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XRBSMBH

Lbol/Ledd ~ 10-1

Lbol/Ledd ~ 10-3

Feedback Changes as the Structure 
of the Accretion Disk Evolves

Trump11
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Wu & Gu (2008)

Stellar Mass Black Holes: 
X-ray spectral slope vs. Eddington Ratio
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Physical Mechanisms

Lbol/Ledd < 10-2 (-3): (radiatively inefficient flow)
(Dominant cooling mech.: Comptonization of synchotron photons by hot gas)

As accretion rate increases
 optical depth of the flow increases
 number of Compton scatterings increases (increasing y-parameter) 
 Γ hardens (Esin97, Yuan07, Gu08, Wu08). 

(Dominant cooling mech.: Comptonization of thermal blackbody photons from outer thin disk)

As accretion rate increases
 Transition radius (between outer thin disk & inner RIAF) decreases
 Outer thin disk radiation becomes stronger
 Compton cooling by outer disk photons becomes more efficient
 Electron temperature decreases
 Γ softens/steepens (Wu08).Low Accretion Rate (ADAF/RIAF)
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Lbol/Ledd > 10-2 (-3):  (standard optically thick disk)

As accretion rate increases

 fraction of accreting energy released to corona decreases 
(Merloni02, Liu02, Wang04)

 corona becomes weak and shrinks 
 optical depth of the corona decreases, reducing y-parameter
 Γ softens/steepens (Wu08).

OR
 disk flux irradiating corona increases
 corona cools more efficiently through Compton cooling
 Γ softens/steepens (Haardt91, Lu99, Wang04, Gu08). 
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Wu & Gu (2008)

Stellar Mass Black Holes: 
X-ray spectral slope vs. Eddington Ratio
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High Accretion Rate AGN:
Lbol/LEdd > 10-2: Γsoftens with accretion rate

Also see Porquet04, Piconcelli05, Saez08, Kelly08
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Lower Accretion Rate AGN:
Lbol/LEdd < 10-3: Conflicting Results

Winter09, Trump11, etc. find no correlation for Lbol/LEdd <10-2
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Lower Accretion Rate AGN:
Lbol/LEdd < 10-3: Conflicting Results

Gu08 & Constantin09,12 see a 
correlation for Lbol/LEdd <10-3

Constantin09 log(Lbol/Ledd)
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600 ChaMP (SDSS + Chandra) Sources
 Constantin et al., in prep.
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Chandra Deep Field South, 4Ms

• 740 X-ray sources (Xue11)

• 419 public spec-z

MSMBH:

• 366/419 with L K,rest-frame

• 48/419 with Mstellar (Babic07)

•X-ray spectral fitting of individual 
sources with > 150 Cts0.5-8 keV

•Stacking and then fitting of sources 
w/ < 150 Cts0.5-8 keV using STACKFAST 
(Hickox et al.)
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CDFS Subsample: Source Properties

Redd~ 10-1

Redd~ 10-2

Redd~ 10-3

Redd~ 10-4

Spectroscopic Redshift

LOG (M_BH)

High Racc

Low Racc

Observed 0.5-8 keV Luminosity
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CDFS: Γ vs Lbol/LEdd
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CDFS: Γ vs Lbol/LEdd
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CDFS: Γ vs Lbol/LEdd
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Fukazawa11

Using Narrow EW(Fe Kα) to Estimate NH
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Fukazawa11

Using Narrow EW(Fe Kα) to Estimate NH
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CDFS: Γ vs Lbol/LEdd
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CDFS: Γ vs Lbol/LEdd
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CDFS: Γ vs Lbol/LEdd
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           XRBs (Wu & Gu 2008)

Comparison with AGN & XRB Results

Constantin12
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NEXT

•Larger sample, better statistics (OPTX, Trouille09,10,11)

•Test reflionx -- better modeling of impact of NH 
(Brenneman talk)

•Jet contribution 
•For sources where jet dominates in X-ray, what is the 
expected slope and keV range?
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QUESTIONS
•Is there a theoretically predicted lower limit to the X-ray 
spectral slope for XRBs?
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Lbol/Ledd end, the rate of change in Γ differs 
from one source to another?

•At the high Lbol/Ledd end, why are the AGN Γ  values 
harder than the XRB Γ  values?

•For either XRBs or AGN, is there consensus on 
where in Lbol/Ledd the inflection point occurs? 
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