***************************** Slicing Multidimensional Data ***************************** WCSAxes can ultimately only plot two-dimensional data. If we have an n-dimensional dataset, we have to select which dimensions to use for the x and y axis of the image. This example will show how to slice a FITS data cube and plot an image from it. Slicing the WCS object ********************** Like the example introduced in :ref:`initialization`, we will read in the data using `astropy.io.fits `_ and parse the WCS information. The original FITS file can be downloaded from `here `_. .. plot:: :context: reset :include-source: :align: center :nofigs: import matplotlib.pyplot as plt from astropy.wcs import WCS from astropy.io import fits from astropy.utils.data import get_pkg_data_filename filename = get_pkg_data_filename('l1448/l1448_13co.fits') hdu = fits.open(filename)[0] wcs = WCS(hdu.header) image_data = hdu.data This is a three-dimensional dataset which you can check by looking at the header information by:: >>> hdu.header # doctest: +SKIP ... NAXIS = 3 /number of axes CTYPE1 = 'RA---SFL' / CTYPE2 = 'DEC--SFL' / CTYPE3 = 'VELO-LSR' / ... The header keyword 'NAXIS' gives the number of dimensions of the dataset. The keywords 'CTYPE1', 'CTYPE2' and 'CTYPE3' give the data type of these dimensions to be right ascension, declination and velocity respectively. We then instantiate the `~astropy.visualization.wcsaxes.WCSAxes` using the :class:`~astropy.wcs.WCS` object and select the slices we want to plot: .. plot:: :context: :include-source: :align: center :nofigs: import matplotlib.pyplot as plt ax = plt.subplot(projection=wcs, slices=(50, 'y', 'x')) By setting ``slices=(50, 'y', 'x')``, we have chosen to plot the second dimension on the y-axis and the third dimension on the x-axis. Even though we are not plotting the all the dimensions, we have to specify which slices to select for the dimensions that are not shown. In this example, we are not plotting the first dimension so we have selected the slice 50 to display. You can experiment with this by changing the selected slice and looking at how the plotted image changes. Plotting the image ****************** We then add the axes to the image and plot it using the method :meth:`~matplotlib.axes.Axes.imshow`. .. plot:: :context: :include-source: :align: center ax.coords[2].set_ticklabel(exclude_overlapping=True) ax.imshow(image_data[:, :, 50].transpose()) Here, ``image_data`` is an :class:`~numpy.ndarray` object. In Numpy, the order of the axes is reversed so the first dimension in the FITS file appears last, the last dimension appears first and so on. Therefore the index passed to :meth:`~matplotlib.axes.Axes.imshow` should be the same as passed to ``slices`` but in reversed order. We also need to :meth:`~numpy.ndarray.transpose` ``image_data`` as we have reversed the dimensions plotted on the x and y axes in the slice. If we don't want to reverse the dimensions plotted, we can simply do: .. plot:: :context: reset :align: center :nofigs: from astropy.wcs import WCS from astropy.io import fits from astropy.utils.data import get_pkg_data_filename filename = get_pkg_data_filename('l1448/l1448_13co.fits') hdu = fits.open(filename)[0] wcs = WCS(hdu.header) image_data = hdu.data .. plot:: :context: :include-source: :align: center import matplotlib.pyplot as plt ax = plt.subplot(projection=wcs, slices=(50, 'x', 'y')) ax.imshow(image_data[:, :, 50])