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Outline
• Type Ia SN and Cosmology

• Statistical Inference with SN Ia Light curves

• Hierarchical Framework for Structured Probability 
Models for Observed Data

• Describing Populations & Individuals, Multiple 
Random Effects, Covariance Structure

• Statistical Computation with Hierarchical Models 

• BayeSN (MCMC)

• Application & Results:  Hierarchical Model for Nearby 
CfA NIR (PAIRITEL) and Optical (CfA3) SN Ia light 
curves
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Standard Candle 
Principle

1. Know or Estimate Luminosity L of a Class 
of Astronomical Objects

2. Measure the apparent brightness or flux F

3. Derive the distance D to Object using 
Inverse Square Law:  F = L / (4π D2)

4. Optical Astronomer’s units: m = M +μ
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Type Ia Supernovae are
Almost Standard Candles

• Progenitor:  C/O White Dwarf 
Star accreting mass leads to 
instability

• Thermonuclear Explosion: 
Deflagration/Detonation

• Nickel to Cobalt to Iron Decay + 
radiative transfer powers the light 
curve

• SNe Ia progenitors have nearly 
same mass, therefore energy

Credit: FLASH Center
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Type Ia Supernova Apparent
Light Curve
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Supernova Cosmology:
Constraining 
Cosmological 
Parameters

using 
Luminosity Distance 

vs.  Redshift

AAS 215  
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• Nearby Hubble law is linear
• High-z depends on cosmology
• Host Galaxy Dust is a Major 
Confounding Factor

Credit: Gautham Narayan
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Cosmological Energy Content

Dark Energy Equation of state P = wρ
Is w + 1 = 0?  Cosmological Constant
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Reading the Wattage of a SN Ia:
Empirical Correlations

• Width-Luminosity Relation: an 
observed correlation (Phillips)

• Observe optical SN Ia Light Curve 
Shape to estimate the peak 
luminosity of SN Ia: ~0.2 mag 

• Color-Luminosity Relation

• Methods: 

•  

• MLCS,  Abs LC vs Dust

• SALT,  App. Color single factor

Intrinsically Brighter SN Ia 
have broader light curves 

and are slow decliners

9
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Statistical inference with SN Ia

• SN Ia cosmology inference based on empirical relations

• Statistical models for SN Ia are learned from the data

• Several Sources of Randomness & Uncertainty

1. Photometric errors 

2. “Intrinsic Variation” = Population Distribution of SN Ia

3. Random Peculiar Velocities in Hubble Flow

4. Host Galaxy Dust:  extinction and reddening.

• Apparent Distributions are convolutions of these effects

• How to incorporate this all into a coherent statistical 
model? (How to de-convolve?)
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Advantages of Hierarchical Models
• Incorporate multiple sources of randomness & uncertainty 

• Express structured probability models adapted to data

• Hierarchically Model (Physical) Populations and Individuals 
simultaneously: e.g. SN Ia and Dust

• Intrinsic Covariance: Color/Luminosity/Light Curve Shape

• Dust Reddening/Extinction

• Full (non-gaussian) probability distribution = Global, coherent 
quantification of uncertainties

• Completely Explore & Marginalize Posterior trade-offs/degeneracies/
joint distributions

• Deals with incomplete/missing data problems

• Make best inference/estimate for the observed data

• Modularity
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Directed Acyclic Graph for SN Ia Inference
with Hierarchical Modeling
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Representing SN Ia Light curves:
Differential Decline rates

• Gaussian Process over 
Decline Rates at 
different Wavelengths / 
Phases and Peak 
Luminosities

• Goal: Infer the Intrinsic 
Covariance Structure of 
SN Ia light curves over 
multiple wavelengths and 
phases

• Use to make “best” 
distance predictions

!10 0 10 20 30 40 50 60

!28

!26

!24

!22

!20

!18

!16

!14 B + 2

V

R ! 2

I ! 4

J ! 7

H ! 9

Obs. Days Since B
max

A
b
s
o
lu

te
 M

a
g
n
it
u
d
e

13Tuesday, January 25, 2011



Positive Dust only 
Dims and Reddens
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Directed Acyclic Graph for SN Ia Inference:
Distance Prediction
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Statistical Computation with Hierarchical 
SN Ia Models:  The BayeSN Algorithm

• Strategy: Generate a 
Markov Chain to sample 
global parameter space 
(populations & all 
individuals)  => seek a 
global solution

• Chain explores/samples 
trade-offs/degeneracies 
in global parameter 
space

Multiple chains globally 
converge from random 
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BayeSN

• Metropolis-Hastings within Gibbs Sampling 
Structure to exploit conditional structure

• Requires (almost) no tuning of jump sizes

• Generalized Conditional Sampling to speed 
up exploring trade-off between dust and 
distance: (Av, μ) → (Av, μ) + γ(1, -x)

• Run several (4-8) parallel chains and 
compute Gelman-Rubin ratio to diagnose 
convergence
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BayeSN in Graphs

AppLC 

#N
AbsLC 

#N

Av, Rv 

#N

Dust

Pop

AbsLC

Pop

µN

D1

z1

zN

DN

AbsLC 

#1

AppLC 

#1

Av, Rv 

#1

µ1

AppLC 

#N
AbsLC 

#N

Av, Rv 

#N

Dust

Pop

AbsLC

Pop

µN

D1

z1

zN

DN

AbsLC 

#1

AppLC 

#1

Av, Rv 

#1

µ1

18

18Tuesday, January 25, 2011



BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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Practical Application of Hierarchical Model: NIR SN Ia
Why are SN Ia in NIR interesting?

