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ABSTRACT

Subject headingshocks

1. CONSERVATION EQUATIONS

j = p1u1 = poup 1)
1 5 1 5
f1U1(§p1U1+W1) = rzuz(épzuz*‘Wz) 2
Py+p1U2 = Po+ ppu3 3
w=7P/p(y=1) (4)
LetV =1/p
w=~PV/(y-1) )

2. SOME PRELIMINARY RELATIONS

Now begins the algebra with some preliminary steps by taking equation 3) and eliminat-
ing all references tp by using its invers¥':

PL+V1pfVE = Py +Vop3vs (6)
but we can eliminate ali?, using equation 1) and the definition pf
PL+V1j2 =P +V,j? (7)
Solving for j? gives:

V1j2-\VLj? =P Py (8)
and



jP(Vi-Vo) =P =Py 9)
and finally

2= (P=P1)/ (V1= Vo) (10)
A second preliminary relation for the difference in velocity is derived from equation 1)
which can be rearranged to giug=j/r1 = jV1 and similarlyu, = j/r2 = jVa:

Ui—uz2=jVi—jVz (11)

Up—uz=j(Vi—Vo) (12)

But from equation 10) we have the expression foin terms if P andV, so we can
rewrite the velocity difference as:

Up—Up = ((PZ_PI)/(VI_VZ))l/Z Mi—V2) (13)
Uy — Uz = (P2~ Py) (V1 — Vo)) /2 (14)
3. RATIOSV,/V1 AND T,/T; AS A FUNCTION OF~ AND P
3.1. Vo/Vy

We begin by deriving the expression #ér/V, starting from equation 2) and using equa-
tions 1), 10), and 5):

1 1
p1U1 (Eﬂluf +Wi) = polp (Eﬂzug +Wo) (15)

But the leading expressions are both equal to each other by equation b)u;e=,0ou;
leaving the expression:

1 1
§P1U%+W1 = §P2U§+W2 (16)

Using equation 1) again, we eliminate &fl since pu = j or equivalantlyu/V = j or
finally u? = j2v2

1. 1.
é12V12+W1:§JZV22+W2 (17)
rearranging the previous equation we have:
1.
W1—W2+§JZ(V12—V22) =0 (18)

but from eq. 1042 = (P,—Py)/(V1—V,) and therefore,



B 1 2 \,2 Po—Pr\ _
1 P,-P
W]_—W2+§(\/1 —Vz) (\/1+V2) (Vj _\é) =0 (20)
1
Wy =Wzt 5 (Vi+V2) (P2—P1) =0 (21)

but we can also eliminate w sinee=vPV/(y—-1):

CD o MW R =0 (22)

Expanding all terms and multiplying through by 1), we find

(-1
2
Now combining the two terms witR;V; and the two terms witR,V, yields:

Simplifying and multiplying by 2, we find:

Yy PVi - o PV, + [Ple -P\V1+P\V, - P1V2] =0 (23)

(Y+1DPVi-(v+ 1PN+ (y—1)PV1 - (v —1)P V2 =0 (25)

Now, we wish to solve fok,/V; so we collect terms with the numerator on the left and
with the denominator on the right:

(Y+ 1PV + (v~ L)PIV2 = (y+1)P Vi + (v —1)PVy (26)
FactoringV, on the left and/; on the right,

Vo (v +DP2+ (v~ 1)P1) =Vi((y+ )P+ (v~ 1)P2) (27)
Dividing to findV,/V1, our next major result, we have:

Vo _ (7+ P+ (7-1)R,
Vi (y+1)P+(y-1)P

(28)

32. T/Th

The next step is to derive the ratio of the temperatures. This follows simply and directly
from the ratio of the specific volumes (densities). We use the ideal gas law and equation
28):

Using the ideal gas law we can write the rati of the gas temperatures:



PiVi PV,

T T, (29)
T, _ PV,
T PVi (30)
and substituting the expression fé1/V; from equation 28) above gives:
_B((y+1)Pi+(y-1)R,
=== (32)
T PL\(y+DP+(y-1)P

4. VELOCITIES
The goal now is to use the above expressions, to derive expressions for the velocities and
to introduce into them the Mach numbdr= v, /c;.
4.1. A warm up - another expression fof |
We have from before (see equation 10) tjfatan be written as:

2= (P2—P1)/(Vi- Vo) (32)
but we can now eliminaté2 using equation 28):
.2 (PZ_Pl)

T v, (e, (33)
17 V1 (+D)PA+(-DPy

FactoringVv; in the denominator and clearing the fraction in the denominator gives:

2 (P2=Py)((y+1)P+(y-1)Py)

