Type Ia SN Light Curve Inference: Hierarchical Models for Nearby SN in the Rest-Frame Near Infrared and Optical

Kaisey S. Mandel CfA Supernova Group Astrostatistics Seminar 25 January 2011

Related Papers

Mandel, K., G. Narayan, R.P. Kirshner.

Type Ia Supernova Light Curve Inference:

Hierarchical Models in the Optical and Near Infrared.

2011 submitted to ApJ, arXiv:1011.5910

Mandel, K., W.M. Wood-Vasey, A.S. Friedman, R.P. Kirshner. Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared. 2009, ApJ, 704, 629-651

Blondin, S., K. Mandel, R.P. Kirshner. Do Spectra improve distance measurements of SN Ia? 2011, A&A 526, A81

Wood-Vasey, et al. Type Ia Supernovae are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL.

2008, ApJ, 689, 377-390

Outline

- Type Ia SN and Cosmology
- Statistical Inference with SN la Light curves
 - Hierarchical Framework for Structured Probability Models for Observed Data
 - Describing Populations & Individuals, Multiple Random Effects, Covariance Structure
- Statistical Computation with Hierarchical Models
 - BayeSN (MCMC)
- Application & Results: Hierarchical Model for Nearby CfA NIR (PAIRITEL) and Optical (CfA3) SN la light curves

Standard Candle Principle

- I. Know or Estimate Luminosity L of a Class of Astronomical Objects
- 2. Measure the apparent brightness or flux F
- 3. Derive the distance D to Object using Inverse Square Law: $F = L / (4\pi D^2)$
- 4. Optical Astronomer's units: $m = M + \mu$

Type la Supernovae are Almost Standard Candles

- Progenitor: C/O White Dwarf Star accreting mass leads to instability
- Thermonuclear Explosion:
 Deflagration/Detonation
- Nickel to Cobalt to Iron Decay + radiative transfer powers the light curve
- SNe la progenitors have nearly same mass, therefore energy

Credit: FLASH Center

Type la Supernova Apparent Light Curve

Credit: Gautham Narayan

- Nearby Hubble law is linear
- High-z depends on cosmology
- Host Galaxy Dust is a Major Confounding Factor

Supernova Cosmology:
Constraining
Cosmological
Parameters
using
Luminosity Distance
vs. Redshift

Cosmological Energy Content

Dark Energy Equation of state $P = w\rho$

Is w + I = 0? Cosmological Constant

Reading the Wattage of a SN Ia: Empirical Correlations

- Width-Luminosity Relation: an observed correlation (Phillips)
- Observe optical SN Ia Light Curve Shape to estimate the peak Iuminosity of SN Ia: ~0.2 mag
- Color-Luminosity Relation
- Methods:
 - $\bullet \quad \Delta m_{15}(B)$
 - MLCS, Abs LC vs Dust
 - SALT, App. Color single factor

Intrinsically Brighter SN Ia have broader light curves and are slow decliners

Statistical inference with SN la

- SN la cosmology inference based on empirical relations
- Statistical models for SN la are learned from the data
- Several Sources of Randomness & Uncertainty
 - I. Photometric errors
 - 2. "Intrinsic Variation" = Population Distribution of SN la
 - 3. Random Peculiar Velocities in Hubble Flow
 - 4. Host Galaxy Dust: extinction and reddening.
- Apparent Distributions are convolutions of these effects
- How to incorporate this all into a coherent statistical model? (How to de-convolve?)

Advantages of Hierarchical Models

- Incorporate multiple sources of randomness & uncertainty
- Express structured probability models adapted to data
- Hierarchically Model (Physical) Populations and Individuals simultaneously: e.g. SN Ia and Dust
 - Intrinsic Covariance: Color/Luminosity/Light Curve Shape
 - Dust Reddening/Extinction
- Full (non-gaussian) probability distribution = Global, coherent quantification of uncertainties
- Completely Explore & Marginalize Posterior trade-offs/degeneracies/ joint distributions
- Deals with incomplete/missing data problems
 - Make best inference/estimate for the observed data

Modularity

Directed Acyclic Graph for SN la Inference with Hierarchical Modeling

- Intrinsic Randomness
- Dust Extinction & Reddening
- Peculiar Velocities
- Measurement Error

Generative Model

Global Joint
Posterior
Probability
Density
Conditional on all
SN Data

"Training" - Learn about Populations

Representing SN la Light curves: Differential Decline rates

- Gaussian Process over Decline Rates at different Wavelengths / Phases and Peak Luminosities
- Goal: Infer the Intrinsic Covariance Structure of SN Ia light curves over multiple wavelengths and phases
- Use to make "best" distance predictions

Positive Dust only Dims and Reddens

Directed Acyclic Graph for SN la Inference: Distance Prediction

15

Statistical Computation with Hierarchical SN Ia Models: The BayeSN Algorithm

- Strategy: Generate a
 Markov Chain to sample
 global parameter space
 (populations & all
 individuals) => seek a
 global solution
- Chain explores/samples trade-offs/degeneracies in global parameter space

Multiple chains globally converge from random initial values

BayeSN

- Metropolis-Hastings within Gibbs Sampling Structure to exploit conditional structure
- Requires (almost) no tuning of jump sizes
- Generalized Conditional Sampling to speed up exploring trade-off between dust and distance: (Av, μ) \rightarrow (Av, μ) + $\gamma(1, -x)$
- Run several (4-8) parallel chains and compute Gelman-Rubin ratio to diagnose convergence

Practical Application of Hierarchical Model: NIR SN Ia Why are SN Ia in NIR interesting?

