Author Archive

[ArXiv] Sparse Poisson Intensity Reconstruction Algorithms

One of [ArXiv] papers from yesterday whose title might drag lots of attentions from astronomers. Furthermore, it’s a short paper.
[arxiv:math.CO:0905.0483] by Harmany, Marcia, and Willet.
Continue reading ‘[ArXiv] Sparse Poisson Intensity Reconstruction Algorithms’ »

Feynman and Statistics

To my knowledge, Richard Feynman is an iconic figure among physicists and astrophysicists. Although I didn’t read every chapter of his lecture series, from other books like QED, Surely You’re Joking, Mr. Feynman!, The Pleasure of Finding Things Out, and some essays, I became and still am fond of him. The way how this famous physicist put things is straight and simple, blowing out the misconception that physics is full of mathematical equations.

Even though most of my memories about his writings are gone – how many people can beat the time and fading memories! – like other rudimentary astronomy and physics stuffs that I used to know, statistics brought up his name above the surface before it sinks completely to the abyss. Continue reading ‘Feynman and Statistics’ »

[Book] The Physicists

I was reading Lehmann’s memoir on his friends and colleagues who influence a great deal on establishing his career. I’m happy to know that his meeting Landau, Courant, and Evans led him to be a statistician; otherwise, we, including astronomers, would have had very different textbooks and statistical thinking would have been different. On the other hand, I was surprised to know that he chose statistics over physics due to his experience from Cambridge (UK). I thought becoming a physicist is more preferred than becoming a statistician during the first half of the 20th century. At least I felt that way, probably it’s because more general science books in physics and physics related historic events were well exposed so that I became to think that physicists are more cooler than other type scientists. Continue reading ‘[Book] The Physicists’ »

[MADS] plug-in estimator

I asked a couple of astronomers if they heard the term plug-in estimator and none of them gave me a positive answer. Continue reading ‘[MADS] plug-in estimator’ »

[MADS] Chernoff face

I cannot remember when I first met Chernoff face but it hooked me up instantly. I always hoped for confronting multivariate data from astronomy applicable to this charming EDA method. Then, somewhat such eager faded, without realizing what’s happening. Tragically, this was mainly due to my absent mind. Continue reading ‘[MADS] Chernoff face’ »

Use and Misuse of Chi-square

Before using any adaptations of chi-square statistic, please spend a minute or two to ponder whether your strategy with chi-square belongs one of these categories.

1. Lack of independence among the single events or measures
2. Small theoretical frequencies
3. Neglect of frequencies of non-occurrence
4. Failure to equalize \sum O_i (the sum of the observed frequencies) and \sum M_i (the sum of the theoretical frequencies)
5. Indeterminate theoretical frequencies
6. Incorrect or questionable categorizing
7. Use of non-frequency data
8. Incorrect determination of the number of degrees of freedom
9. Incorrect computations (including a failure to weight by N when proportions instead of frequencies are used in the calculations)

From “Chapter 10: On the Use and Misuse of Chi-square” by K.L.Delucchi in A Handbook for Data Analysis in the Behavioral Sciences (1993). Delucchi acknowledged these nine principle sources of error to Lewis and Burke (1949), entitled “The Use and Misuse of the Chi-square” published in Psychological Bulletin. Continue reading ‘Use and Misuse of Chi-square’ »

Web Seminar

I was disappointed when video, audio, or handout files were not available from the research program “Statistical Theory and Methods for Complex High-Dimensional Data” held at Isaac Newton Institute for Mathematical Sciences during the first half of last year after checking the sites several times. Wow…They are now there~ Continue reading ‘Web Seminar’ »

4754 d.f.

