Masking and missing values¶
The astropy.table
package provides support for masking and missing
values in a table by using the numpy.ma
masked array package to
define masked columns and by supporting Mixin columns that provide masking.
This allows handling tables with missing or invalid entries in much
the same manner as for standard (unmasked) tables. It
is useful to be familiar with the masked array
documentation when using masked tables within astropy.table
.
In a nutshell, the concept is to define a boolean mask that mirrors
the structure of a column data array. Wherever a mask value is
True
, the corresponding entry is considered to be missing or invalid.
Operations involving column or row access and slicing are unchanged.
The key difference is that arithmetic or reduction operations involving
columns or column slices follow the rules for operations
on masked arrays.
Important
Changes in astropy 4.0
In astropy 4.0 the behavior of masked tables was changed in a way that could impact program functionality. See Masking change in astropy 4.0 for details.
Note
Reduction operations like numpy.sum
or numpy.mean
follow the
convention of ignoring masked (invalid) values. This differs from
the behavior of the floating point NaN
, for which the sum of an
array including one or more NaN's
will result in NaN
.
See https://www.numpy.org/neps/ for information on NumPy Enhancement Proposals 24, 25, and 26.
Table creation¶
A masked table can be created in several ways:
Create a new table object and specify masked=True
>>> from astropy.table import Table, Column, MaskedColumn
>>> Table([(1, 2), (3, 4)], names=('a', 'b'), masked=True, dtype=('i4', 'i8'))
<Table masked=True length=2>
a b
int32 int64
----- -----
1 3
2 4
Notice the table attributes mask
and fill_value
that are
available for a masked table.
Create a table with one or more columns as a MaskedColumn object
>>> a = MaskedColumn([1, 2], name='a', mask=[False, True], dtype='i4')
>>> b = Column([3, 4], name='b', dtype='i8')
>>> Table([a, b])
<Table length=2>
a b
int32 int64
----- -----
1 3
-- 4
The MaskedColumn
is the masked analog of the Column
class and
provides the interface for creating and manipulating a column of
masked data. The MaskedColumn
class inherits from
numpy.ma.MaskedArray
, in contrast to Column
which inherits from
numpy.ndarray
. This distinction is the main reason there are
different classes for these two cases.
Notice that masked entries in the table output are shown as --
.
Create a table with one or more columns as a numpy MaskedArray
>>> from numpy import ma # masked array package
>>> a = ma.array([1, 2])
>>> b = [3, 4]
>>> t = Table([a, b], names=('a', 'b'))
Add a MaskedColumn object to an existing table
>>> t = Table([[1, 2]], names=['a'])
>>> b = MaskedColumn([3, 4], mask=[True, False])
>>> t['b'] = b
Prior to astropy 4.0, adding the first MaskedColumn
resulted in
converting the entire table to be masked, which meant converting every existing
Column
to MaskedColumn
. An informational warning
was issued:
INFO: Upgrading Table to masked Table. Use Table.filled() to convert to unmasked table. [astropy.table.table]
In astropy 4.0 and later, existing columns are not changed.
Add a new row to an existing table and specify a mask argument
>>> a = Column([1, 2], name='a')
>>> b = Column([3, 4], name='b')
>>> t = Table([a, b])
>>> t.add_row([3, 6], mask=[True, False])
Convert an existing table to a masked table
>>> t = Table([[1, 2], ['x', 'y']]) # standard (unmasked) table
>>> t = Table(t, masked=True, copy=False) # convert to masked table
This operation will convert every Column
to MaskedColumn
and ensure that any
subsequently added columns are masked.
Table access¶
Nearly all the of standard methods for accessing and modifying data columns, rows, and individual elements also apply to masked tables.
There are two minor differences for the Row
object that is obtained by
indexing a single row of a table:
- For standard tables, two such rows can be compared for equality, but in masked tables this comparison will produce an exception.
Both of these differences are due to issues in the underlying
numpy.ma.MaskedArray
implementation.
Masking and filling¶
Both the Table
and MaskedColumn
classes provide
attributes and methods to support manipulating tables with missing or
invalid data.
Mask¶
The mask for a column can be viewed and modified via the mask
attribute:
>>> t = Table([(1, 2), (3, 4)], names=('a', 'b'), masked=True)
>>> t['a'].mask = [False, True] # Modify column mask (boolean array)
>>> t['b'].mask = [True, False] # Modify column mask (boolean array)
>>> print(t)
a b
--- ---
1 --
-- 4
Masked entries are shown as --
when the table is printed. You can
view the mask directly, either at the column or table level:
>>> t['a'].mask
array([False, True]...)
