.. include:: references.txt .. _astropy-table: ***************************** Data Tables (`astropy.table`) ***************************** Introduction ============ `astropy.table` provides functionality for storing and manipulating heterogeneous tables of data in a way that is familiar to `numpy` users. A few notable capabilities of this package are: * Initialize a table from a wide variety of input data structures and types. * Modify a table by adding or removing columns, changing column names, or adding new rows of data. * Handle tables containing missing values. * Include table and column metadata as flexible data structures. * Specify a description, units and output formatting for columns. * Interactively scroll through long tables similar to using ``more``. * Create a new table by selecting rows or columns from a table. * Perform :ref:`table_operations` like database joins, concatenation, and binning. * Maintain a table index for fast retrieval of table items or ranges. * Manipulate multidimensional columns. * Handle non-native (mixin) column types within table. * Methods for :ref:`read_write_tables` to files. * Hooks for :ref:`subclassing_table` and its component classes. Getting Started =============== The basic workflow for creating a table, accessing table elements, and modifying the table is shown below. These examples show a very simple case, while the full `astropy.table` documentation is available from the :ref:`using_astropy_table` section. First create a simple table with columns of data named ``a``, ``b``, ``c``, and ``d``. These columns have integer, float, string, and |Quantity| values respectively:: >>> from astropy.table import QTable >>> import astropy.units as u >>> a = [1, 4, 5] >>> b = [2.0, 5.0, 8.2] >>> c = ['x', 'y', 'z'] >>> d = [10, 20, 30] * u.m / u.s >>> t = QTable([a, b, c, d], ... names=('a', 'b', 'c', 'd'), ... meta={'name': 'first table'}) Notice the use of a |Quantity| array for column ``d``. Since we used |QTable| this stores a native |Quantity| within the table and brings the full power of :ref:`astropy-units` to this column in the table. .. Note:: If the table data have no units or you prefer to not use |Quantity| then you can use the |Table| class to create tables. The **only** difference between |QTable| and |Table| is the behavior when adding a column that has units. See :ref:`quantity_and_qtable` and :ref:`columns_with_units` for details on the differences and use cases. There are many other ways to construct a table, including from a list of rows (either tuples or dicts), from a numpy structured or 2-d array, by adding columns or rows incrementally, or even from a pandas :class:`pandas.DataFrame`. See :ref:`construct_table` for the details. There are a few ways to examine the table. You can get detailed information about the table values and column definitions as follows:: >>> t a b c d m / s int32 float64 bytes1 float64 ----- ------- ------ ------- 1 2.0 x 10.0 4 5.0 y 20.0 5 8.2 z 30.0 Finally, you can get summary information about the table as follows:: >>> t.info name dtype unit class ---- ------- ----- -------- a int32 Column b float64 Column c bytes1 Column d float64 m / s Quantity From within a Jupyter notebook, the table is displayed as a formatted HTML table (details of how it appears can be changed by altering the ``astropy.table.default_notebook_table_class`` configuration item): .. image:: table_repr_html.png :width: 450px Or you can get a fancier notebook interface with in-browser search and sort using `~astropy.table.Table.show_in_notebook`: .. image:: table_show_in_nb.png :width: 450px If you print the table (either from the notebook or in a text console session) then a formatted version appears:: >>> print(t) a b c d m / s --- --- --- ----- 1 2.0 x 10.0 4 5.0 y 20.0 5 8.2 z 30.0 If you do not like the format of a particular column, you can change it:: >>> t['b'].info.format = '7.3f' >>> print(t) a b c d m / s --- ------- --- ----- 1 2.000 x 10.0 4 5.000 y 20.0 5 8.200 z 30.0 For a long table you can scroll up and down through the table one