Simplex¶
-
class
astropy.modeling.optimizers.Simplex[source]¶ Bases:
astropy.modeling.optimizers.OptimizationNeald-Mead (downhill simplex) algorithm.
This algorithm [1] only uses function values, not derivatives. Uses
scipy.optimize.fmin.References
[1] (1, 2) Nelder, J.A. and Mead, R. (1965), “A simplex method for function minimization”, The Computer Journal, 7, pp. 308-313 Attributes Summary
supported_constraintsMethods Summary
__call__(objfunc, initval, fargs, **kwargs)Run the solver. Attributes Documentation
-
supported_constraints= ['bounds', 'fixed', 'tied']¶
Methods Documentation
-
__call__(objfunc, initval, fargs, **kwargs)[source]¶ Run the solver.
Parameters: - objfunc : callable
objection function
- initval : iterable
initial guess for the parameter values
- fargs : tuple
other arguments to be passed to the statistic function
- kwargs : dict
other keyword arguments to be passed to the solver
-