Posts tagged ‘books’

#### Erich Lehmann

He was one of the frequently cited statisticians in this slog because of his influence in statistics. It is extremely difficult to avoid his textbooks and his establishment of theoretical statistics when one begins to comprehend and to appreciate the modern theoretical statistics. To me, Testing Statistical Hypotheses and Theory of Point Estimation are two pillars of graduate statistical education. In addition, Elements of Large Sample Theory and Nonparametrics: Statistical Methods Based on Ranks are also eye openers. Continue reading ‘Erich Lehmann’ »

Kriging is the first thing that one learns from a spatial statistics course. If an astronomer sees its definition and application, almost every astronomer will say, “Oh, I know this! It is like the 2pt correlation function!!” At least this was my first impression when I first met kriging.

There are three distinctive subjects in spatial statistics: geostatistics, lattice data analysis, and spatial point pattern analysis. Because of the resemblance between the spatial distribution of observations in coordinates and the notion of spatially random points, spatial statistics in astronomy has leaned more toward the spatial point pattern analysis than the other subjects. In other fields from immunology to forestry to geology whose data are associated spatial coordinates of underlying geometric structures or whose data were sampled from lattices, observations depend on these spatial structures and scientists enjoy various applications from geostatistics and lattice data analysis. Particularly, kriging is the fundamental notion in geostatistics whose application is found many fields. Continue reading ‘[MADS] Kriging’ »

#### Books – a boring title

I have been observing some sorts of misconception about statistics and statistical nomenclature evolution in astronomy, which I believe, are attributed to the lack of references in the astronomical society. There are some textbooks designed for junior/senior science and engineering students, which are likely unknown to astronomers. Example-wise, these books are not suitable, to my knowledge. Although I never expect astronomers to learn standard graduate (mathematical) statistics textbooks, I do wish astronomers go beyond Numerical Recipes (W. H. Press, S. A. Teukolsky, W. T. Vetterling, & B. P. Flannery) and Error Data Reduction and Analysis for the Physical Sciences (P. R. Bevington & D. K. Robinson). Here are some good ones written by astronomers, engineers, and statisticians: Continue reading ‘Books – a boring title’ »