page at time:: >>> t.more() # doctest: +SKIP You can also display it as an HTML-formatted table in the browser:: >>> t.show_in_browser() # doctest: +SKIP or as an interactive (searchable & sortable) javascript table:: >>> t.show_in_browser(jsviewer=True) # doctest: +SKIP Now examine some high-level information about the table:: >>> t.colnames ['a', 'b', 'c', 'd'] >>> len(t) 3 >>> t.meta {'name': 'first table'} Access the data by column or row using familiar `numpy` structured array syntax:: >>> t['a'] # Column 'a' 1 4 5 >>> t['a'][1] # Row 1 of column 'a' 4 >>> t[1] # Row object for table row index=1 a b c d m / s int32 float64 bytes1 float64 ----- ------- ------ ------- 4 5.000 y 20.0 >>> t[1]['a'] # Column 'a' of row 1 4 You can retrieve a subset of a table by rows (using a slice) or columns (using column names), where the subset is returned as a new table:: >>> print(t[0:2]) # Table object with rows 0 and 1 a b c d m / s --- ------- --- ----- 1 2.000 x 10.0 4 5.000 y 20.0 >>> print(t['a', 'c']) # Table with cols 'a', 'c' a c --- --- 1 x 4 y 5 z Modifying table values in place is flexible and works as one would expect:: >>> t['a'][:] = [-1, -2, -3] # Set all column values in place >>> t['a'][2] = 30 # Set row 2 of column 'a' >>> t[1] = (8, 9.0, "W", 4 * u.m / u.s) # Set all row values >>> t[1]['b'] = -9 # Set column 'b' of row 1 >>> t[0:2]['b'] = 100.0 # Set column 'b' of rows 0 and 1 >>> print(t) a b c d m / s --- ------- --- ----- -1 100.000 x 10.0 8 100.000 W 4.0 30 8.200 z 30.0 Replace, add, remove, and rename columns with the following:: >>> t['b'] = ['a', 'new', 'dtype'] # Replace column b (different from in-place) >>> t['e'] = [1, 2, 3] # Add column d >>> del t['c'] # Delete column c >>> t.rename_column('a', 'A') # Rename column a to A >>> t.colnames ['A', 'b', 'd', 'e'] Adding a new row of data to the table is as follows. Note that the unit value is given in ``cm / s`` but will be added to the table as ``0.1 m / s`` in accord with the existing unit. >>> t.add_row([-8, -9, 10 * u.cm / u.s, 11]) >>> len(t) 4 You can create a table with support for missing values, for example by setting ``masked=True``:: >>> t = QTable([a, b, c], names=('a', 'b', 'c'), masked=True, dtype=('i4', 'f8', 'U1')) >>> t['a'].mask = [True, True, False] >>> t a b c int32 float64 str1 ----- ------- ---- -- 2.0 x -- 5.0 y 5 8.2 z In addition to |Quantity|, you can include certain object types like `~astropy.time.Time`, `~astropy.coordinates.SkyCoord`, and `~astropy.table.NdarrayMixin` in your table. These "mixin" columns behave like a hybrid of a regular `~astropy.table.Column` and the native object type (see :ref:`mixin_columns`). For example:: >>> from astropy.time import Time >>> from astropy.coordinates import SkyCoord >>> tm = Time(['2000:002', '2002:345']) >>> sc = SkyCoord([10, 20], [-45, +40], unit='deg') >>> t = QTable([tm, sc], names=['time', 'skycoord']) >>> t time skycoord deg,deg object object --------------------- ---------- 2000:002:00:00:00.000 10.0,-45.0 2002:345:00:00:00.000 20.0,40.0 .. _using_astropy_table: Using ``table`` =============== The details of using `astropy.table` are provided in the following sections: Construct table --------------- .. toctree:: :maxdepth: 2 construct_table.rst Access table --------------- .. toctree:: :maxdepth: 2 access_table.rst Modify table --------------- .. toctree:: :maxdepth: 2 modify_table.rst Table operations ----------------- .. toctree:: :maxdepth: 2 operations.rst Indexing -------- .. toctree:: :maxdepth: 2 indexing.rst Masking --------------- .. toctree:: :maxdepth: 2 masking.rst I/O with tables ---------------- .. toctree:: :maxdepth: 2 io.rst pandas.rst Mixin columns ---------------- .. toctree:: :maxdepth: 2 mixin_columns.rst Implementation ---------------- .. toctree:: :maxdepth: 2 implementation_details.rst .. note that if this section gets too long, it should be moved to a separate doc page - see the top of performance.inc.rst for the instructions on how to do that .. include:: performance.inc.rst Reference/API ============= .. automodapi:: astropy.table