.. _sphx_glr_generated_examples_coordinates_plot_galactocentric-frame.py:
========================================================================
Transforming positions and velocities to and from a Galactocentric frame
========================================================================
This document shows a few examples of how to use and customize the
`~astropy.coordinates.Galactocentric` frame to transform Heliocentric sky
positions, distance, proper motions, and radial velocities to a Galactocentric,
Cartesian frame, and the same in reverse.
The main configurable parameters of the `~astropy.coordinates.Galactocentric`
frame control the position and velocity of the solar system barycenter within
the Galaxy. These are specified by setting the ICRS coordinates of the
Galactic center, the distance to the Galactic center (the sun-galactic center
line is always assumed to be the x-axis of the Galactocentric frame), and the
Cartesian 3-velocity of the sun in the Galactocentric frame. We'll first
demonstrate how to customize these values, then show how to set the solar motion
instead by inputting the proper motion of Sgr A*.
Note that, for brevity, we may refer to the solar system barycenter as just "the
sun" in the examples below.
-------------------
*By: Adrian Price-Whelan*
*License: BSD*
-------------------
Make `print` work the same in all versions of Python, set up numpy,
matplotlib, and use a nicer set of plot parameters:
.. code-block:: python
import numpy as np
import matplotlib.pyplot as plt
from astropy.visualization import astropy_mpl_style
plt.style.use(astropy_mpl_style)
Import the necessary astropy subpackages
.. code-block:: python
import astropy.coordinates as coord
import astropy.units as u
Let's first define a barycentric coordinate and velocity in the ICRS frame.
We'll use the data for the star HD 39881 from the `Simbad
`_ database:
.. code-block:: python
c1 = coord.ICRS(ra=89.014303*u.degree, dec=13.924912*u.degree,
distance=(37.59*u.mas).to(u.pc, u.parallax()),
pm_ra_cosdec=372.72*u.mas/u.yr,
pm_dec=-483.69*u.mas/u.yr,
radial_velocity=0.37*u.km/u.s)
This is a high proper-motion star; suppose we'd like to transform its position
and velocity to a Galactocentric frame to see if it has a large 3D velocity
as well. To use the Astropy default solar position and motion parameters, we
can simply do:
.. code-block:: python
gc1 = c1.transform_to(coord.Galactocentric)
From here, we can access the components of the resulting
`~astropy.coordinates.Galactocentric` instance to see the 3D Cartesian
velocity components:
.. code-block:: python
print(gc1.v_x, gc1.v_y, gc1.v_z)
.. rst-class:: sphx-glr-script-out
Out::
28.461887707012632 km / s 157.93916086163026 km / s 17.651893131558683 km / s
The default parameters for the `~astropy.coordinates.Galactocentric` frame
are detailed in the linked documentation, but we can modify the most commonly
changes values using the keywords ``galcen_distance``, ``galcen_v_sun``, and
``z_sun`` which set the sun-Galactic center distance, the 3D velocity vector
of the sun, and the height of the sun above the Galactic midplane,
respectively. The velocity of the sun must be specified as a
`~astropy.coordinates.CartesianDifferential` instance, as in the example
below. Note that, as with the positions, the Galactocentric frame is a
right-handed system - the x-axis is positive towards the Galactic center, so
``v_x`` is opposite of the Galactocentric radial velocity:
.. code-block:: python
v_sun = coord.CartesianDifferential([11.1, 244, 7.25]*u.km/u.s)
gc_frame = coord.Galactocentric(galcen_distance=8*u.kpc,
galcen_v_sun=v_sun,
z_sun=0*u.pc)
We can then transform to this frame instead, with our custom parameters:
.. code-block:: python
gc2 = c1.transform_to(gc_frame)
print(gc2.v_x, gc2.v_y, gc2.v_z)
.. rst-class:: sphx-glr-script-out
Out::
28.42795836058219 km / s 169.69916086163028 km / s 17.70831652443232 km / s
