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Statistics

The Universe at Your Fingertips: Bayesian Modeling and Computation in Problems of

Observational Cosmology

Abstract

In cosmology, the study of source populations is often conducted using the cumulative distri-

bution of the number of sources detected at a given sensitivity. The resulting "log(N>S) – logS"

distribution can be used to compare and evaluate theoretical models for source populations and

their evolution. In practice, however, inferring properties of the source populations from cosmo-

logical observational data is complicated by the presence of detector-induced uncertainty and bias.

This includes background contamination, uncertainty on both intensity and location of the ob-

served sources, and, most challenging, the issue of non-detections or unobserved sources. Since the

probability of a non-detection is a function of the unobserved flux, the missing data mechanism is

non-ignorable. We present a Bayesian approach for inferring model parameters and the corrected

log(N>S) – logS distribution for source populations. Our method extends existing work by allowing

for joint estimation of both properties of the non-ignorable missing data process and the unknown

number of unobserved sources. By correcting for the non-ignorable missing data mechanism and

other detection phenomena, we are able to obtain corrected estimates of the flux distribution of

partially observed source populations. We present a procedure for examining the goodness-of-fit

of our hierarchical Bayesian model. Finally, we propose a novel approach for model selection in

Bayesian settings.
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Preface

«The purpose of computing is insight, not
numbers.»

Richard Hamming
— American mathematician

0.1. Astronomy and Statistics

0.1.1. Cosmology. The universe has fascinated human being for thousands of years. From the

early writings of Copernicus about stars movement to every child’s gaze into the dark starry night,

we questioned, what is out there (in the Universe)? how does it work? and how did it come to be?

To learn about the world beyond our planet Earth, we aided in advancement of technology, built

tools for observation and data analysis, and postulated many theories about Universe. Through

observation of the Cosmic Microwave Background (CMB), we were able to ascertain the Big Bang

theory. Through observation of stars within our galaxy and galaxies beyond our possible reach,

we developed theory of relativity and theory of quarks. The tendency of our Sun, the movement

of planets, the existence of the dark matter are among many things that may or may not be

directly observed. The study of celestial objects in and properties of our Universe became coined

as cosmology.

The challenge in the field of cosmology is the space. We cannot travel across the Universe to

measure it. Not only do we not have the technological development of space travel, we are physically

prevented from directly touching and measuring our Sun - it is too hot and too large. Instead, we are

limited to a view from Earth out to space. We construct better tools for observation and observe

various areas of the sky or strongly resolved images of the same areas of the sky. The study of

one Universe, one view of the sky, becomes a special science, that does not allow for replication

of experiments. Thus, from the statistical point of view, ascertainment of good statistics is very

difficult.
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Of course, the sky observation does not come without complications. The measurements of light

are generally biased. First, there is a strong selection bias, sometimes called the Malmquist bias

or truncation bias, due to the brightness and proximity of celestial objects (Malmquist, 1920). It

forces underestimation of the number of sources observed because it is more difficult to detect dim

objects than bright ones, and it is more difficult to detect objects at large distances than at small

distances away from the observer. Equivalently, the brighter sources are visible at greater distances.

Thus, underrepresented samples are typically the outcome. Second, there is a bias that comes from

the statistical fluctuations in measurement, called by some as the Eddington bias (Lynden-Bell,

1992). The same source may be measured to have various luminosities due to measurement error.

Some sources will appear as other luminosity sources, which may cause misclassification of source

objects. A worse issue is the fluctuation near the detection limit of the instrument which gives rise

to missing data. Hence, every cosmological study must address the observational biases correctly,

otherwise incorrect inferences may be drawn.

Complications with quality of observations are not limited to bias, but come from the mea-

surement tools, also known as the limitations of the detector. For Earth based telescopes, weather,

humidity and atmospheric particles prevent good observations and produce the blurring effect known

as seeing. Imperfections in camera lens, charge-coupled devices (CCDs), or bandpass color filters

produce greater systematic distortions in observations. These are calibrated for during every ob-

servational session. Additional distortions change light quality and its location. Madau reddening

describes the occurrence that light from sources appears to be more red that the actual luminosity

due to galactic dust (Madau et al., 1996). Gravitational lensing describes the occurrence when

the sources appear to be stretched or have multiple reflections of themselves on an image due to

strong gravitational pull of nearby invisible objects such as black holes or, even, dark matter. New

algorithms for correct object detection and identification must be sought that incorporate these

issues.

Resolution of aforementioned problems is a crucial component of cosmological inference in order

to obtain valid estimates of uncertainty and biases associated with the observations and inferred

quantities. However, it is a common practice in many cosmological studies that an existing method

is used to estimate some unknown quantity; this estimate is used in another method for estimating

a different quantity; and the plug-in layers of estimates continue. Substantial attention is devoted

to calculation of the error estimates based on the final estimate; although, this is usually performed
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under the assumptions that all intermediate plug-in estimates are known precisely and the errors

in measurement are uncorrelated and random. When the true uncertainty is not handled properly

across the layers of estimation, the resulting solution can be biased or incorrect. It is not surprising

that astronomers turn to the statistical practice, where these issues are dealt with in a unified

framework.

Indeed, majority of the current questions in astronomy are of statistical nature. Some example

are as follows. How to model the points in an image representing the photon measurements of stars?

How to classify the observed group of galaxies? How to account for measurement noise and stochas-

tic signal of very dim sources? How to fit measurements of light spectra to non-linear astrophysical

models? How to quantify uncertainty in the estimated parameters? Solutions to these problems

make the field of astronomy very exciting, bringing together many disciplines including physics,

mathematics, statistics, and computer science. In the review book, “Statistical Challenges in As-

tronomy”, Eric Feigelson writes: “Powerful synergies thus emerge when astronomers and statisticians

join in examining astrostatistical problems and approaches” (Feigelson and Babu, 2003).

One particular class of statistical methodology emerges to be useful in formulating problems in

astronomy: Bayesian inference. It carries the notion that probability describes uncertainty. The

aim of Bayesian approach is to update the existing scientific hypotheses (prior knowledge) with new

evidence (data). The outcome is then expressed in terms of the degree of belief (probability), which

allows for easy interpretation of the solution. In addition, with the help of computing, Bayesian

methods can tackle very complex problems with relative ease, where the classical frequentist methods

fail. Therefore, Bayesian approaches are naturally appealing to the astronomers.

