Polynomial1D¶
-
class
astropy.modeling.polynomial.Polynomial1D(degree, domain=[-1, 1], window=[-1, 1], n_models=None, model_set_axis=None, name=None, meta=None, **params)[source]¶ Bases:
astropy.modeling.polynomial.PolynomialModel1D Polynomial model.
It is defined as:
\[P = \sum_{i=0}^{i=n}C_{i} * x^{i}\]Parameters: - degree : int
degree of the series
- domain : list or None, optional
- window : list or None, optional
If None, it is set to [-1,1] Fitters will remap the domain to this window
- **params : dict
keyword: value pairs, representing parameter_name: value
Other Parameters: - fixed : a dict, optional
A dictionary
{parameter_name: boolean}of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively thefixedproperty of a parameter may be used.- tied : dict, optional
A dictionary
{parameter_name: callable}of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively thetiedproperty of a parameter may be used.- bounds : dict, optional
A dictionary
{parameter_name: value}of lower and upper bounds of parameters. Keys are parameter names. Values are a list or a tuple of length 2 giving the desired range for the parameter. Alternatively, theminandmaxproperties of a parameter may be used.- eqcons : list, optional
A list of functions of length
nsuch thateqcons[j](x0,*args) == 0.0in a successfully optimized problem.- ineqcons : list, optional
A list of functions of length
nsuch thatieqcons[j](x0,*args) >= 0.0is a successfully optimized problem.
Attributes Summary
input_unitsThis property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or Noneif any units are accepted).inputsoutputsMethods Summary
__call__(x[, model_set_axis, …])Evaluate this model using the given input(s) and the parameter values that were specified when the model was instantiated. evaluate(x, *coeffs)Evaluate the model on some input variables. fit_deriv(x, *params)Computes the Vandermonde matrix. horner(x, coeffs)prepare_inputs(x, **kwargs)This method is used in __call__to ensure that all the inputs to the model can be broadcast into compatible shapes (if one or both of them are input as arrays), particularly if there are more than one parameter sets.Attributes Documentation
-
input_units¶ This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or
Noneif any units are accepted).Model sub-classes can also use function annotations in evaluate to indicate valid input units, in which case this property should not be overridden since it will return the input units based on the annotations.
-
inputs= ('x',)¶
-
outputs= ('y',)¶
Methods Documentation
-
__call__(x, model_set_axis=None, with_bounding_box=False, fill_value=nan, equivalencies=None, inputs_map=None)¶ Evaluate this model using the given input(s) and the parameter values that were specified when the model was instantiated.
-
fit_deriv(x, *params)[source]¶ Computes the Vandermonde matrix.
Parameters: - x : ndarray
input
- params : throw away parameter
parameter list returned by non-linear fitters
Returns: - result : ndarray
The Vandermonde matrix
-
prepare_inputs(x, **kwargs)[source]¶ This method is used in
__call__to ensure that all the inputs to the model can be broadcast into compatible shapes (if one or both of them are input as arrays), particularly if there are more than one parameter sets. This also makes sure that (if applicable) the units of the input will be compatible with the evaluate method.