>>> t.mask
<Table length=2>
a b
bool bool
----- -----
False True
True False
To get the indices of masked elements use an expression like:
>>> t['a'].mask.nonzero()[0]
array([1])
Filling¶
The entries which are masked (i.e. missing or invalid) can be replaced
with specified fill values. In this case the MaskedColumn
or masked
Table
will be converted to a standard Column
or table. Each column
in a masked table has a fill_value
attribute that specifies the
default fill value for that column. To perform the actual replacement
operation the filled()
method is called. This takes an optional
argument which can override the default column fill_value
attribute.
>>> t['a'].fill_value = -99
>>> t['b'].fill_value = 33
>>> print(t.filled())
a b
--- ---
1 33
-99 4
>>> print(t['a'].filled())
a
---
1
-99
>>> print(t['a'].filled(999))
a
---
1
999
>>> print(t.filled(1000))
a b
---- ----
1 1000
1000 4
Masking change in astropy 4.0¶
In astropy 4.0 a change was introduced in the behavior of Table
that impacts the
handling of masked columns.
Prior to 4.0, in order to include one or more MaskedColumn
columns in a table, it was
required that every column be masked, even those with no missing or masked data. This
was holdover from the original implementation of Table
that used a numpy structured
array as the underlying container for the column data. Since astropy 1.0 the Table
object is simply an ordered dictionary of columns (Table implementation details)
and there is no requirement that column types be homogenous.
Starting with 4.0, a Table
can contain both Column
and MaskedColumn
columns, and
by default the column type is determined solely by the data for each column.
The details of this change are discussed in the sections below.
Note
For most applications, even those with masked column data, we now recommend using
the default Table
behavior which allows heterogenous column types. This implies
creating tables without specifying the masked
keyword argument.
Meaning of the masked
table attribute¶
The Table
object has a masked
attribute which determines the table behavior when
adding a new column:
masked=True
: non-mixin columns or data are always converted toMaskedColumn
, and mixin columns have amask
attribute added if necessary.masked=False
: each column is added based on the type or contents of the data.
The behavior associated with the masked
attribute has not changed in version 4.0.
What has changed is that from 4.0 onward a table with masked=False
may contain
MaskedColumn
columns.
It is important to recognize that the masked
attribute for a table does not imply
whether any of the column data are actually masked. A table can have masked=True
but
not have any masked elements in any table column. Starting with version 4.0 there are two
table properties which give more useful information about masking:
has_masked_columns
: table has at least oneMaskedColumn
column. This does not check if any data values are actually masked.has_masked_values
: table has one or more column data values which are masked. This may be relatively slow for large tables as it requires checking the mask values of each column.
Starting with version 4.0 the term “masked table” should be reserved for the narrow and
less-common case of a table created with masked=True
. In most cases there should be
no need worry about “masked” or “unmasked” at the table level, but instead focus on the
individual columns.
Auto-upgrade to masked¶
Prior to version 4.0, adding a MaskedColumn
or a new row with masked elements to a table
with masked=False
would set masked=True
and automatically “upgrade” other
columns to be masked. In many cases this upgrade of the other columns was unnecessary and
an annoyance.
Starting with 4.0, new columns are added using the column type which is appropriate for
the data. For instance, if a numpy masked array is added, then that will turn into a
MaskedColumn
, but no other columns will be affected and the masked
attribute will
remain as False
.
A commonly-encountered implication of this change is that tables read with
read
will always have masked=False
, and only columns with
masked values will be MaskedColumn
. Prior to 4.0 if the input table had any masked
values then the returned table would have masked=True
and all MaskedColumn
columns.
An example is in the next section.
Recovering the pre-4.0 behavior¶
For code that requires every existing or newly-added column to be masked, it is now
required to explicitly specify masked=True
when creating the table. Previously the
table would be auto-upgraded to use MaskedColumn
for all columns as soon as the first
masked column was added. If the table already exists (e.g. after using
read
to read a data file), then one needs to make a new table:
>> dat = Table.read('data.fits')
>> dat = Table(dat, masked=True, copy=False) # Convert to masked table
>> dat['new_column'] = [1, 2, 3, 4, 5] # Will be added as a MaskedColumn
For most applications this should not be necessary, and the preferred idiom is the more explicit version below:
>> dat = Table.read('data.fits')
>> dat['new_column'] = np.ma.MaskedArray([1, 2, 3, 4, 5])