I couldn’t believe my eyes when I saw 4754 degrees of freedom (d.f.) and chi-square test statistic 4859. I’ve often enough seen large degrees of freedom from journals in astronomy, several hundreds to a few thousands, but I never felt comfortable at these big numbers. Then with a great shock 4754 d.f. appeared. I must find out why I feel so bothered at these huge degrees of freedom. Continue reading ‘4754 d.f.’ »

[Book] Elements of Information Theory

by T. Cover and J. Thomas website: http://www.elementsofinformationtheory.com/

Once, perhaps more, I mentioned this book in my post with the most celebrated paper by Shannon (see the posting). Some additional recommendation of the book has been made to answer offline inquiries. And this book always has been in my favorite book list that I like to use for teaching. So, I’m not shy with recommending this book to astronomers with modern objective perspectives and practicality. Before advancing for more praises, I must say that those admiring words do not imply that I understand every line and problem of the book. Like many fields, Information theory has grown fast since the monumental debut paper by Shannon (1948) like the speed of astronomers observation techniques. Without the contents of this book, most of which came after Shannon (1948), internet, wireless communication, compression, etc could not have been conceived. Since the notion of “entropy“, the core of information theory, is familiar to astronomers (physicists), the book would be received better among them than statisticians. This book should be read easier to astronomers than statisticians. Continue reading ‘[Book] Elements of Information Theory’ »

[MADS] Mahalanobis distance

It bears the name of its inventor, Prasanta Chandra Mahalanobis. As opposed to the Euclidean distance, a household name, the name of this distance is rarely used but many pseudonyms exist with variations adapted into broad scientific disciplines and applications. Therefore, under different names, I believe that the Mahalanobis distance is frequently applied in exploring and analyzing astronomical data. Continue reading ‘[MADS] Mahalanobis distance’ »

systematic errors

Ah ha~ Once I questioned, “what is systematic error?” (see [Q] systematic error.) Thanks to L. Lyons’ work discussed in [ArXiv] Particle Physics, I found this paper, titled Systematic Errors describing the concept and statistical inference related to systematic errors in the field of particle physics. It, gladly, shares lots of similarity with high energy astrophysics. Continue reading ‘systematic errors’ »

An excerpt from …

I’ve been complaining about how one can do machine learning on solar images without a training set? (see my comment at the big picture). On the other hand, I’m also aware of challenges in astronomy that data (images) cannot be transformed freely and be fed into standard machine learning algorithms. Tailoring data pipelining, cleaning, and processing to currently existing vision algorithms may not be achievable. The hope of automatizing the detection/identification procedure of interesting features (e.g. flares and loops) and forecasting events on the surface of the Sun is only a dream. Even though the level of image data stream is that of tsunami, we might have to depend on human eyes to comb out interesting features on the Sun until the new paradigm of automatized feature identification algorithms based on a single image i.e. without a training set. The good news is that human eyes have done a superb job! Continue reading ‘An excerpt from …’ »

[ArXiv] Particle Physics

[stat.AP:0811.1663]
Open Statistical Issues in Particle Physics by Louis Lyons

My recollection of meeting Prof. L. Lyons was that he is very kind and listening. I was delighted to see his introductory article about particle physics and its statistical challenges from an [arxiv:stat] email subscription. Continue reading ‘[ArXiv] Particle Physics’ »

Guinness, Gosset, Fisher, and Small Samples

Student’s t-distribution is somewhat underrepresented in the astronomical community. Having an article with nice stories, it looks to me the best way to introduce the t distribution. This article describing historic anecdotes about monumental statistical developments occurred about 100 years ago.

Guinness, Gosset, Fisher, and Small Samples by Joan Fisher Box
Source: Statist. Sci. Volume 2, Number 1 (1987), 45-52.

No time for reading the whole article? I hope you have a few minutes to read following quotes, which are quite enchanting to me. Continue reading ‘Guinness, Gosset, Fisher, and Small Samples’ »

A book by David Freedman

A continuation from my posting, titled circumspect frequentist.

Title: Statistical Models: Theory and Practice (click for the publisher’s website)
My one line review, rather a comment several months ago was

Bias in asymptotic standard errors is not a familiar topic for astronomers

and I don’t understand why I wrote it but I think I came up this comment owing to my pursuit of modeling measurement errors occurring in astronomical researches. Continue reading ‘A book by David Freedman’ »