It bothers me.

The full description is given http://cxc.harvard.edu/ciao3.4/ahelp/bayes.html about “bayes” under sherpa/ciao[1]. Some sentences kept bothering me and here’s my account for the reason given outside of quotes. …Continue reading»

  1. Note that the current sherpa is beta under ciao 4.0 not under ciao 3.4 and a description about “bayes” from the most recent sherpa is not available yet, which means this post needs updates one new release is available[]

after “Thanks to Henrietta Leavitt”

flyer
Personally, it was a highly anticipated symposium at CfA because I was fascinated about the female computers’ (or astronomers’) contributions that occurred here about a century ago even though at that time women were not considered as scientists but mere assistants for tedious jobs. …Continue reading»

“Thanks to Henrietta Leavitt”

[9/30/2008]

The CfA is celebrating the 100th anniversary of the discovery of the Cepheid period-luminosity relation on Nov 6, 2008. See http://www.cfa.harvard.edu/events/2008/leavitt/ for details.

[Update 10/03] For a nice introduction to the story of Henrietta Swan Leavitt, listen to this Perimeter Institute talk by George Johnson: http://pirsa.org/06050003/

[Update 11/06] The full program is now available. The symposium begins at Noon today.

Astroart Survey

Astronomy is known for its pretty pictures, but as Joe the Astronomer would say, those pretty pictures don’t make themselves. A lot of thought goes into maximizing scientific content while conveying just the right information, all discernible at a single glance. So the hardworkin folks at Chandra want your help in figuring out what works and how well, and they have set up a survey at http://astroart.cfa.harvard.edu/. Take the survey, it is both interesting and challenging!

Redistribution

RMF. It is a wørd to strike terror even into the hearts of the intrepid. It refers to the spread in the measured energy of an incoming photon, and even astronomers often stumble over what it is and what it contains. It essentially sets down the measurement error for registering the energy of a photon in the given instrument.

Thankfully, its usage is robustly built into analysis software such as Sherpa or XSPEC and most people don’t have to deal with the nitty gritty on a daily basis. But given the profusion of statistical software being written for astronomers, it is perhaps useful to go over what it means. …Continue reading»

A confession from a former “keV” junkie (2. Meet Ms. Electron)

- So, there is a state of matter other than solid, liquid and gas?
= Of course, are you thinking what I am thinking?
- ….
= Yes, it’s time for a jello-shot.
- ….

We cannot deny the arbitrary nature of units we use, but there is also a useful feature: a linkability to other arbitrary units.

…Continue reading»

read.table()

The first step of data analysis or applications is reading the data sets into a tool of choice. Recent years, I’ve been using R (see also Learning R) for that regard but I’ve enjoyed freedoms for the same purpose from these languages and tools: BASIC, fortran77/90/95, C/C++, IDL, IRAF, AIPS, mongo/supermongo, MATLAB, Maple, Mathematica, SAS, SPSS, Gauss, ARC, Minitab, and recently Python and ciao which I just began to learn. Many of them I lost the fluency of how to use it. Quick learning tends to be flash memory. Some will need brain defragmentation and recovering time for extensive scientific work. A few I don’t like to use at all. No matter what, I’m not a computer geek. I’m not good at new gadgets, new softwares, nor welcome new and allegedly versatile computing systems. But one must be if he/she want to handle data. Until recently I believed R has such versatility in the aspect of reading in data. Yet, there is nothing without exceptions. …Continue reading»

missing data

The notions of missing data are overall different between two communities. I tend to think missing data carry as good amount of information as observed data. Astronomers…I’m not sure how they think but my impression so far is that a missing value in one attribute/variable from a object/observation/informant, all other attributes related to that object become useless because that object is not considered in scientific data analysis or model evaluation process. For example, it is hard to find any discussion about imputation in astronomical publication or statistical justification of missing data with respect to inference strategies. On the contrary, they talk about incompleteness within different variables. Putting this vague argument with a concrete example, consider a catalog of multiple magnitudes. To draw a color magnitude diagram, one needs both color and magnitude. If one attribute is missing, that star will not appear in the color magnitude diagram and any inference methods from that diagram will not include that star. Nonetheless, one will trying to understand how different proportions of stars are observed according to different colors and magnitudes. …Continue reading»

Whew

Contact has been re-established with XMM-Newton. …Continue reading»

GSL – GNU Scientific Library

I’ve talked about IMSL on my pyIMSL post, which is a commercial scientific library. There is a GNU version of IMSL, GSL. Finding GSL is the courtesy of Jiangang, who was the author of the poster that I most liked from the 212th AAS, (see My first AAS. V. measurement error and EM and his comment.) …Continue reading»

“planetariums and other foolishness”

Last month, Senator McCain (R-AZ) wildly dissed on Chicago’s Adler Planetarium, characterizing a funding request on its behalf as “planetariums and other foolishness.” …Continue reading»

Killer App

The iPhone is an amazing device. I have heard that some people use it as a phone, too, but it really is an extraordinary portable computer. It is faster and more powerful than the Sparcstations I used as a grad student, and will fit into your pocket. And most importantly, you can fit an entire planetarium on it.

There are many good planetarium programs that you can access on laptops, but it is really not that much fun to lug them around on camping trips or even out on to the roof at night. But now, thanks to the iPhone (and the iPod Touch) there has been a great leap forward. …Continue reading»

The Big Picture

Our hometown rag (the Boston Globe) runs an occasional series of photo collections that highlight news stories called The Big Picture. This week, they take a look at the Sun: http://www.boston.com/bigpicture/2008/10/the_sun.html

The pictures come from space and ground observatories, from SoHO, TRACE, Hinode, STEREO, etc. Goes without saying, the images are stunning, and some are even animated. The real kicker is that images such as these are being acquired by the hundreds, every hour upon the hour, 24/7/365.25 . It is like sipping from a firehose. Nobody can sit there and look at them all, so who knows what we are missing out on. Can statistics help? Can we automate a statistically robust “interestingness” criterion to filter the data stream that humans can then follow up on?

Off the line

I do not like to be serious. papers…papers…papers. Off from papers for bridging two, allow me to talk about something relevant to the cultural difference between astronomers and statisticians. I hope this could generate a series of comments. :) …Continue reading»

[tutorial] multispectral imaging, a case study

Without signal processing courses, the following equation should be awfully familiar to astronomers of photometry and handling data:
$$c_k=\int_\Lambda l(\lambda) r(\lambda) f_k(\lambda) \alpha(\lambda) d\lambda +n_k$$
Terms are in order, camera response (c_k), light source (l), spectral radiance by l (r), filter (f), sensitivity (α), and noise (n_k), where Λ indicates the range of the spectrum in which the camera is sensitive.
Or simplified to $$c_k=\int_\Lambda \phi_k (\lambda) r(\lambda) d\lambda +n_k$$
where φ denotes the combined illuminant and the spectral sensitivity of the k-th channel, which goes by augmented spectral sensitivity. Well, we can skip spectral radiance r, though. Unfortunately, the sensitivity α has multiple layers, not a simple closed function of λ in astronomical photometry.
Or $$c_k=\Theta r +n$$
Inverting Θ and finding a reconstruction operator such that r=inv(Θ)c_k leads spectral reconstruction although Θ is, in general, not a square matrix. Otherwise, approach from indirect reconstruction. …Continue reading»