NDData¶
Overview¶
NDData is based on numpy.ndarray-like data with
additional meta attributes:
meta, for general metadataunit, representing the physical unit of the datauncertaintyfor the uncertainty of the datamask, indicating invalid points in the datawcs, representing the relationship between the data grid and world coordinates
Each of these attributes can be set during initialization or directly on the
instance. Only the data cannot be directly set after creating the instance.
Data¶
The data is the base of NDData and required to be
numpy.ndarray-like. It’s the only property that is required to create an
instance and it cannot be directly set on the instance.
For example:
>>> import numpy as np
>>> from astropy.nddata import NDData
>>> array = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
>>> ndd = NDData(array)
>>> ndd
NDData([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
and can be accessed by the data attribute:
>>> ndd.data
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
as already mentioned it is not possible to set the data directly. So
ndd.data = np.arange(9) will raise an Exception. But the data can be
modified in place:
>>> ndd.data[1,1] = 100
>>> ndd.data
array([[ 0, 1, 0],
[ 1, 100, 1],
[ 0, 1, 0]])
Data during initialization¶
During initialization it is possible to provide data that it’s not a
numpy.ndarray but convertible to one. For example passing a list containing
numerical values:
>>> alist = [1, 2, 3, 4]
>>> ndd = NDData(alist)
>>> ndd.data # data will be a numpy-array:
array([1, 2, 3, 4])
Nested list or tuple are possible, but if these contain non-numerical
values the conversion might fail.
Besides input that is convertible to such an array you can use the data
parameter to pass implicit additional information. For example if the data is
another NDData-object it implicitly uses it’s properties:
>>> ndd = NDData(ndd, unit = 'm')
>>> ndd2 = NDData(ndd)
>>> ndd2.data # It has the same data as ndd
array([1, 2, 3, 4])
>>> ndd2.unit # but it also has the same unit as ndd
Unit("m")
another possibility is to use a Quantity as data
parameter:
>>> import astropy.units as u
>>> quantity = np.ones(3) * u.cm # this will create a Quantity
>>> ndd3 = NDData(quantity)
>>> ndd3.data
array([1., 1., 1.])
>>> ndd3.unit
Unit("cm")
or a numpy.ma.MaskedArray:
>>> masked_array = np.ma.array([5,10,15], mask=[False, True, False])
>>> ndd4 = NDData(masked_array)
>>> ndd4.data
array([ 5, 10, 15])
>>> ndd4.mask
array([False, True, False]...)
If such an implicitly passed property conflicts with an explicit parameter, the explicit parameter will be used and an info-message will be issued:
>>> quantity = np.ones(3) * u.cm
>>> ndd6 = NDData(quantity, unit='m')
INFO: overwriting Quantity's current unit with specified unit. [astropy.nddata.nddata]
>>> ndd6.data
array([1., 1., 1.])
>>> ndd6.unit
Unit("m")
The unit of the Quantity is being ignored and the unit is set
to the explicitly passed one.
It might be possible to pass other classes as data parameter as long as
they have the properties shape, dtype, __getitem__ and
__array__.
The purpose of this mechanism is to allow considerable flexibility in the objects used to store the data while providing a useful default (numpy array).
Mask¶
The mask is being used to indicate if data points are valid or invalid.
NDData doesn’t restrict this mask in any way but it is
expected to follow the numpy.ma.MaskedArray convention that the mask:
- returns
Truefor data points that are considered invalid. - returns
Falsefor those points that are valid.
One possibility is to create a mask by using numpy’s comparison operators:
>>> array = np.array([0, 1, 4, 0, 2])
>>> mask = array == 0 # Mask points containing 0
>>> mask
array([ True, False, False, True, False]...)
>>> other_mask = array > 1 # Mask points with a value greater than 1
>>> other_mask
array([False, False, True, False, True]...)
and initialize the NDData instance using the mask
parameter:
>>> ndd = NDData(array, mask=mask)
>>> ndd.mask
array([ True, False, False, True, False]...)
or by replacing the mask:
>>> ndd.mask = other_mask
>>> ndd.mask
array([False, False, True, False, True]...)
There is no requirement that the mask actually be a numpy array; for example, a
function which evaluates a mask value as needed is acceptable as long as it
follows the convention that True indicates a value that should be ignored.
