated.

We call a causal estimand identifiable, if one can find an unbiased
estimator for them based on the observed data.

For example, the following are some other identifiable causal
quantities: Average Treatment Effect on the Treated (ATT):
τATT = E[Yi (1)− Yi (0) | Ti = 1], Average Treatment Effect on the
Control (ATC): τATC = E[Yi (1)− Yi (0) | Ti = 0], etc.

An example of a quantity that is not identifiable: E[Yi (1)Yi (0)].

Depending on the situation at hand, our causal estimand might be
quite complicated and we impose a variety of assumptions on the
potential outcomes to make the estimand identifiable (and hope these
assumptions are feasible!), that is, writing it in terms of observable
quantities.
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Difference-in-Difference Estimators

An example where identification is tricky.

Problem: We have two groups of people,
▶ Interested in treatment effect on the first group.
▶ Two time periods: pre-intervention (t1) and post-intervention (t2).

Only first group is treated.
▶ Estimand of interest: E[Y1i (1, t2)− Y1i (0, t2)].
▶ Obstacle: Observe only Y1i (0, t1) = Y1i (t1) and Y1i (1, t2) = Y1i (t2).
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Use the Parallel Trends assumption:

E[Y2i (0, t2)︸ ︷︷ ︸
=Y2i (t2)

−Y1i (0, t2)] = E[Y2i (0, t1)︸ ︷︷ ︸
=Y2i (t1)

−Y1i (0, t1)]

Then,

E[Y1i (1, t2)− Y1i (0, t2)]

=E[Y1i (1, t2)− Y2i (0, t2)]− E[Y1i (0, t2)− Y2i (0, t2)]

=E[Y1i (1, t2)− Y2i (0, t2)]− E[Y1i (0, t1)− Y2i (0, t1)]

=E[Y1i (t2)− Y2i (t2)− Y1i (t1) + Y2i (t1)].
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Causal Discovery

Usually, in a scientific experiment, we have a system of variables with
all kinds of complex interactions.

Often, it is of interest to identify which set of variables case an effect
on others.

A great way of representing such relations is via a Directed Acyclic
Graph (DAG):
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Structural Causal Modelling (SCM)

SCM refers to the task of recovering this simple structure.

Peter and Clark (PC) algorithm:
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Conclusion

In this talk we explored some basic concepts of statistical causal
thinking.
Very immediate relevance with many scientific questions - people
develop various frameworks to accommodate these settings.
Closely related - Missing Data Analysis.
A very recent development I am very excited about - Use of
Conformal Inference in Causal Inference - Makes inference on
Individual Treatment Effects (ITE)’s possible!

Thank You!
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