• Host Galaxy Dust presents a major 
systematic uncertainty in supernova 
cosmology inference

• Dust extinction has significantly 
reduced effect in NIR bands

• NIR SN Ia are good standard candles 
(Elias et al. 1985, Meikle 2000, 
Krisciunas et al. 2004+,  Wood-Vasey 
et al. 2008, Mandel et al. 2009).

• Observe in NIR!: PAIRITEL /CfA
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Nearby SN Ia in the NIR:  PAIRITEL

Credit: Michael Wood-Vasey,  Andrew Friedman
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Observed in NIR
J (λ=1.2 μm)
H (λ=1.6 μm)
Ks (λ=2.2 μm)
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Figure 1: 142 CfA Light curves from 2000-2004 (UBV RI) and 2004-2007 (UBV ri)

CfA3:
183 Optical SN Ia 

Light Curves
(Hicken et al. 2009)
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Optical+NIR Hierarchical Model Inference
PTEL+CfA3 Light-curves Marginal Posterior of Dust
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Optical+NIR Hierarchical Model Inference
PTEL+CfA3 Light-curves Marginal Posterior of Dust
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SN NIR Population Inference:  Peak 
Absolute Magnitudes
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Optical and Near Infrared
Luminosity vs. Decline Rate
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Population Analysis

Intrinsic 
Correlation 

Map for 
Abs Magnitudes 

and Decline 
Rates

H-band provides nearly 
uncorrelated information on 

luminosity distance
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Host Galaxy Dust
• Previous Analyses assumed all SN host 

galaxy dust has same Rv

• Estimated Rv = 1-1.7 (Astier06, Conley07) 
if attribute all color variation to dust

• But Rayleigh Scattering: Rv = 1.2

• But Hicken09 found Rv = 1.7 with MLCS

• For individual high Av SN, Rv < 2

• But Rv may have a distribution, or depend 
on Av (e.g. grain growth)
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(Av, Rv) for Host Galaxy Dust
Assuming Linear Correlation

• Apparent Correlation of High Av / Low Rv
• Low Av Rv ≈ 2.5 : High Av has Rv ≈ 1.7
• Circumstellar dust at High Av ?     
• Multiple Scattering (Goobar 2008)
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Bootstrap Cross-validation
Low-z SN 

data

Training Set
{Ds, zs}

Bootstrap

Test Set
{Dt}

Test Set
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SN Ia 

Model Predict
{µt}

Hubble
{µ(zt)}

Compare

• Test Sensitivity 
of Statistical 
Model to Finite 
Sample

• Avoid using data 
twice for training 
and distance 
prediction

• Prediction/
Generalization 
Error
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Nearby Optical+NIR Hubble Diagram

(Opt Only) rms Distance Prediction Error = 0.15 mag
(Opt+NIR) rms Distance Prediction Error = 0.11 mag

Aggregate Precision ~ (0.15/0.11)2  ≈ 2

10
4

31

32

33

34

35

36

37

38

µ
(p

re
d

)

h = 0.72

127 BVRI(JH) SN Ia (CfA3+PTEL+CSP+lit)

 

 

3000 5000 7000 10000 15000
−1

−0.5

0

0.5

1

Velocity [CMB+Virgo] (km/s)

D
iff

e
re

n
ce

CV Pred Err (All, cz > 3000 km/s) = 0.14 mag (0.134 ± 0.010 intr.)

CV Pred Err (Opt+NIR & cz > 3000 km/s) = 0.11 mag (0.113 ± 0.016 intr.)
CV Pred Err (Opt only & cz > 3000 km/s) = 0.15 mag (0.142 ± 0.013 intr.)