0.1.2. Bayesian Statistics. Bayesian analysis is a statistical method for parameter estimation

and prediction via the posterior distribution, which combines the observed distribution or likelihood

with the prior distribution that summarizes the knowledge about the unknown parameters. The use

of Bayes theorem allows us to quantify the uncertainty of the parameter in the posterior distribution

made proportional to the product of the likelihood and prior distributions. The strength of the

concept is unlimited. It gives rise to probabilistically coherent methodology for high-dimensional

problems, small sample size problems, problems with incomplete observations, models with multiple

layers of hierarchy in the parameters, or any other area where regular frequentist approaches may

be difficult to apply, see, for example, Gelman et al. (2003).
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To solidify our notation, define observed data as yi|β
iid∼ p(β), i = 1, . . . , n, the likelihood

function based on data y = (y1, . . . , yn) as L(β) = p(y|β) =
∏n

i=1 fy(yi|β), and encompass the prior

information regarding the unknown parameter β into its probability density function π(β). The

Bayes theorem states that the posterior distribution of β given the data is achieved by:

p(β|y) = L(β)π(β)∫
L(β)π(β)dβ

∝ L(β)π(β)

The posterior distribution, instead of a point estimate, provides a measure of uncertainty. All infer-

ence about the parameter is derived from the posterior distribution. The distributional summaries

such as posterior mean (or median) can be used as parameter estimates; it is a good estimate in

the sense that it minimizes expected posterior loss under the squared error loss (or absolute value

error loss). Estimates of variance and modality are derived from posterior straightforwardly. The

posterior predictive distribution of a new observation, ỹ (conditionally independent of the data given

β), is determined by p(ỹ|y) =
∫
p(ỹ, β|y)dβ =

∫
p(ỹ|β)p(β|y)dβ.

A central philosophy is molded based the intent to quantify and propagate the uncertainty char-

acterized by probability. The unified intuitive framework, the ability to include prior information

with observations, instinctive interpretation, and the effective empirical evidence makes Bayesian

methods very attractive for physical data applications.

This dissertation presents additional research directions of Bayesian inference with use of com-

putational methods of Markov Chain Monte Carlo (MCMC) applied in the area of astrostatistics.

In the next section we describe important basic MCMC tools used for these purposes: the Gibbs

sampler and Metropolis-Hastings sampler. The following chapters describe Bayesian methodology

for missing data problems and spatial statistics problems for cosmological data.

0.2. Markov Chain Monte Carlo Methods

The field of Bayesian statistics bloomed with the development of Markov Chain Monte Carlo

(MCMC) methods and increasingly powerful computing stations. Early inference relied on mathe-

matical tractability of integrals and consisted of limited application that required analytic solutions.

Starting with 1990’s, however, major research directions generated multitudes of complex modeling

strategies and Bayesian statistical approaches to broad range of problems relying on effective sam-

pling algorithms of MCMC. For in-depth coverage of MCMC tools in statistics, we refer the reader

to Robert and Casella (2004) and Gilks et al. (1996).
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0.2.1. The Metropolis Algorithm. Metropolis Algorithm samples a sequence of random

walk draws from a probability distribution. Direct sampling methods for sampling standard dis-

tributions, such as normal, uniform, gamma, or Poisson, are readily available in many statistical

computer packages. The Metropolis algorithm becomes indispensable when the sampling is needed

from nonstandard distributions or those that are known up to proportionality constant. The Me-

tropolis algorithm is a rejection algorithm. It proceeds by sampling from a convenient candidate

density q(β∗|β(t−1)) of the parameter β∗, given the current state of the parameter, and decides

to accept this proposal following a probabilistic rule. Most common candidate proposal density is

a symmetric distribution q(β∗|β(t−1)) = N(β∗|β(t−1), v), where specification of the variance, v, is

tuned during the burn in stage of the MCMC sampling period to allow for better mixing properties

of the parameter (usually so that they acceptance rate is within 20% to 60%.). The algorithm is

describes as follows:

Algorithm 1. The Metropolis algorithm repeats these steps, t = 1, . . . , T :

Step 1: Draw β∗ from q(β|β(t−1))

Step 2: Compute the ratio α = h(β∗)/h(h(β(t−1)).

Step 3: If α ≥ 1, set β(t) = β∗;

if r < 1, set

β(t) =

 β∗ with probability r

β(t−1) with probability 1− r

The symmetric choice of the proposal density q is not always optimal. It is clearly evident if

the parameter has a compact support. In this situation the Metropolis algorithm will result in high

rate of rejections and waste computing time. The generalization is the Metropolis-Hasting (MH)

algorithm, which allows non-symmetric candidate densities. MH algorithm replaces the acceptance

ratio α in Step 2 of the Metropolis algorithm 1 with

α =
h(β∗)q(β(t−1)|β∗)

h(β(t−1))q(β∗|β(t−1))
.

Under mild regularity conditions, the draws βt converge in distribution to the draws from the true

posterior density p(β, y) as t → ∞ (Chib and Greenberg, 1995).

Many extensions and modifications to the Metropolis-Hastings algorithm have been proposed.

Their goal is to speed up HM sampler convergence and improve the sampling coverage of the
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parameter space. A very useful extension is called multiple-try Metropolis (MTM), which improves

the sampling trajectory by increasing the acceptance rate and the step size of the sampler (Liu

et al., 2000). In this algorithm, the next state of the MC chain is chosen from a set of samples at

random with specially designed probability. It has the effects of reducing computation time and

reducing autocorrelation within the chain. In the following chapters we use this approach in the

implementation of our MCMC methods.