"= (34)
Vi((+ 1P+ (7= 1P~ (y+ 1P~ (7~ 1))
2= (P—P) ((v+ )P+ (7 —1)Py) (35)
Vi (2P, -2P;)
and finally,

o _(y+DRP+ (-1

"= A (36)
4.2. 12

Returning to the mass conservation equation 1), we can derive an expressién\it
start with equation 1) and the definition pf

j=uip1 or equivalently u; = jVy (37)
Squaring this equation we have:



uf = j2V7 (38)
Substituting equation 36) fgF gives:
>_ V1
== (v+1)P2+(y—-1)Py) (39)
4.3.v3

As with u2, we derive a similar expression fof starting from mass conservation, equa-
tion 1) and the definition fo:

j =uxp2 or equivalently u, =}V, (40)
Squaring this equation we have:
U5 = j2V5 (41)

Substituting equation 36) foj? and using equation 28) to eliminate we proceed to
find u3. First the expression fg is

2= (y+1)RP+(y-1)P

N, (42)
and equation 28) gives us fo
(Y+DPi+(v-1)P;
= 43
2 A DR (- Dy 43)
Substituting forj? andV, in equation 41) gives:
lﬁzw+n%+w—nﬂ_2(w+na+w—n%>2 (44)
? 2V "\ DR (- D)y
, Vi [((+DP+ (- 1)Py)°
us=— (45)
2\ (v+DP+(y-1)P

5. EXPRESSIONS WITH THE MACH NUMBERMV = U, /C;

The final steps are made by inserting expressions for the sound speed and Mach number.
In the undisturbed gas,

1= (yPy/re)Y? (46)

M. = Ul/Cl (47)



5.1. P,/P; as a function of M
We begin with the expression for2 from equation 39):

\%

U= 5 (r+ DR+ (- DP) (48)
Factoring ouP, on the right gives:
V1P
U == (( +1)Po/Pr+ (7-1)) (49)

Then, we use the definition of the Mach number and sound speed to give an espression
for PV, as follows:

2= u_% = U% = U% (50)
Y2 APY/pr APMVL
Solving forP,Vy, we have:
u2
PV = —15 51
M= (51)
Finally substituting this result into equation 49),
2
2_ U
ui = +1)P/Pi+(y-1 52
1 2'ny ((V ) 2/ 1+ (y )) (52)
29M3 = (y+1)Po/Pr+ (7-1) (53)
(y+1)P, (v-1)
M2 = =+ 4
U2y P 2y (&4)
or solving forP,/P;:
P, _2yM{-(y-1) (55)

P (v+1)

5.2. p2/p1=Vv1/V2 as a function of M

Next we derive the ratio of the gas densities using the expressions éordu? (equa-
tions 39 and 45) We start with the mass conservation equation which yields:

P2 _ Ui _ U (56)

Then we substitute for the squares of the velocities from equations 39 and 45:



Nl

p2 _ | 2+ )P+ (v-1)Py) (57)

N T (e )
2\ T PR

which miraculously reduces to the simple expression:

p2 _ (- P+ (7 +1)P, (58)

pr (Y+1P+(y-1)P,
We wish to rewrite this expression in terms of the ratio of the pressures. FacRring

from both the numerator and denominator yeilds the desired result:
p2 _ (7=1)+(y+1)P/Py (59)
pr (y+1)+(v=1)P/Py

But we have already derived the expressiorFoiP, in terms 0fM; (equation 55) which
is:

P _2yME-(7-1)

= 60
Py (v+1) (60)
When this equation is used to elimindg'P, from equation 59), we find:
p2 - (1-D+29yMi-(y-1)
P (a)e(ym1) (EMEED e
(+1+(-1) (2ESD)
Simplifying
P2 _ 29Mi(y+1) 62)
pr (y+1P+(y-1)(2yME-(v-1))
P2 _ 29yM2(y +1) 63)
- 2 _(~n—1)2 _ 2
pr (Y +1R-(y =12+ (y-1)(29M3)
P2 _ 2yME(y+1) 64)
p1 - (y+1-y+1)(y+1+y+1)+(y-1)(2yM2)
p2_  23M3(y+1) (65)
pr Ay+(y=1)(2yMF)
Finally,
p2 _ _Mi(y+1) (66)

pr 2+(y-1)M2



5.3. T,/T1 as a function of M
The last step is to derive the expressionTefT;. We begin with the ideal gas law:

Pz X p2T2 and P]_ X pj_T]_ (67)

Solving each of the expressions for the temperature and dividing we have:
T _Popr _ P pe
Ti Pp2 Pi'p

However, we already have expression®gfP; andp,/p1 (equations 55 and 66) which
yields:

(68)

T _2yMi-(y-1), ME(y+1)
T (+D /2+('y—1)Mf (69)
T _ (2yM2-(y-1)) (2+ (v -1)M}) 0
R (y+ My +1)
Finally, the last desired expression is:
T _ (2ME-(y-1) ((h-1ME+2) o

T (y+12M2



