SORTING OUT α and Γ for X-RAYS

Take a power-law in frequency $f_{\nu}(\nu) = f_{\nu_0}\nu^{\alpha}$ expressed usually in erg cm⁻² s⁻¹ Hz⁻¹. Here, f_{ν_0} is just a constant, defined to be the monochromatic flux at some reference frequency ν_0 . Since $E = h\nu$, we can also reframe this as $f_E(E) = f_{E_0}E^{\alpha}$, expressed usually in erg cm⁻² s⁻¹ keV⁻¹.

The broadband flux between energies E_1 and E_2 in erg cm⁻² s⁻¹ is

$$F = \int_{E_1}^{E_2} f_E \ dE = \frac{E^{(1+\alpha)}}{(1+\alpha)} \Big]_{E_1}^{E_2} f_{E_0}$$
$$= \frac{E_2^{(1+\alpha)} - E_1^{(1+\alpha)}}{(1+\alpha)} \ f_{E_0} = \frac{E_2^{(1+\alpha)} - E_1^{(1+\alpha)}}{(1+\alpha)E^{\alpha}} \ f_E$$

So the monochromatic flux at any desired energy E in erg cm⁻² s⁻¹ keV⁻¹ is

$$f_E = \frac{(1+\alpha)E^{\alpha}}{E_2^{(1+\alpha)} - E_1^{(1+\alpha)}}F$$

To convert to erg cm⁻² s⁻¹ Hz⁻¹ use $\frac{1}{\text{Hz}} = \frac{1}{\text{keV}} \frac{\text{keV}}{\text{Hz}} = \frac{h}{\text{keV}}$ where $h = 4.138 \times 10^{-18}$ is Planck's constant in keV sec. Therefore, the monochromatic flux at any desired energy E in erg cm⁻² s⁻¹ Hz⁻¹ is

$$f_{\nu} = \frac{h(1+\alpha)E^{\alpha}F}{E_2^{(1+\alpha)} - E_1^{(1+\alpha)}}$$

Now, the power law can also be expressed in terms of *photons* rather than energy units, that is

$$N_E(E) = N_{E_0} \frac{E^{\alpha}}{E} = N_{E_0} E^{(\alpha-1)}$$

This allows a popular but confusing redefinition of the photon number index Γ so that $N_E(E) = N_{E_0}E^{-\Gamma}$ whereby we see that since $\Gamma = (1 - \alpha)$.

P.S. If further confusion is desired, in a standard X-ray definition, people unfortunately also use $f_E(E) = f_{E_0} E^{-\alpha_X}$