0.2.2. The Gibbs Sampler. The Gibbs sampler is a technique to sample from multidimen-

sional posterior distribution assuming samples can be derived from each of full conditional distribu-

tions p(βj |βj ̸=i,y), j = 1, . . . , p. Under mild regularity conditions, the collection of full conditional

distributions completely determine the joint posterior distribution p(β|y) (Besag, 1974). This fea-

ture allows one to break up the high dimensional sampling problem into smaller manageable pieces

or “easy” to sample full-conditional distributions. The hierarchical structure of many Bayesian

problems naturally admits itself to this division. This feature also implies that one collects (albeit,

correlated) samples from the joint posterior. The algorithm is described as follows:

Algorithm 2. For set of starting values {β(0)
1 , . . . , β

(0)
p }, Gibbs Sampler repeats these steps,

t = 1, . . . , T :

Step 1: Draw β
(t)
1 from p(β1|β(t−1)

2 , β
(t−1)
3 , . . . , β

(t−1)
p , y)

Step 2: Draw β
(t)
2 from p(β2|β(t)

1 , β
(t−1)
3 , . . . , β

(t−1)
p , y)

...

Step 3: Draw β
(t)
k from p(βk|β

(t)
1 , β

(t)
2 , . . . , β

(t)
p−1, y)

Many extensions and modification to the Gibbs Sampler have been proposed, and some are very

useful in practice. For more complex MCMC problems, for which the full conditional distributions

are not in closed analytic form or for which the normalizing constant of the density in unknown,

we can use Metropolis-within-Gibbs sampling method. Here, instead of directly sampling from the

full conditional distribution p(βj |βj ̸=i,y), one may use Metropolis-Hasting algorithm to generate βj

draws. Another very useful extension is the Blocked Gibbs Sampler, where the full conditional

distributions are defined as joint conditionals in the event that some parameters can be naturally

grouped and sampled from together given all other parameters and the data. In the following

chapters we use these ideas in the implementation of our MCMC methods.
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0.3. Outline of Road Ahead

This thesis concerns the following astrostatistical problems. Chapter 1 proposes a hierarchical

Bayesian model for estimation of linear log(N) − log(S) relationship between the log of the flux

of sources and the log of the number of sources observed to that flux sensitivity. The challenge

of this problem is survey incompleteness, which non-ignorable from the statistical point of view.

The method attempts to correctly account for non-ignorable data and other uncertainty and biases

resulting from the cosmological survey and the detector. Chapter 2 extends the hierarchical Bayesian

model for estimation of piece-wise linear log(N) − log(S) relationship. A Bayesian adaptive fence

method for model selection in Bayesian settings is proposed.
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1

CHAPTER 1

Complete Bayesian Analysis of the log(N)− log(S) Problem

Modeled via a Single Pareto Population

«We consider it a good principle to explain
the phenomena by the simplest hypothesis
possible.»

Claudius Ptolemaeus
— ancient Greek astronomer, mathematician

1.1. Introduction

Population characteristics of cosmological objects are often of central importance in cosmology

and are a focus of astrostatistics. In this chapter we will focus on the study of the distribution of the

flux. Flux is the observed brightness of astrophysical objects. Knowledge of the flux distribution is

required to test and constrain theoretical assumptions about the Universe. The traditional approach

is to estimate the number density distribution of the source flux empirically via a log(N)− log(S)

relationship. The log(N) − log(S) relationship relates for the plot of the logarithm of the source

flux, S, to the logarithm of the number of sources, N , observed to that flux sensitivity. In statistical

terms, it gives the representation of the empirical survival function as a function of the log of the

source flux. We refer to the next section for a detailed definition. We will present a method for

estimating the log(N) − log(S) relationship of the flux of X-ray sources, although the method is

applicable to observations in other bands of electromagnetic spectrum.

The statistical nature of cosmological measurements and the observation process pose certain

challenges in estimating the log(N)− log(S) relationship. Main problems are the presence of noise

and missing data. X-ray is a form of electromagnetic radiation. Its wavelength is much shorter

(and frequency is higher) than that of visible light and radio waves. In terms of produced energy,

X-rays expel much greater energy than radio waves. The rate at which the energy flows is known

as the flux. For all cosmological data the measurements of the flux are not directly observed.

Instead, the observations represent the cumulated flux received from the source, recorded as the
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number of photon counts. The photon counts are subject to inherent Poisson-like variability. In

addition, observations intended to measure the flux distribution are subject to both natural and

detector induced uncertainties and biases. For example, source intensities can be contaminated by

background luminosity or reduced due to their location away from the detector. One important

consequence of these effects is that a subset of the source population of interest may be unobserved.

Early work focused on estimation of linear log(N) − log(S) relationship. For reasons to be

described later, linear relationship is associated with the Pareto distribution of the flux. Crawford

et al. (1970) and Murdoch et al. (1973) derive maximum likelihood (ML) estimate of the slope

parameter and apply the method to measurements of radio sources, for which the signal to noise ratio

is generally high. To account of the difference between the flux and the photon counts, Murdoch

et al. (1973) use normal approximation to measurement errors. Consequent series of papers on

study of X-ray measurements apply the method of ML to estimate of the slope parameter under

the assumption of Poisson error distribution (Maccacaro et al., 1982, 1987, Schmitt and Maccacaro,

1986). A recent work for estimating the parameters in linear and piece-wise linear log(N)− log(S)

relationships performed ML with application of expectation-maximization (EM) algorithm (Wong

et al., 2014). Valid inference based on these methods is only possible for complete data surveys.

X-ray measurements are particularly susceptible for incompleteness. Since fainter sources are more

likely to be unobserved, the missing data mechanism is non-ignorable (Little and Rubin, 2002).

If the non-ignorable missing data mechanism is not accounted for, the estimation procedure

may result in inferential bias. Bayesian methods are well-suited to these situations as they provide

a unified and straightforward probabilistic framework. We develop a statistical method based on

a Bayesian hierarchical model for estimating: (i) the number of sources unobserved due to the

detector effects, (ii) the flux of observed sources, and, (iii) the parameters of the log(N) − log(S)

curve. By modeling the missing data mechanism (MDM, thereafter) we correct for detection biases

and obtain posterior summaries for the bias-corrected source population.

Our Bayesian method for treatment of missing data in astrophysical surveys draws some par-

allels from the work presented by Loredo and Wasserman (1995). The authors develop a Bayesian

approach for analyzing the distribution of gamma-ray burst peak photon fluxes and directions.

