{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Read and plot an image from a FITS file\n\n\nThis example opens an image stored in a FITS file and displays it to the screen.\n\nThis example uses `astropy.utils.data` to download the file, `astropy.io.fits` to open\nthe file, and `matplotlib.pyplot` to display the image.\n\n-------------------\n\n*By: Lia R. Corrales, Adrian Price-Whelan, Kelle Cruz*\n\n*License: BSD*\n\n-------------------\n\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set up matplotlib and use a nicer set of plot parameters\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\nfrom astropy.visualization import astropy_mpl_style\nplt.style.use(astropy_mpl_style)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Download the example FITS files used by this example:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from astropy.utils.data import get_pkg_data_filename\nfrom astropy.io import fits\n\nimage_file = get_pkg_data_filename('tutorials/FITS-images/HorseHead.fits')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Use `astropy.io.fits.info()` to display the structure of the file:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fits.info(image_file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generally the image information is located in the Primary HDU, also known\nas extension 0. Here, we use `astropy.io.fits.getdata()` to read the image\ndata from this first extension using the keyword argument ``ext=0``:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "image_data = fits.getdata(image_file, ext=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data is now stored as a 2D numpy array. Print the dimensions using the\nshape attribute:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(image_data.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Display the image data:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.figure()\nplt.imshow(image_data, cmap='gray')\nplt.colorbar()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 0 }