Optical
Optical+NIR

30Tuesday, January 25, 2011



33 33.2 33.4 33.6 33.8 34 34.2 34.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SN2005el

Distance Modulus µ

P
D

F

 

 

P(µ | BV)

P(µ | BVRI)

P(µ | BVRIJH)

E(µ |z) ± (300 km/s)

0.2

0.4

0.6

BV

SN2005el

0.2

0.4

0.6
E

x
ti
n

c
ti
o

n
 A

V

BVRI

33.3 33.4 33.5 33.6 33.7 33.8 33.9 34 34.1 34.2

0.2

0.4

0.6

Distance Modulus µ

BVRIJH

30.5 31 31.5 32 32.5
0

0.5

1

1.5

2

2.5

3

3.5

4

SN2002bo

Distance Modulus µ

P
D

F

 

 

P(µ | BV)

P(µ | BVRI)

P(µ | BVRIJH)

E(µ |z) ± (300 km/s)

0.4

0.6

0.8

1

1.2

1.4

BV

SN2002bo

0.4

0.6

0.8

1

1.2

1.4

E
x
ti
n
c
ti
o
n
 A

V

BVRI

31.2 31.4 31.6 31.8 32 32.2 32.4

0.4

0.6

0.8

1

1.2

1.4

Distance Modulus µ

BVRIJH

31Tuesday, January 25, 2011



Improved 
Distance Precision 

for Individual 
Opt+NIR LCs

• Precision = 1/Variance

• On avg, 2.2x better 
BVRI vs BV

• 3.6x better  BVRIJH vs 
BV

• 60% better BVRIJH vs 
BVRI

34 34.5 35 35.5
0

0.5

1

1.5

2

2.5

3

3.5

4

SN2006cp

Distance Modulus µ

PD
F

 

 
P(µ | BV)
P(µ | BVRI)
P(µ | BVRIJH)
E(µ |z) ± (300 km/s)

0.2
0.4
0.6
0.8

BV SN2006cp

0.2
0.4
0.6
0.8

Ex
tin

ct
io

n 
A V

BVRI

34.4 34.6 34.8 35 35.2 35.4

0.2
0.4
0.6
0.8

Distance Modulus µ

BVRIJH

32Tuesday, January 25, 2011



Summary
• Hierarchical models are useful statistical methods for 

discerning multiple random effects

• BayeSN: an efficient MCMC Sampler for computing 
inferences with SN hierarchical models

• Apparent differential trend of Rv vs Av (local dust at 
high Av?)

• NIR Light Curves have low correlation with optical, 
provide independent information on distance

• SN Ia Optical with NIR: Better dust and distance 
estimates than with Optical alone
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Future Work & Problems 

• Application to Larger Sample of Opt+NIR SN Ia

• Application to high-z SN Ia & Cosmological Inference

• Accounting for Selection Effects

• Using Auxiliary Information 

• Host Galaxy Information (e.g. P. Kelly, et al. 2010)

• Spectral? Blondin, Mandel, & Kirshner 2011

• Foley & Kasen 2011 (Color / Ejecta Velocity)
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Spectral Info correlate with SN Ia 
luminosity and light curves?

Blondin, Mandel, Kirshner 2011

Multiple Comparisons Problem
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Correlating Spectral Ratios with Luminosity

A&A 526, A81 (2011)

WRMS residuals [mag] Absolute Pearson correlation

R

(x1,R)

(c,Rc)

(x1, c,Rc)

Fig. 7. Results from 10-fold cross-validation on maximum-light spectra. From top to bottom: R only; (x1,R); (c,Rc); (x1, c,Rc). The left column
is color-coded according to the weighted rms of prediction Hubble residuals, while the right column corresponds to the absolute Pearson cross-
correlation coefficient of the correction terms with uncorrected Hubble residuals.

results in a Hubble diagram with lower scatter when compared
to the standard (x1, c) model. Using a flux ratio alone, Bailey
et al. (2009) find R(6420/4430) as their most highly-ranked
ratio, while we find R(6630/4400) (see Table 2). The wave-
length bins are almost identical, and in any caseR(6420/4430) is

amongst our top 5 ratios. For this ratio we find γ = −3.40±0.10,
in agreement with γ = −3.5± 0.2 found by Bailey et al. (2009)3.
3 In fact Bailey et al. (2009) find γ = +3.5 ± 0.2, but this is due to a
typo in their equation for the distance modulus: γR really appears as a
negative term in their paper (S. Bailey 2010, priv. comm.).
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Fig. 7. Results from 10-fold cross-validation on maximum-light spectra. From top to bottom: R only; (x1,R); (c,Rc); (x1, c,Rc). The left column
is color-coded according to the weighted rms of prediction Hubble residuals, while the right column corresponds to the absolute Pearson cross-
correlation coefficient of the correction terms with uncorrected Hubble residuals.

results in a Hubble diagram with lower scatter when compared
to the standard (x1, c) model. Using a flux ratio alone, Bailey
et al. (2009) find R(6420/4430) as their most highly-ranked
ratio, while we find R(6630/4400) (see Table 2). The wave-
length bins are almost identical, and in any caseR(6420/4430) is

amongst our top 5 ratios. For this ratio we find γ = −3.40±0.10,
in agreement with γ = −3.5± 0.2 found by Bailey et al. (2009)3.
3 In fact Bailey et al. (2009) find γ = +3.5 ± 0.2, but this is due to a
typo in their equation for the distance modulus: γR really appears as a
negative term in their paper (S. Bailey 2010, priv. comm.).
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Open Problems
• Photometric Classification of SN Light Curves

• Classification of SN by Spectra
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