It's sometimes useful to specify the solar motion using the `proper motion
of Sgr A* `_ instead of Cartesian
velocity components. With an assumed distance, we can convert proper motion
components to Cartesian velocity components using `astropy.units`:
.. code-block:: python
galcen_distance = 8*u.kpc
pm_gal_sgrA = [-6.379, -0.202] * u.mas/u.yr # from Reid & Brunthaler 2004
vy, vz = -(galcen_distance * pm_gal_sgrA).to(u.km/u.s, u.dimensionless_angles())
We still have to assume a line-of-sight velocity for the Galactic center,
which we will again take to be 11 km/s:
.. code-block:: python
vx = 11.1 * u.km/u.s
gc_frame2 = coord.Galactocentric(galcen_distance=galcen_distance,
galcen_v_sun=coord.CartesianDifferential(vx, vy, vz),
z_sun=0*u.pc)
gc3 = c1.transform_to(gc_frame2)
print(gc3.v_x, gc3.v_y, gc3.v_z)
.. rst-class:: sphx-glr-script-out
Out::
28.42795836058219 km / s 167.61484955476874 km / s 18.118916793442192 km / s
The transformations also work in the opposite direction. This can be useful
for transforming simulated or theoretical data to observable quantities. As
an example, we'll generate 4 theoretical circular orbits at different
Galactocentric radii with the same circular velocity, and transform them to
Heliocentric coordinates:
.. code-block:: python
ring_distances = np.arange(10, 25+1, 5) * u.kpc
circ_velocity = 220 * u.km/u.s
phi_grid = np.linspace(90, 270, 512) * u.degree # grid of azimuths
ring_rep = coord.CylindricalRepresentation(
rho=ring_distances[:,np.newaxis],
phi=phi_grid[np.newaxis],
z=np.zeros_like(ring_distances)[:,np.newaxis])
angular_velocity = (-circ_velocity / ring_distances).to(u.mas/u.yr,
u.dimensionless_angles())
ring_dif = coord.CylindricalDifferential(
d_rho=np.zeros(phi_grid.shape)[np.newaxis]*u.km/u.s,
d_phi=angular_velocity[:,np.newaxis],
d_z=np.zeros(phi_grid.shape)[np.newaxis]*u.km/u.s
)
ring_rep = ring_rep.with_differentials(ring_dif)
gc_rings = coord.Galactocentric(ring_rep)
First, let's visualize the geometry in Galactocentric coordinates. Here are
the positions and velocities of the rings; note that in the velocity plot,
the velocities of the 4 rings are identical and thus overlaid under the same
curve:
.. code-block:: python
fig,axes = plt.subplots(1, 2, figsize=(12,6))
# Positions
axes[0].plot(gc_rings.x.T, gc_rings.y.T, marker='None', linewidth=3)
axes[0].text(-8., 0, r'$\odot$', fontsize=20)
axes[0].set_xlim(-30, 30)
axes[0].set_ylim(-30, 30)
axes[0].set_xlabel('$x$ [kpc]')
axes[0].set_ylabel('$y$ [kpc]')
# Velocities
axes[1].plot(gc_rings.v_x.T, gc_rings.v_y.T, marker='None', linewidth=3)
axes[1].set_xlim(-250, 250)
axes[1].set_ylim(-250, 250)
axes[1].set_xlabel('$v_x$ [{0}]'.format((u.km/u.s).to_string("latex_inline")))
axes[1].set_ylabel('$v_y$ [{0}]'.format((u.km/u.s).to_string("latex_inline")))
fig.tight_layout()
.. image:: /generated/examples/coordinates/images/sphx_glr_plot_galactocentric-frame_001.png
:align: center
Now we can transform to Galactic coordinates and visualize the rings in
observable coordinates:
.. code-block:: python
gal_rings = gc_rings.transform_to(coord.Galactic)
fig,ax = plt.subplots(1, 1, figsize=(8,6))
for i in range(len(ring_distances)):
ax.plot(gal_rings[i].l.degree, gal_rings[i].pm_l_cosb.value,
label=str(ring_distances[i]), marker='None', linewidth=3)
ax.set_xlim(360, 0)
ax.set_xlabel('$l$ [deg]')
ax.set_ylabel(r'$\mu_l \, \cos b$ [{0}]'.format((u.mas/u.yr).to_string('latex_inline')))
ax.legend()
.. image:: /generated/examples/coordinates/images/sphx_glr_plot_galactocentric-frame_002.png
:align: center
**Total running time of the script:** ( 0 minutes 0.407 seconds)
.. container:: sphx-glr-footer
.. container:: sphx-glr-download
:download:`Download Python source code: plot_galactocentric-frame.py `
.. container:: sphx-glr-download
:download:`Download Jupyter notebook: plot_galactocentric-frame.ipynb `
.. rst-class:: sphx-glr-signature
`Generated by Sphinx-Gallery `_