Their method has a similar premise to account for all sources of uncertainty and biases attributed

to the selection effects and non-detection. Our method differs in three respects. 1) Since our survey

is very dim, we require to model the distribution of flux. 2) We derive the posterior distribution of
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the model parameters marginalized across all missing data information instead of performing joint

inference. 3) Our method produces a posterior distribution for the log(N) − log(S) relationship

instead of best-bit plug-in estimate.

This chapter is organized as follows. In section 1.2 we explain the base of the probabilistic

framework: the power-law assumption and its connection to the Pareto distribution. In particular,

section 1.2.1 introduces the missing data problem and how we can conceptualize missing data as a

part of the model; section 1.2.2 describes the hierarchical Bayesian model. In section 1.3 we give the

computational details of the method and insights to MCMC sampling procedures. In section 1.4

we describe the performance of our method, including validation of the method, assessment of the

performance under model misspecification, and a tool for diagnosing model fitness. In section 1.5

we apply our method to a cosmological dataset of X-ray pulsar sources from CHANDRA Deep Field

North and Deep Field South Surveys. We conclude the chapter with some discussions in section 1.6

where we offer possible extensions of the method.

1.2. Hierarchical Bayesian Modeling of Astrophysical Populations

The goal of our analysis is to study the distribution of fluxes for populations of astrophysical

sources. Flux, also known as apparent brightness, is a measure of the amount of energy given off

by an astronomical object, e.g., a star, over a fixed amount of time and area. Flux measurements

make it easy for astronomers to compare the relative energy output of objects with very different

sizes or ages. Population properties of the flux give insight about the stellar evolution and other

astrophysical parameters.

Let Si denote the flux (ergs s−1 cm−2) of source i for i = 1, . . . , N and let N(> S) be the

number of sources in the population with flux above a threshold S. Historically the N(> S) curve,

or its log-scale counterpart, has provided a convenient way to summarize the distribution of fluxes

in population. In this section we present a general framework and a hierarchical Bayesian modeling

technique for estimating a source population distribution that accounts for detector induced biases,

background noise and selection effects. We defer description of the detector effects until section 1.2.1,

and begin with a discussion of basic population distribution modeling for astrophysical populations.

A standard assumption by cosmologists for the flux number density distribution is will follow a

power-law. That is, the number of sources with flux exceeding a threshold S is assumed to obey a
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relationship as a function of S:

(1.1) N(> S) =

N∑
i=1

I{Si>S} ∝ α · S−θ, S > τ > 0,

for some arbitrary positive constant τ , which we refer to as the minimum flux. Taking a logarithm

transformation produces the linear log(N)− log(S) curve:

log10(N(> S)) ∝ log10(α)− θ log10(S).(1.2)

By assuming a power-law for the survival function, there is an implied probability density function

for a randomly selected source from the population. In particular, a straightforward derivation shows

that, under independent sampling, the power-law form of the survival function in (1.1) and (1.2)

uniquely corresponds to the Pareto probability density.

Lemma 1. Let Si
iid∼ G where G is a probability distribution defined on (τ,∞). If G has a

power-law survival function of the form

Pr(Si > S) = α · S−θ, S > τ,

then G has a Pareto distribution.

This result is important in two respects. First, it shows that an assumption of linearity for the

log(N) − log(S) curve can be equivalently stated as an assumption that the source fluxes above

a threshold τ follow a Pareto distribution. We denote this as Si
iid∼ Pareto (θ, τ), i = 1, . . . , N , for

which the density is:

(1.3) f(Si|θ, τ) = θτ θS
−(θ+1)
i , Si > τ, τ, θ > 0.

Second, by placing the linear log(N)− log(S) assumption with its probabilistic equivalence we now

have the basis for modeling the source fluxes under a hierarchical Bayesian framework. More impor-

tantly, the model that we develop can be explicitly checked via a simple goodness-of-fit procedure

as detailed in section 1.4.4.

We motivate our approach in relation to the equivalence with a short discussion on direct estima-

tion of survival curves. Survival curves play a crucial role in many biomedical applications, with the

famous Kaplan-Meier estimator being the typical choice for estimating population survival curves
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Figure 1.1. Example of log(N)− log(S) relationship for X-ray sources. Linear fit
and Kaplan-Meier estimates are drawn.

from sample data. The Kaplan-Meier estimator provides a consistent, non-parametric estimate of

the population survival curve that allows for right-censoring in the observed data. In studies where

little to no information about the underlying data generating process exists, non-parametric esti-

mates are particularly desirable. Astrophysical studies have also applied survival analysis methods

and Kaplan-Meier estimates (see Feigelson (1992) for overview). An example of a Kaplan-Meier

estimate for linear log(N)− log(S) relationship can be seen in Figure 1.1. Interestingly, when com-

pared to biomedical studies, the problem of estimating the distribution of the flux possesses certain

features inherently different, including that

(i) parametric models can be derived from first principles;

(ii) considerable additional information exists about the mechanism by which sources may not

be observed; and

(iii) the fluxes (i.e., ‘survival times’) are not directly observed, and are subject to several sources

of uncertainty (e.g, background contamination, inherent source variations, effective area

uncertainties, image detection and pixelization effects).

Non-parametric methods make it challenging for features (ii) and (iii) to coherently include the

full range of detector uncertainties. Feigelson (1992) discusses a restriction to special subsets (non-

detections) of uncertainties to bypass the problem. Other astronomical studies suffer from the

inability to handle missing data problems. Concurrent work on estimation of log(N) − log(S)
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curvature parameters is done by Wong et al. (2014). The latter proposed to use the EM algorithm

to estimate the sample parameters using maximum likelihood. However, a main drawback of their

method is that the model cannot easily incorporate a MDM. Our fully Bayesian method is free of

such obstructions. The goal of our methodology is to provide a flexible method (and accompanying

software) to infer flux distributions from observed data that coherently accounts for the full spectrum

of uncertainties introduced in the data collection process.

As outlined in (iii), the fluxes Si are not observed directly in practice, so they must be inferred

from other available measurements, typically photon counts. The photon counts are contaminated

by detector effects in addition to their intrinsic uncertainties. We explicitly seek to capture three

primary phenomena with our model: (a) background contamination, (b) intrinsic uncertainty, and,

(c) missing data (i.e., incompleteness). By using a Bayesian hierarchical model we are able to

account for all three phenomena simultaneously. As explained in detail in the next section, missing

data is handled in a very natural way using Bayesian methods. In addition, Bayesian analysis allows

for the introduction of external ‘prior’ information to facilitate estimation of unknown parameters.