- Host Galaxy Dust presents a major systematic uncertainty in supernova cosmology inference
- Dust extinction has significantly reduced effect in NIR bands
- NIR SN la are good standard candles (Elias et al. 1985, Meikle 2000, Krisciunas et al. 2004+, Wood-Vasey et al. 2008, Mandel et al. 2009).
- Observe in NIR!: PAIRITEL/CfA

Nearby SN Ia in the NIR: PAIRITEL

Observed in NIR J ($\lambda=1.2~\mu m$) H ($\lambda=1.6~\mu m$) Ks ($\lambda=2.2~\mu m$)

Credit: Michael Wood-Vasey, Andrew Friedman

CfA3: 183 Optical SN Ia Light Curves (Hicken et al. 2009)

Figure 1: 142 CfA Light curves from 2000-2004 (*UBVRI*) and 2004-2007 (*UBVri*)

Optical+NIR Hierarchical Model Inference PTEL+CfA3 Light-curves Marginal Posterior of Dust

Optical+NIR Hierarchical Model Inference PTEL+CfA3 Light-curves Marginal Posterior of Dust

SN NIR Population Inference: Peak Absolute Magnitudes

Deviation of Peak Magnitude from Mean

0.5

0.0

-0.5

Marginal Distributions of SN Ia NIR Absolute Magnitude Variances

Wavelength Band

Fig. 15.—Dispersion in peak magnitude (measured at the first light curve maximum) as a function of wavelength band for the models of Fig. 10 with 56 Ni masses between 0.4 and 0.9 M_{\odot} . [See the electronic edition of the Journal for a

Mandel et al. 2009 Kasen 2006

Optical and Near Infrared Luminosity vs. Decline Rate

Population Analysis

Intrinsic
Correlation
Map for
Abs Magnitudes
and Decline
Rates

H-band provides nearly uncorrelated information on luminosity distance

Host Galaxy Dust

- Previous Analyses assumed all SN host galaxy dust has same Rv
- Estimated Rv = I-I.7 (Astier06, Conley07)
 if attribute all color variation to dust
- But Rayleigh Scattering: Rv = 1.2
- But Hicken09 found Rv = 1.7 with MLCS
- For individual high Av SN, Rv < 2
- But Rv may have a distribution, or depend on Av (e.g. grain growth)

(Av, Rv) for Host Galaxy Dust Assuming Linear Correlation

- Apparent Correlation of High Av / Low Rv
- Low Av Rv ≈ 2.5 : High Av has Rv ≈ 1.7
- Circumstellar dust at High Av ?
- Multiple Scattering (Goobar 2008)

Bootstrap Cross-validation

- Test Sensitivity
 of Statistical
 Model to Finite
 Sample
- Avoid using data twice for training and distance prediction
- Prediction/GeneralizationError

Nearby Optical+NIR Hubble Diagram

(Opt Only) rms Distance Prediction Error = 0.15 mag (Opt+NIR) rms Distance Prediction Error = 0.11 mag Aggregate Precision ~ $(0.15/0.11)^2 \approx 2$

Improved Distance Precision for Individual Opt+NIR LCs

- Precision = I/Variance
- On avg, 2.2x better
 BVRI vs BV
- 3.6x better BVRIJH vs
 BV
- 60% better BVRIJH vs BVRI

Summary

- Hierarchical models are useful statistical methods for discerning multiple random effects
- BayeSN: an efficient MCMC Sampler for computing inferences with SN hierarchical models
- Apparent differential trend of Rv vs Av (local dust at high Av?)
- NIR Light Curves have low correlation with optical, provide independent information on distance
- SN Ia Optical with NIR: Better dust and distance estimates than with Optical alone

Future Work & Problems

- Application to Larger Sample of Opt+NIR SN la
- Application to high-z SN la & Cosmological Inference
- Accounting for Selection Effects
- Using Auxiliary Information
 - Host Galaxy Information (e.g. P. Kelly, et al. 2010)
 - Spectral? Blondin, Mandel, & Kirshner 2011
 - Foley & Kasen 2011 (Color / Ejecta Velocity)

Spectral Info correlate with SN la luminosity and light curves?

Blondin, Mandel, Kirshner 2011 Multiple Comparisons Problem

Tuesday, January 25, 2011

0.06

Correlating Spectral Ratios with Luminosity Blondin, Mandel, Kirshner 2011

Multiple Comparisons K-fold Cross-Validation

Open Problems

- Photometric Classification of SN Light Curves
- Classification of SN by Spectra

