Gaussian2D¶
-
class
astropy.modeling.functional_models.Gaussian2D(amplitude=1, x_mean=0, y_mean=0, x_stddev=None, y_stddev=None, theta=None, cov_matrix=None, **kwargs)[source]¶ Bases:
astropy.modeling.Fittable2DModelTwo dimensional Gaussian model.
Parameters: - amplitude : float
Amplitude of the Gaussian.
- x_mean : float
Mean of the Gaussian in x.
- y_mean : float
Mean of the Gaussian in y.
- x_stddev : float or None
Standard deviation of the Gaussian in x before rotating by theta. Must be None if a covariance matrix (
cov_matrix) is provided. If nocov_matrixis given,Nonemeans the default value (1).- y_stddev : float or None
Standard deviation of the Gaussian in y before rotating by theta. Must be None if a covariance matrix (
cov_matrix) is provided. If nocov_matrixis given,Nonemeans the default value (1).- theta : float, optional
Rotation angle in radians. The rotation angle increases counterclockwise. Must be None if a covariance matrix (
cov_matrix) is provided. If nocov_matrixis given,Nonemeans the default value (0).- cov_matrix : ndarray, optional
A 2x2 covariance matrix. If specified, overrides the
x_stddev,y_stddev, andthetadefaults.
Other Parameters: - fixed : a dict, optional
A dictionary
{parameter_name: boolean}of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively thefixedproperty of a parameter may be used.- tied : dict, optional
A dictionary
{parameter_name: callable}of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively thetiedproperty of a parameter may be used.- bounds : dict, optional
A dictionary
{parameter_name: value}of lower and upper bounds of parameters. Keys are parameter names. Values are a list or a tuple of length 2 giving the desired range for the parameter. Alternatively, theminandmaxproperties of a parameter may be used.- eqcons : list, optional
A list of functions of length
nsuch thateqcons[j](x0,*args) == 0.0in a successfully optimized problem.- ineqcons : list, optional
A list of functions of length
nsuch thatieqcons[j](x0,*args) >= 0.0is a successfully optimized problem.
See also
Notes
Model formula:
\[f(x, y) = A e^{-a\left(x - x_{0}\right)^{2} -b\left(x - x_{0}\right) \left(y - y_{0}\right) -c\left(y - y_{0}\right)^{2}}\]Using the following definitions:
\[ \begin{align}\begin{aligned}a = \left(\frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)\\b = \left(\frac{\sin{\left (2 \theta \right )}}{2 \sigma_{x}^{2}} - \frac{\sin{\left (2 \theta \right )}}{2 \sigma_{y}^{2}}\right)\\c = \left(\frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)\end{aligned}\end{align} \]- If using a
cov_matrix, the model is of the form: - \[f(x, y) = A e^{-0.5 \left(\vec{x} - \vec{x}_{0}\right)^{T} \Sigma^{-1} \left(\vec{x} - \vec{x}_{0}\right)}\]
where \(\vec{x} = [x, y]\), \(\vec{x}_{0} = [x_{0}, y_{0}]\), and \(\Sigma\) is the covariance matrix:
\[\begin{split}\Sigma = \left(\begin{array}{ccc} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{array}\right)\end{split}\]\(\rho\) is the correlation between
xandy, which should be between -1 and +1. Positive correlation corresponds to athetain the range 0 to 90 degrees. Negative correlation corresponds to athetain the range of 0 to -90 degrees.See [1] for more details about the 2D Gaussian function.
References
[1] (1, 2) https://en.wikipedia.org/wiki/Gaussian_function Attributes Summary
amplitudeinput_unitsThis property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or Noneif any units are accepted).param_namesthetax_fwhmGaussian full width at half maximum in X. x_meanx_stddevy_fwhmGaussian full width at half maximum in Y. y_meany_stddevMethods Summary
evaluate(x, y, amplitude, x_mean, y_mean, …)Two dimensional Gaussian function fit_deriv(x, y, amplitude, x_mean, y_mean, …)Two dimensional Gaussian function derivative with respect to parameters Attributes Documentation
-
amplitude= Parameter('amplitude', value=1.0)¶
-
input_units¶ This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or
Noneif any units are accepted).Model sub-classes can also use function annotations in evaluate to indicate valid input units, in which case this property should not be overridden since it will return the input units based on the annotations.
-
param_names= ('amplitude', 'x_mean', 'y_mean', 'x_stddev', 'y_stddev', 'theta')¶
-
theta= Parameter('theta', value=0.0)¶
-
x_fwhm¶ Gaussian full width at half maximum in X.
-
x_mean= Parameter('x_mean', value=0.0)¶
-
x_stddev= Parameter('x_stddev', value=1.0)¶
-
y_fwhm¶ Gaussian full width at half maximum in Y.
-
y_mean= Parameter('y_mean', value=0.0)¶
-
y_stddev= Parameter('y_stddev', value=1.0)¶
Methods Documentation