Unit¶
The unit represents the unit of the data values. It is required to be
Unit-like or a string that can be converted to such a
Unit:
>>> import astropy.units as u
>>> ndd = NDData([1, 2, 3, 4], unit="meter") # using a string
>>> ndd.unit
Unit("m")
- ..note::
- Setting the
uniton an instance is not possible.
Uncertainties¶
The uncertainty represents an arbitrary representation of the error of the
data values. To indicate which kind of uncertainty representation is used the
uncertainty should have an uncertainty_type property. If no such
property is found it will be wrapped inside a
UnknownUncertainty.
The uncertainty_type should follow the StdDevUncertainty
convention that it returns a short string like "std" for an uncertainty
given in standard deviation. Other examples are
VarianceUncertainty and InverseVariance.
Like the other properties the uncertainty can be set during
initialization:
>>> from astropy.nddata import StdDevUncertainty
>>> array = np.array([10, 7, 12, 22])
>>> uncert = StdDevUncertainty(np.sqrt(array))
>>> ndd = NDData(array, uncertainty=uncert)
>>> ndd.uncertainty
StdDevUncertainty([3.16227766, 2.64575131, 3.46410162, 4.69041576])
or on the instance directly:
>>> other_uncert = StdDevUncertainty([2,2,2,2])
>>> ndd.uncertainty = other_uncert
>>> ndd.uncertainty
StdDevUncertainty([2, 2, 2, 2])
but it will print an info message if there is no uncertainty_type:
>>> ndd.uncertainty = np.array([5, 1, 2, 10])
INFO: uncertainty should have attribute uncertainty_type. [astropy.nddata.nddata]
>>> ndd.uncertainty
UnknownUncertainty([ 5, 1, 2, 10])
Meta-data¶
The meta property contains all further meta information that don’t fit
any other property.
If given it must be dict-like:
>>> ndd = NDData([1,2,3], meta={'observer': 'myself'})
>>> ndd.meta
{'observer': 'myself'}
dict-like means it must be a mapping from some keys to some values. This
also includes Header objects:
>>> from astropy.io import fits
>>> header = fits.Header()
>>> header['observer'] = 'Edwin Hubble'
>>> ndd = NDData(np.zeros([10, 10]), meta=header)
>>> ndd.meta['observer']
'Edwin Hubble'
If the meta isn’t provided or explicitly set to None it will default to
an empty collections.OrderedDict:
>>> ndd.meta = None
>>> ndd.meta
OrderedDict()
>>> ndd = NDData([1,2,3])
>>> ndd.meta
OrderedDict()
The meta object therefore supports adding or updating these values:
>>> ndd.meta['exposure_time'] = 340.
>>> ndd.meta['filter'] = 'J'
Elements of the meta-data dictionary can be set to any valid Python object:
>>> ndd.meta['history'] = ['calibrated', 'aligned', 'flat-fielded']
Initialization with copy¶
The default way to create an NDData instance is to try saving
the parameters as references to the original rather than as copy. Sometimes
this is not possible because the internal mechanics don’t allow for this. For
example if the data is a list then during initialization this is copied
while converting to a ndarray. But it is also possible to enforce
copies during initialization by setting the copy parameter to True:
>>> array = np.array([1, 2, 3, 4])
>>> ndd = NDData(array)
>>> ndd.data[2] = 10
>>> array[2] # Original array has changed
10
>>> ndd2 = NDData(array, copy=True)
>>> ndd2.data[2] = 3
>>> array[2] # Original array hasn't changed.
10
Converting NDData to other classes¶
There is limited to support to convert a NDData instance to
other classes. In the process some properties might be lost.
>>> data = np.array([1, 2, 3, 4])
>>> mask = np.array([True, False, False, True])
>>> unit = 'm'
>>> ndd = NDData(data, mask=mask, unit=unit)
numpy.ndarray¶
Converting the data to an array:
>>> array = np.asarray(ndd.data)
>>> array
array([1, 2, 3, 4])
Though using np.asarray is not required in most cases it will ensure that
the result is always a numpy.ndarray
numpy.ma.MaskedArray¶
Converting the data and mask to a MaskedArray:
>>> masked_array = np.ma.array(ndd.data, mask=ndd.mask)
>>> masked_array
masked_array(data=[--, 2, 3, --],
mask=[ True, False, False, True],
fill_value=999999)