MexicanHat1D¶
-
class
astropy.modeling.functional_models.MexicanHat1D(amplitude=1, x_0=0, sigma=1, **kwargs)[source]¶ Bases:
astropy.modeling.Fittable1DModelOne dimensional Mexican Hat model.
Parameters: - amplitude : float
Amplitude
- x_0 : float
Position of the peak
- sigma : float
Width of the Mexican hat
Other Parameters: - fixed : a dict, optional
A dictionary
{parameter_name: boolean}of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively thefixedproperty of a parameter may be used.- tied : dict, optional
A dictionary
{parameter_name: callable}of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively thetiedproperty of a parameter may be used.- bounds : dict, optional
A dictionary
{parameter_name: value}of lower and upper bounds of parameters. Keys are parameter names. Values are a list or a tuple of length 2 giving the desired range for the parameter. Alternatively, theminandmaxproperties of a parameter may be used.- eqcons : list, optional
A list of functions of length
nsuch thateqcons[j](x0,*args) == 0.0in a successfully optimized problem.- ineqcons : list, optional
A list of functions of length
nsuch thatieqcons[j](x0,*args) >= 0.0is a successfully optimized problem.
See also
Notes
Model formula:
\[f(x) = {A \left(1 - \frac{\left(x - x_{0}\right)^{2}}{\sigma^{2}}\right) e^{- \frac{\left(x - x_{0}\right)^{2}}{2 \sigma^{2}}}}\]Examples
import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import MexicanHat1D plt.figure() s1 = MexicanHat1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor s1.width = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -2, 4]) plt.show()
Attributes Summary
amplitudeinput_unitsThis property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or Noneif any units are accepted).param_namessigmax_0Methods Summary
evaluate(x, amplitude, x_0, sigma)One dimensional Mexican Hat model function Attributes Documentation
-
amplitude= Parameter('amplitude', value=1.0)¶
-
input_units¶ This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or
Noneif any units are accepted).Model sub-classes can also use function annotations in evaluate to indicate valid input units, in which case this property should not be overridden since it will return the input units based on the annotations.
-
param_names= ('amplitude', 'x_0', 'sigma')¶
-
sigma= Parameter('sigma', value=1.0)¶
-
x_0= Parameter('x_0', value=0.0)¶
Methods Documentation