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Introduction

What is ‘logN − log S ’?

I Cumulative number of sources detectable at a given sensitivity

I Defined as:

N(> S) =
∑
i

I{Si>S}

i.e., the number of sources brighter than a threshold.

I Considering the distribution of sources, this is related to the
survival function i.e., N(>S)=N×(1-F(S))

I ‘logN − log S ’ refers to the relationship beween (or plot of)
log10N(> S) and log10 S .

I Why do we care?

Constrains evolutionary models, dark matter distribution etc.







Inferential Process

To infer the logN − log S relationship there are a few steps:

1. Collect raw data images

2. Run a detection algorithm to extract ‘sources’

3. Produce a dataset describing the ‘sources’ (and uncertainty
about them)

4. Infer the logN − log S distribution from this dataset

Our analysis is focused on the final step – accounting for some
(but not all) of the detector-induced uncertainties. . .

Adding further layers to the analysis to start with raw images is
possible but that is for a later time. . .
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The Data

The data is essentially just a list of photon counts – with some
extra information about the background and detector properties.

Src_ID Count Src_area Bkg Off_axis Eff_area

2 270 1720 3.16 4.98 734813.1074

3 117 96 0.19 5.72 670916.3154

7 33 396 0.61 6.17 670916.3154

18 7 128 0.22 6.34 319483.9597

19 12 604 0.96 4.51 670916.3154



Problems

The photon counts do not directly correspond to the source fluxes:

1. Background contamination

2. Natural (Poisson) variability

3. Detector efficiencies (PSF etc.)

Not all sources in the population will be detected:

1. Low intensity sources

2. Close to the limit: background, natural variability and
detection probabilities are important.



Key Ideas

Our goals:

I Provide a complete analysis, accounting for all detector effects
(especially those leading to unobserved sources)

I Allow for the incorporation of prior information

I Investigate parametric forms (testing) for logN − log S (e.g.,
broken power-laws)

I Investigate the data-prior inferential limit
(e.g., for which S∗min does the information come primarily from
the model and not the data)



Missing Data Overview

There are many potential causes of missing data in astronomical
data:

I Background contamination (e.g., total=source+background)

I Low-count sources (below detection threshold)

I Detector schedules (source not within detector range)

I Foreground contamination (objects between the source and
detector)

I etc.

Some are more problematic than others. . .



Missing Data Mechanisms

In the nicest possible case, if the particular data that is missing
does not depend on any unobserved values then we can essentially
ignore the missing data.

In this context, whether a source is observed is a function of its
source count (intensity) – which is unobserved for unobserved
sources. This missing data mechanism is non-ignorable, and needs
to be carefully accounted for in the analysis.



The Model

N ∼ NegBinom (α, β) ,

Si |Smin, θ
iid∼ Pareto (θ,Smin) , i = 1, . . . ,N,

θ ∼ Gamma(a, b),

Y src
i |Si , Li ,Ei

iid∼ Pois (λ(Si , Li ,Ei )) ,

Y bkg
i |Li ,Ei

iid∼ Pois (k(Li ,Ei )) ,

Ii ∼ Bernoulli (g (Si , Li ,Ei )) .



The Model

It turns out that in many contexts there is strong theory that
expects the logN − log S to obey a Power law:

N(> S) =
N∑
i=1

I{Si>S} ≈ αS−θ, S > Smin

Taking the logarithm gives the linear log(N)− log(S) relationship.

The power-law relationship defines the marginal survival function
of the population, and the marginal distribution of flux can be seen
to be a Pareto distribution:

Si |Smin, θ
iid∼ Pareto (θ,Smin) , i = 1, . . . ,N.

The analyst must specify Smin, a threshold above which we seek to
estimate θ.



The Model cont. . .

The total number of sources (unobserved and observed), denoted
by N, is modeled as:

N ∼ NegBinom (α, β) ,

We observe photon counts contaminated with background noise
and other detector effects, Y tot

i = Y src
i + Y bkg

i ,

Y src
i |Si , Li ,Ei

iid∼ Pois (λ(Si , Li ,Ei )) , Y bkg
i |Li ,Ei

iid∼ Pois (k(Li ,Ei )) .

The functions λ and k represent the intensity of source and
background, respectively, for a given flux Si , location Li and
effective exposure time Ei .



The Model cont. . .

The probability of a source being detected, g (Si , Li ,Ei ), is
determined by the detector sensitivity, background and detection
method.

The marginal detection probability as a function of θ is defined as:

π(θ) =

∫
g(Si , Li ,Ei ) · p(Si |θ) · p(Li ,Ei ) dSi dEi dLi .

The prior on θ is assumed to be: θ ∼ Gamma(a, b).



The Model cont. . .