1.2.1. Missing Data in log(N)− log(S) Modeling. Incompleteness is an inherent challenge

in cosmological surveys. The apparent brightness of stars is measured by using a detector, such

as a CCD, that records how much energy strikes its light-sensitive surface each second. Bright

sources tend to be observed more easily than dim ones, and very dim sources are not observed at

all. Sources which physically exist but are not observed or not detected are henceforth referred to as

missing sources. There are many conditions that can lead to missing sources – some of a statistical

nature and others revolving around the location and calibration of the detector. For example, only

a portion of X-ray emissions actually interacts with the detector resulting in Poisson-like noise in

observed photon counts. Also, some dim sources are not detected because the background luminosity

is brighter or just as bright as the source itself. Further problems with the observed image emerge

due to detector specific effects, such as small exposure times (length of the observation period),

large off-axis angle (large distance of source from the focal center of the detector), or small surface

area (or detector aperture, which controls the angular resolution or blurring of the image). For

ground-based telescopes, additional issue arrives in taking into account the absorption of light by

Earth’s atmosphere. However, it is not the focus of the study in the current data application for

which observations are collected with the CHANDRA X-ray telescope which observes from space.
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From a statistical perspective the key feature of this missing data is that the observed data now

only corresponds to a, possibly biased, subset of the ‘complete data’. For a scientist, inferential

interest is in population parameters corresponding to the complete data, not the observed data.

Hence, we separate two sources of error into the model conditional on the variables from the data

collection process and the model that describes the data collection process (Gelman et al., 2003).

There is a rich statistical literature on the analysis of data with missing observations, see Little

and Rubin (2002) for a review. The degree to which an analyst should be concerned about missing

data is dependent on the mechanism by which the missingness arises. For example, it can be shown

that randomly deleting observations from a dataset, while harmful for efficiency, typically does not

affect the consistency of an estimator. Two restrictive but commonly used assumptions are that the

data are either missing completely at random (MCAR) or missing at random (MAR). Under both

of these assumptions the nature of the missing data does not depend on unobserved values and can

be handled in a straightforward way.

To fix notation, we define y = (yobs,ymis) as the complete data vector separated into the

observed, yobs, and missing, ymis, values, respectively, and I as the inclusion indicator, the random

vector indicating whether each component of y is observed or missing. Let the model parameter of

interest be β. The conditional distribution of the inclusion indicator given the complete data y is

indexed by a parameter ϕ. We write the joint distribution of (y, I) given parameters (β, ϕ) as

p(y, I|β, ϕ) = p(y|β)p(I|yϕ)

and the observed information distribution as

(1.4) p(yobs, I|β, ϕ) =
∫

p(yobs,ymis|β)p(I|yobs,ymis, ϕ)dymis.

The MDM is defined by the conditional distribution of I given y and ϕ, which we refer to as

incompleteness function. In particular, the MAR assumption implies that the MDM does not

depend the missing values, so that the incompleteness function is

p(I|yobs,ymis, ϕ) = p(I|yobs, ϕ),

and (1.4) can be simplified to

p(yobs, I|β, ϕ) = p(yobs|β)p(I|yobs, ϕ).
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The stronger MCAR assumption implies that the data is observed at random and the MDM is

completely independent of y, which is written as

p(I|yobs,ymis, ϕ) = p(I|ϕ),

so that (1.4) can be simplified as

p(yobs, I|β, ϕ) = p(yobs|β)p(I|ϕ).

The key property of the MDM is whether it can be considered to be ‘ignorable’ (Little and

Rubin, 2002). The ignorable MDM occurs in the situation when the model parameters β and the

missing-data distribution parameters ϕ are distinct and inferences for β can be made directly based

on p(yobs|β). In other words, the ignorable MDM can safely be ignored and inference about the

parameters will remain valid. Even with ignorable missing data efficiency can sometimes be gained

by incorporating knowledge of the MDM, such as in situations with MAR assumption.

In the log(N)− log(S) problem, (holding other factors constant) lower flux sources have a lower

probability of being observed than higher flux sources. Thus, the incompleteness function must

depend on the flux of a source. Hence, the MDM is non-ignorable and must be accounted for in the

analysis. By ignoring this fact and studying only observed sources, inference will typically be biased

toward stochastically larger distributions. To bypass this issue, we may specify the flux threshold

τ at a sufficiently large value and sources whose estimated flux falls below this limit are discarded,

so that the probability of missingness is sufficiently small. This is a common approach, but has

the drawback of discarding potentially useful data and not utilizing the knowledge contained in the

incompleteness curves. We take another approach to solve this issue: by explicitly modeling the

MDM.

Statistical applications with non-ignorable missing data are extremely challenging unless there

is external knowledge about the MDM. Fortunately for log(N)− log(S) analyses, such information

is available. The incompleteness function directly provides information about the MDM that allows

for full use of the data, and the ability to probe lower-flux ranges. From a Bayesian modeling

standpoint, all aspects of the MDM need to be carefully translated into an incompleteness function

that mathematically describes the probability of observing a source as a function of the source

information and detector configuration. The incompleteness function is designed to incorporate all
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knowledge about the underlying probabilistic MDM. That is, for any given flux, location, exposure

and background intensity, it specifies the probability of observing a source. In practice, the incom-

pleteness function can be derived from the detector sensitivity and properties of the observed image.

Various approaches to obtaining the incompleteness function have been used in astrophysical appli-

cations, examples include Zezas et al. (2007) and Baloković et al. (2012). Since the incompleteness

function encodes the MDM, parameter inference can be sensitive to the choice of the incompleteness

function; thus, one needs to be careful in making such a choice.

In addition to missing data, some cosmological surveys also suffer from false detections. A false

detection occurs when a ‘source’ listed in the observed data does not correspond to an actual source

object. This can often be attributable to large background fluctuations. False detections can, in

principle, be modeled. However, as this is not typically an issue with the X-ray data we examine

here, we omit further discussion on this phenomena.

