median_absolute_deviation¶
-
astropy.stats.median_absolute_deviation(data, axis=None, func=None, ignore_nan=False)[source]¶ Calculate the median absolute deviation (MAD).
The MAD is defined as
median(abs(a - median(a))).Parameters: - data : array-like
Input array or object that can be converted to an array.
- axis : {int, sequence of int, None}, optional
Axis along which the MADs are computed. The default (
None) is to compute the MAD of the flattened array.- func : callable, optional
The function used to compute the median. Defaults to
numpy.ma.medianfor masked arrays, otherwise tonumpy.median.- ignore_nan : bool
Ignore NaN values (treat them as if they are not in the array) when computing the median. This will use
numpy.ma.medianifaxisis specified, ornumpy.nanmedianifaxis==Noneand numpy’s version is >1.10 because nanmedian is slightly faster in this case.
Returns: See also
Examples
Generate random variates from a Gaussian distribution and return the median absolute deviation for that distribution:
>>> import numpy as np >>> from astropy.stats import median_absolute_deviation >>> rand = np.random.RandomState(12345) >>> from numpy.random import randn >>> mad = median_absolute_deviation(rand.randn(1000)) >>> print(mad) 0.65244241428454486