The posterior distribution, marginalizing over the unobserved
fluxes, can be shown to be:

p
(
N, θ, SobsY

src
obs |n,Y tot

obs

)
∝
∫

p
(
N, θ, Sobs ,Smis ,Y

src
obs ,Y

src
mis ,Y

tot
mis |n,Y tot

obs

)
dY src

mis dY tot
mis dSmis

∝ p (N) · p (θ) · p (n|N, θ) · p (Sobs |n, θ)

· p
(
Y tot
obs |n, Sobs

)
· p
(
Y src
obs |n,Y tot

obs ,Sobs
)
.
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Computational Details

The Gibbs sampler consists of four steps:[
Y src
obs |n,Y tot

obs ,Sobs
]
,
[
Sobs |n,Y tot

obs ,Y
src
obs , θ

]
, [θ|n,N,Sobs ] , [N|n, θ] .

I Sample the observed photon counts:

Y src
obs,i |n,Y tot

obs,i ,Sobs,i ∼ Binom

(
Y tot
obs,i ,

λ(Sobs,i , Lobs,i ,Eobs,i )

λ(Sobs,i , Lobs,i ,Eobs,i ) + k

)
,

for i = 1, . . . , n.

I Sample the fluxes Sobs,i , i = 1, . . . , n (MH using a t−proposal).

I Sample the power-law slope θ (MH using a t−proposal).

I Compute the posterior distribution for the total number of sources,
N, using numerical integration:

p(N|n, θ) ∝ Γ(N + α)

Γ(N − n + 1)

(
1− π(θ)

β + 1

)N

I{N ≥ n}

Note: The (prior) marginal detection probability π(θ) is
pre-computed via the numerical integration.



Computational Notes

Some important things to note:

I Computation is fast (secs), and insensitive to the number of
missing sources

I The fluxes of the missing sources are never imputed (only the
number of missing sources)

I Most steps are not in closed form ⇒ changing (some)
assumptions has little computation impact

I Broken power law (or other forms) can be implemented by
changing only one of the steps

I Fluxes of missing sources can (optionally) be imputed to
produce posterior draws of a ‘corrected’ logN − log S



RED = Missing sources, BLACK = Observed sources.



Future Work

We currently do not include:

1. False sources (allowing that ‘observed’ sources might actually
be background/artificial)

2. Spatially varying detection probabilities (straightforward,
needs implementing)



Simulated Example

Assume parameter setting:

I N ∼ NegBinom(α, β), where α = 200 = shape, β = 2 = scale

I θ ∼ Gamma(a, b), where a = 20 = shape, b = 1/20 = scale

I Si |θ ∼ Pareto(θ,Smin), where Smin = 10−13

I Y src
i |Si , Li ,Ei ∼ Pois(λ(Si , Li ,Ei ))

I Y bkg
i |Si , Li ,Ei ∼ Pois(k(Li ,Ei ))

I λ = Si ·Ei
γ , where effective area Ei ∈ (1, 000, 100, 000), and the

energy per photon γ = 1.6× 10−9

I ki = z · Ei , where the rate of background photon count
intensity per million seconds z = 0.0005

I niter = 21, 000, Burnin = 1000



Simulated Example cont. . .

Detection probability:

I g(λ, k) = 1.0− a0 · (λ+ k)a1 · ea2·(λ+k), where
a0 = 11.12, a1 = −0.83, a2 = −0.43

Marginal detection probability:



Empirical results of MCMC sampler

The actual coverage of nominal percentiles for all parameters for
simulated data, for M = 200 validation datasets:

Coverage Percentile 50% 80% 90% 95% 98% 99% 99.9%
N 0.55 0.83 0.90 0.96 0.98 0.99 1.00
θ 0.50 0.82 0.92 0.97 0.99 0.99 1.00

all Sobs 0.51 0.81 0.90 0.95 0.98 0.99 1.00

Mean squared error of different estimators for N and θ for simulated data.

MSE N θ
Level of Effective Area Median Mean Median Mean

Low 215.96 291.82 0.05439 0.07481
Medium 121.26 168.91 0.05558 0.07407

High 68.23 95.36 0.04578 0.05987



MCMC Draws



Posterior Correlations

Posterior estimates for the power-law slope and the total number of

sources.



MCMC Draws



Simulated logN − log S

Uncertainties in source fluxes and a display of the power-law relationship.

Posterior draws (gray), truth (blue).



The Data

Src_ID Count Src_area Bkg Off_axis Eff_area

2 270 1720 3.16 4.98 734813.1074

3 117 96 0.19 5.72 670916.3154

7 33 396 0.61 6.17 670916.3154

18 7 128 0.22 6.34 319483.9597

19 12 604 0.96 4.51 670916.3154



Posteriors of parameters N and θ

Zezas et al. (2003) estimated a power-law slope of θ̂ = 0.45. The

posterior median from our analysis is θ = 0.38, with the 95% posterior

interval consistent with competing estimators.



Note: This a posterior plot for the observed sources only
(the ‘corrected’ plot would be more useful. . . )

Evidence of a possible break in the power-law in the observed logN − log S .

Given the possible non-linearity of the log(N)− log(S), more work is needed to

allow for a broken power-law or more general parametric forms.
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