Archive for the ‘Astro’ Category.

Reduced and Processed Data

Hyunsook recently said that she wished that there were “some astronomical data depositories where no data reduction is required but one can apply various statistical analyses to the data in the depository to learn and compare statistical methods”. With the caveat that there really is no such thing (every dataset will require case specific reduction; standard processing and reduction are inadequate in all but the simplest of cases), here is a brief list: Continue reading ‘Reduced and Processed Data’ »

GLAST

You all may have heard that GLAST launched on June 11, and the mission is going smoothly. Via Josh Grindlay comes news that Steve Ritz, the GLAST Project Scientist at GSFC, is keeping a weblog dedicated to it at

http://blogs.nasa.gov/cm/blog/GLAST

and intends to post status reports and related information on it.

Grating Dispersion [Equation of the Week]

High-resolution astronomical spectroscopy has invariably been carried out with gratings. Even with the advent of the new calorimeter detectors, which can measure the energy of incoming photons to an accuracy of as low as 1 eV, gratings are still the preferred setups for hi-res work below energies of 1 keV or so. But how do they work? Where are the sources of uncertainty, statistical or systematic?
Continue reading ‘Grating Dispersion [Equation of the Week]’ »

[ArXiv] 1st week, June 2008

Despite no statistic related discussion, a paper comparing XSPEC and ISIS, spectral analysis open source applications might bring high energy astrophysicists’ interests this week. Continue reading ‘[ArXiv] 1st week, June 2008’ »

Beta Profile [Equation of the Week]

X-ray telescopes generally work by reflecting photons at grazing incidence. As you can imagine, even small imperfections in the mirror polishing will show up as huge roadbumps to the incoming photons, and the higher their energy, the easier it is for them to scatter off their prescribed path. So X-ray telescopes tend to have sharp peaks and fat tails compared to the much more well-behaved normal-incidence telescopes, whose PSFs (Point Spread Functions) can be better approximated as Gaussians.

X-ray telescopes usually also have gratings that can be inserted into the light path, so that photons of different energies get dispersed by different angles, and whose actual energies can then be inferred accurately by measuring how far away on the detector they ended up. The accuracy of the inference is usually limited by the width of the PSF. Thus, a major contributor to the LRF (Line Response Function) is the aforementioned scattering.

A correct accounting of the spread of photons of course requires a full-fledged response matrix (RMF), but as it turns out, the line profiles can be fairly well approximated with Beta profiles, which are simply Lorentzians modified by taking them to the power β

The Beta profile
where B(1/2,β-1/2) is the Beta function, and N is a normalization constant defined such that integrating the Beta profile over the real line gives the area under the curve as N. The parameter β controls the sharpness of the function — the higher the β, the peakier it gets, and the more of it that gets pushed into the wings. Chandra LRFs are usually well-modeled with β~2.5, and XMM/RGS appears to require Lorentzians, β~1.

The form of the Lorentzian may also be familiar to people as the Cauchy Distribution, which you get for example when the ratio is taken of two quantities distributed as zero-centered Gaussians. Note that the mean and variance are undefined for that distribution.

Mexican Hat [EotW]

The most widely used tool for detecting sources in X-ray images, especially Chandra data, is the wavelet-based wavdetect, which uses the Mexican Hat (MH) wavelet. Now, the MH is not a very popular choice among wavelet aficianados because it does not form an orthonormal basis set (i.e., scale information is not well separated), and does not have compact support (i.e., the function extends to inifinity). So why is it used here?
Continue reading ‘Mexican Hat [EotW]’ »

Background Subtraction [EotW]

There is a lesson that statisticians, especially of the Bayesian persuasion, have been hammering into our skulls for ages: do not subtract background. Nevertheless, old habits die hard, and old codes die harder. Such is the case with X-ray aperture photometry. Continue reading ‘Background Subtraction [EotW]’ »

Did they, or didn’t they?

Earlier this year, Peter Edmonds showed me a press release that the Chandra folks were, at the time, considering putting out describing the possible identification of a Type Ia Supernova progenitor. What appeared to be an accreting white dwarf binary system could be discerned in 4-year old observations, coincident with the location of a supernova that went off in November 2007 (SN2007on). An amazing discovery, but there is a hitch.