1.2.2. Probability Modeling of the log(N) − log(S) Relationship. In this section we

provide details of our probabilistic model of flux distributions in the presence of incompleteness,

background contamination and other detector effects. In light of the discussion in section 1.2.1,

we note that there are two different source populations: an ‘observed source population’ and a

‘complete source population’. The observed source population corresponds to a typically biased

subset of the complete source population. Inferentially, our goal is to estimate the log(N)− log(S)

relationship for the complete source population, not for the observed population. To do so we make

explicit use of the missing data mechanism, which effectively describes the selection mechanism of

the observed population. Our hierarchical Bayesian model therefore connects (i) a model for flux

distributions in the complete source population via (1.3) below, (ii) the incompleteness function

that describes the filtering from the complete source population to the observed sources, and, (iii)

a model for the observable quantities incorporating all detector uncertainties.

Let N be the (unknown) total number of sources in the complete source population, n the

number of observed sources and Nmis the number of missing sources so that N = n + Nmis. As

discussed in section 1.2.1, sources may not be observed for a variety of reasons (e.g., ‘weak’ flux

close to threshold τ , large off-axis angle, etc.). Since the parameter N is unknown, we specify a

Negative-Binomial prior for the total number of sources in the population with flux above a given

threshold, τ i.e., N ∼ Neg-Bin (aN , bN ). The prior parameters aN and bN should be selected by
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the analyst to reflect any prior information, or lack thereof, about the size of the source population.

We will address the issue of selecting prior parameters in more detail in the context of specific data

analysis in section 1.4.1 and specifically for the CDFN dataset in section 1.5.1.

Conditional on the total number of sources and model parameters, we assume that source fluxes

for the complete source population follow a power-law or are distributed according to a Pareto

distribution, as in (1.3). The model parameters are then the power-law slope, θ, and the flux

population minimum threshold, τ . Note that in this context, the value of τ is not the same as a

detector threshold which may be higher or lower than the flux population minimum threshold. See

section 1.4.2 for further discussion of this distinction. For convenience we assume a conditionally

conjugate Gamma prior distribution for θ and τ i.e., θ ∼ Gamma (aθ, bθ) and τ ∼ Gamma (am, bm).

In section 1.4.2 we also consider a conditional version of the model that fixes τ . For this conditional

approach the best model can then be chosen using standard model selection techniques.

The model assumptions can be summarized as:

N ∼ Neg-Bin (aN , bN ) , θ ∼ Gamma (a, b) , τ ∼ Gamma (am, bm)(1.5)

Si|τ, θ,N
iid∼ Pareto(τ, θ), i = 1, . . . , N

As noted, the power-law assumption in (1.1) is a theoretical relationship for the complete population

of source fluxes and, depending on the incompleteness function, may not directly apply to the

observed data. The data collected consist of photon counts for a subset of the population of sources,

determined by the background noise, off-axis angle, and exposure map (and other detector effects).

Define for source i, i = 1, . . . , N :

Y tot
i = Y src

i + Y bkg
i ,(1.6)

Y src
i |Si, Bi, Li, Ei

ind∼ Poisson (λ(Si, Bi, Li, Ei)) ,

Y bkg
i |Bi, Li, Ei

ind∼ Poisson (k(Bi, Li, Ei)) ,

with λi = λ(Si, Bi, Li, Ei) = SiEi/γ, ki = k(Bi, Li, Ei, Ai) = BiAi. In (1.6), γ denotes the energy

per photon, Bi denotes the per-pixel photon background rate for the source, Ai denotes background

area of the source, Li denotes the off-axis angle, and Ei denotes the exposure map or effective

area. The known functions λi and ki represent the source and background photon count intensity

for a given combination of intrinsic image effects. The quantities (Bi, Li, Ei, Ai) are known for
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all observed sources. For missing sources we assume a model for these quantities that reflects the

properties of the detector; it is usually available together with the image information.

The last component of our hierarchical model specifies the probability of a source being detected.

Let Ii be the indicator that source i is detected (Ii = 1 if source i is observed, Ii = 0 if missing).

Ii is a stochastic indicator variable, depending on the intensity, location, background and effective

area of the source.

(1.7) Ii|Si, Bi, Li, Ei =

 1, Pr = g (Si, Bi, Li, Ei)

0, Pr = 1− g (Si, Bi, Li, Ei)

The incompleteness function g specifies the probability of detecting a source of a specified intensity

under known background and observation settings. Define vector Scom = (Sobs, Smis)
T as the flux

vectors of observed and missing sources. For simplicity of notation similar partitions hold for all

other source information.

The assumption (1.6) applies to the complete source population, so some of the Y tot
i will not

be observed. Even for the observed sources we do not observe the separate source and background

counts Y src
i and Y bkg

i , and instead only observe the total count Y tot
i . The observed and missing

data for photon counts can be partitioned as

Y tot
obs =

(
Y tot
i1 , . . . , Y tot

in

)T
, Y tot

mis =
(
Y tot
in+1

, . . . , Y tot
iN

)T
, Ymis = (Y src

obs , Y
src
mis, Y

tot
mis)(1.8)

where {i1, . . . , in} correspond to the indices of the observed sources. In contrast to most statistical

applications involving missing data, in this setting the number of missing data points, as well as

their values, are both unknown.

1.2.3. Implementation. Having built our hierarchical model for flux distributions we can

combine the model assumptions and prior distributions according to Bayes rule to obtain a posterior

distribution for all unknown quantities. As with most hierarchical models, the posterior distribution

cannot be summarized in a neat analytic form, and numerical techniques must instead be used to

obtain samples from the distribution. Here we use Markov Chain Monte Carlo (MCMC) to produce

samples from the posterior. The model described in equations (1.5)-(1.7) can be combined to yield

a complete data posterior distribution

p(N, θ, τ, Scom, Icom, Y src
obs , Y

src
mis, Y

tot
mis, Bmis, Lmis, Emis|n, Y tot

obs , Bobs, Lobs, Eobs).
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This complete-data posterior distribution includes a number of parameters related to the missing

sources that are not of direct interest, such as Bmis, Lmis and Emis. Therefore, we marginalize the

posterior distribution across all parameters not of direct interest to obtain the desired posterior

distribution for (N, θ, τ, Scom, Y src
obs ). Given the number of parameters we construct a blocked Gibbs

sampler of this form

[N |n, θ] , [θ|n,N, Sobs, τ ] , [τ |n,N, θ, Sobs, Bobs, Lobs, Eobs] ,[
Sobs|N, θ, τ, Iobs, Y

tot
obs , Y

src
obs , Bobs, Lobs, Eobs

]
,
[
Y src
obs |Y tot

obs , Bobs, Lobs, Eobs, Iobs, Sobs

]
.

Additional unknown parameters can be optionally attained as conditional draws. For example, to

produce a complete data log(N)− log(S) curve, we require posterior samples of the missing fluxes.

These can be obtained by sampling from p(Smis|n,N, θ, τ). Sampling of some blocks of parameters

require Metropolis-Hastings and rejection sampling methods. See the next section for full details of

the sampling process. Our analysis framework is also implemented in an R package called logNlogS

that is expected to be publicly available from the CRAN archive.

1.3. Computational Details

Our interest is the joint posterior distribution of parameters and latent variables given the data.

We now provide a summary of distributions necessary for implementing our model (see section 1.2.2)

and a description to the computation required for sampling from the joint posterior. We refer to

Appendix A for detailed derivations. The MCMC sampling scheme is based on the blocked Gibbs

sampler that involve Metropolis, Metropolis-Hastings, rejection sampling, and numerical integration

within the blocks. We derive the full conditional distributions necessary for the Gibbs sampler below.

We bring attention to one important strategy for sampling from our high-dimensional poste-

rior distribution. Missing data provides a problem in that the dimension of the complete poste-

rior distribution may change with every new iteration of MCMC. That is, since the number of

sources in the population, N , is unknown, we need sample N and all the missing data components,

(Smis, Imis, Y
src
mis, Y

tot
mis, Y

src
obs ,Bmis, Lmis, Emis). The dimension of the latter depends on N . There are

methods treating varying-dimensional posterior problems, such as Reversible Jump MCMC (RJM-

CMC) (Green, 1995). However we found this method to be too time consuming computationally

for the log(N) − log(S) application. Also, it is a challenge to devise proper jumping rules and

appropriate mappings between any pair of dimensions. Also, there is a high possibility for strong
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autocorrelation of the parameters, which would require longer sampling time to reach stationarity

and draw reasonably independent samples from the posterior. We instead use another strategy by

marginalizing the full joint posterior distribution over missing sources. This approach allows us to

keep the dimension of the parameters to be sampled fixed.

Our strategy is to take the complete data posterior

p(N, θ, τ, Scom, Icom, Y src
com, Y tot

mis, Bmis, Lmis, Emis|n, Y tot
obs , Bobs, Lobs, Eobs),

and integrate out the missing data components (Smis, Imis, Y
src
mis, Y

tot
mis, Bmis, Lmis, Emis), leaving

parameters (N, θ, τ) and missing data components, flux and photon counts of the observed sources

(Sobs, Y
src
obs ), to be sampled from the marginalized joint-posterior. After collecting these samples

via blocked Gibbs sampler, we can impute the flux of missing sources (Smis, Bmis, Lmis, Emis) con-

ditional on the data and sampled parameters. We believe that this strategy avoids unnecessary

dependence of information between the observed and missing sources. Also, as mentioned, the

dimension of the sampled quantities (N, θ, τ, Sobs, Y
src
obs ) stays fixed, which greatly simplifies the

derivations of full conditionals, and sampling procedure as a result.

Following section 1.2.2, we use the following priors:

N ∼ Neg-Bin (aN , bN ), θ ∼ Gamma (a, b), τ ∼ Gamma (am, bm)

In all cases, the hyper parameters of the priors are chosen and fixed according to prior solicitation

from our collaborators. However, as we carefully examine in our simulation studies and sensitivity

analysis (see section 1.4), any diffuse prior will have little to no effect on inference.

Let λi = λ(Sobs,i, Eobs,i, Lobs,i) and ki = k(Eobs,i, Lobs,i). Define the structure for short-hand nota-

tion of the density of a random variable x with parameter β as Distr-Name(x;β). For example, the

conditional distribution of observed photon counts is:

p(Y tot
obs |n,N, Sobs, Bobs, Lobs, Eobs) =

n∏
i=1

Poisson (Y tot
obs,i;λi + ki),
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where Y tot
obs,i ∼ Poisson (Y tot

obs,i;λi + ki) represents the Poisson density of the total photon count of

source i with intensity λi + ki. The latent data distributions are

Sobs|n,N, θ, τ, Bobs, Lobs, Eobs ∼
n∏

i=1

Pareto (Si; θ, τ)g(Si, Bi, Li, Ei)

Smis|n,N, θ, τ, Bmis, Lmis, Emis ∼
N−n∏
i=1

Pareto (Si; θ, τ)(1− g(Si, Bi, Li, Ei))

Y src
obs |n,N, Y tot

obs , Sobs ∼
n∏

i=1

Binomial
(
Y src
obs,i;Y

tot
obs,i,

λi

λi + ki

)

Y tot
mis|n,N, Smis ∼

N−n∏
i=1

Poisson
(
Y tot
mis,i;λi + ki

)
Y src
mis|n,N, Y tot

mis, Smis ∼
N−n∏
i=1

Binomial
(
Y src
mis,i;Y

tot
mis,i,

λi

λi + ki

)
The distributions for B,L,E variables can be approximated directly from the observational process.

Thus, the joint marginalized posterior is (see Appendix A for derivation):

p
(
N, θ, τ, Sobs, Y

src
obs |n, Y tot

obs , Bobs, Lobs, Eobs

)
∝

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)

·

 N + aN − 1

aN − 1

( 1

1 + bN

)N ( bN
1 + bN

)aN

I{N∈Z+}

· ba

Γ(a)
θa−1e−bθI{θ>0}

· bamm
Γ(am)

τam−1e−bmτ I{τ>0}

·

[
n∏

i=1

p (Bi, Li, Ei) · θτ θS−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei)

· (λi + ki)
Y tot
i

Y tot
i !

e(λi+ki)I{Y tot
i ∈Z+}

·

 Y tot
i

Y src
i

 ( λi

λi + ki

)Y src
i
(
1− λi

λi + ki

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

]
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In the posterior distribution above, we require to integrate out all missing source information,

that includes the flux of the missing sources. The consequence of such integral is a definition of a

marginal probability of observing a source, π(θ, τ):

π(θ, τ) =

∫
p(I|S,B,L,E) · p(S,B,L,E|θ, τ) dS dB dE dL

=

∫
g(S,B,L,E) · p(S,B,L,E|θ, τ) dS dB dE dL.