And it is a statistical hitch, and involves two otherwise highly reliable and oft used methods giving contradictory answers at nearly the same significance level! Does this mean that the chances are actually 50-50? Really, we need a bona fide statistician to take a look and point out the errors of our ways.. Continue reading ‘Did they, or didn’t they?’ »

[ArXiv] 2nd week, May 2008

There’s no particular opening remark this week. Only I have profound curiosity about jackknife tests in [astro-ph:0805.1994]. Including this paper, a few deserve separate discussions from a statistical point of view that shall be posted. Continue reading ‘[ArXiv] 2nd week, May 2008’ »

Line Emission [EotW]

Spectral lines are a ubiquitous feature of astronomical data. This week, we explore the special case of optically thin emission from low-density and high-temperature plasma, and consider the component factors that determine the line intensity. Continue reading ‘Line Emission [EotW]’ »

[ArXiv] 5th week, Apr. 2008

Since I learned Hubble’s tuning fork[1] for the first time, I wanted to do classification (semi-supervised learning seems more suitable) galaxies based on their features (colors and spectra), instead of labor intensive human eye classification. Ironically, at that time I didn’t know there is a field of computer science called machine learning nor statistics which do such studies. Upon switching to statistics with a hope of understanding statistical packages implemented in IRAF and IDL, and learning better the contents of Numerical Recipes and Bevington’s book, the ignorance was not the enemy, but the accessibility of data was. Continue reading ‘[ArXiv] 5th week, Apr. 2008’ »

  1. Wikipedia link: Hubble sequence[]

Equation of the Week: Confronting data with model

Starting a new feature — highlighting some equation that is widely used in astrophysics or astrostatistics. Today’s featured equation: what instruments do to incident photons. Continue reading ‘Equation of the Week: Confronting data with model’ »

[ArXiv] 3rd week, Apr. 2008

The dichotomy of outliers; detecting outliers to be discarded or to be investigated; statistics that is robust enough not to be influenced by outliers or sensitive enough to alert the anomaly in the data distribution. Although not related, one paper about outliers made me to dwell on what outliers are. This week topics are diverse. Continue reading ‘[ArXiv] 3rd week, Apr. 2008’ »

The Burden of Reviewers

Astronomers write literally thousands of proposals each year to observe their favorite targets with their favorite telescopes. Every proposal must be accompanied by a technical justification, where the proposers demonstrate that their goal is achievable, usually via a simulation. Surprisingly, a large number of these justifications are statistically unsound. Guest Slogger Simon Vaughan describes the problem and shows what you can do to make reviewers happy (and you definitely want to keep reviewers happy).
Continue reading ‘The Burden of Reviewers’ »

Kepler and the Art of Astrophysical Inference

I recently discovered iTunesU, and I have to confess, I find it utterly fascinating. By golly, it is everything that they promised us that the internet would be. Informative, entertaining, and educational. What are the odds?!? Anyway, while poking around the myriad lectures, courses, and talks that are now online, I came across a popular Physics lecture series at UMichigan which listed a talk by one of my favorite speakers, Owen Gingerich. He had spoken about The Four Myths of the Copernican Revolution last November. It was, how shall we say, riveting.

Owen talks in detail about how the Copernican model came to supplant the Ptolemaic model. In particular, he describes how Kepler went from Ptolemaic epicycles to elliptical orbits. Contrary to general impression, Kepler did not fit ellipses to Tycho Brahe’s observations of Mars. The ellipticity is far too small for it to be fittable! But rather, he used logical reasoning to first offset Earth’s epicyle away from the center in order to avoid the so-called Martian Catastrophe, and then used the phenomenological constraint of the law of equal areas to infer that the path must be an ellipse.

This process, along with Galileo’s advocacy for the heliocentric system, demonstrates a telling fact about how Astrophysics is done in practice. Hyunsook once lamented that astronomers seem to be rather trigger happy with correlations and regressions, and everyone knows they don’t constitute proof of anything, so why do they do it? Owen says about 39 1/2 minutes into the lecture:

Here we have the fourth of the myths, that Galileo’s telescopic observations finally proved the motion of the earth and thereby, at last, established the truth of the Copernican system.

What I want to assure you is that, in general, science does not operate by proofs. You hear that an awful lot, about science looking for propositions that can be falsified, that proof plays this big role.. uh-uh. It is coherence of explanation, understanding things that are well-knit together; the broader the framework of knitting the things together, the more we are able to believe it.

Exactly! We build models, often with little justification in terms of experimental proof, and muddle along trying to make it fit into a coherent narrative. This is why statistics is looked upon with suspicion among astronomers, and why for centuries our mantra has been “if it takes statistics to prove it, it isn’t real!”