Care must be exercised to evaluate this multidimensional integral well.

The optimal sampling strategy for such a difficult posterior distribution is not obvious. We

utilize the blocked Gibbs sampler to accomplish this task. For many blocks, there is no easy way of

sampling, so we propose nested Metropolis-Hastings algorithms to collect a new sample within each

block. For those parameters that have simpler forms for their full conditionals, other more direct

sampling methods are implemented, such as numerical integration or rejection sampling. Next, we

present the full conditional distributions for parameters used in the blocked Gibbs sampler, with

a description about their sampling process. Blocks are separated into various types of parameters.

We utilize independence and conditional independence between variables whenever possible.

1.3.1. Full-Conditional Distributions. In this section we state the full conditional distri-

butions of parameters and describe their sampling methods.

Sampling Y src
obs : Sample vector Y src

obs component-wise: we have, for i = 1, . . . , n,

p (Y src
i | · ) ∝ p(Y src

i |Y tot
i , Si, Bi, Li, Ei)

∝ Binomial
(
Y src
i ;Y tot

i ,
λ(Si, Bi, Li, Ei)

λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)

)
Sampling is done directly.
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Sampling Sobs: Sample vector Sobs component-wise: we have, for i = 1, . . . , n,

p (Si| · ) ∝ p (Si|N, θ, τ) · p (Ii = 1|Si, Bi, Li, Ei) · p
(
Y tot
i |Si, Bi, Li, Ei

)
·

· p
(
Y src
i |Y tot

i , Si, Bi, Li, Ei

)
∝ Pareto (Si; θ, τ) · g(Si, Bi, Li, Ei) · Poisson (Y tot

i ;λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)) ·

· Binomial
(
Y src
i ;Y tot

i ,
λ(Si, Bi, Li, Ei)

λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)

)
Sampling is done with the Metropolis-Hastings (MH) algorithm. We choose a truncated normal

proposal distribution for Si:

Trunc-Normal(Sprop;Scurr, v2S , lowBound = τ) =

1
vS
ϕ(S

prop−Scurr

vS
)

1− Φ( τ−Scurr

vS
)
,

where ϕ and Φ are standard normal PDF and CDF, respectively, v2S is a tuning parameter to

maintain acceptance rate for MH somewhere between 20%− 60% and the lower truncation limit is

τ .

Sampling θ: We have

p (θ| · ) ∝ p (θ) · p (Sobs|N, θ, τ) · (1− π(θ, τ))(N−n)

∝ (1− π(θ, τ))(N−n) · Gamma

(
θ; a+ n, b+

n∑
i=1

log

(
Si

τ

))

We propose to perform the sampling of θ with either the Metropolis-Hastings algorithm or rejection

sampling. For MH algorithm, we considered two different proposals. Symmetric proposal distribu-

tion for θ is Normal (θprop; θcurr, v2θ,1), where vθ,1 is a tuning parameter. An asymmetric proposal

distribution for θ is Trunc-Normal(θprop; θcurr, v2θ,2, lowBound = 0), where vθ,2 is a tuning parameter

and the lower truncation limit is zero. Based on our numerical studies, we found that the rejection

sampler performs poorly, and MH performs equally well for the two proposal distributions. Thus

we chose the sampling for θ to be performed via a Metropolis algorithm with a symmetric proposal.
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Sampling τ : Sampling τ is the most difficult of all due to its deepest level in the model hierarchy.

We have

p(τ | · ) ∝ p(τ, θ,N) · p (Bobs, Lobs, Eobs|τ, θ,N) · p (n, Sobs, Iobs|N, θ, τ, Bobs, Lobs, Eobs)

· p
(
Y tot
obs , Y

src
obs |n,N, θ, Sobs, Iobs, τ, Bobs, Lobs, Eobs

)
∝ I{0<τ<min{S1,...,Sn}} · Gamma (τ ; am + nθ, bm) · (1− π(θ, τ))N−n

The sampling of τ proceeds with the Metropolis-Hastings algorithm. Care must be exercised to

make sure samples are drawn from the proper region. We considered multiple variations to the

standard Metropolis to achieve this: Metropolis with normal proposal, MH with truncated-normal

proposal distribution and Metropolis applied to a transformation of τ . The last method proved

to have the best performance in reducing autocorrelation and is described as follows. We take a

logarithm transformation of τ in order to preserve the positivity and to avoid numerical instability

of taking samples very close to zero:

η = log(τ)

p(η| · ) ∝ eη(nθ+am+1) · e−bmeη · (1− π(θ, τ = eη))N−n · I{η<log(cm)},

where cm = min{Si}i=1,...,n. The upper bound for η, log(cm), is reflected in the truncated normal

distribution chosen as the asymmetric proporal distribution:

Trunc-Normal(ηprop; ηcurr, v2η, upBound = log(cm)) =

1
vη
ϕ(η

prop−ηcurr

vη
)

Φ( log(cm)−ηcurr

vη
)
.

where v2η is a tuning parameter. The implementation of this MH algorithm turns out to be simple

if we redefine the posterior distribution with the parameter of interest on the logarithmic scale.

We also implemented an alternative to the Metropolis algorithm called multiple-try Metropolis

(MTM) (Liu et al., 2000). Based on our simulations, both MH and MTM appear to work well.
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Sampling N : We have

p (N | · ) ∝

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n) · p (N) · p (Sobs|N, θ, τ)

∝ Γ(N + aN )

Γ(N − n+ 1)
·
(

1

bN + 1

)N

· (1− π(θ, τ))(N−n) I{n≤N}.

Sampling is done directly using the inverse-CDF method, with the CDF computed via numerical

integration.

Sampling Smis: The vector of parameters Smis is not required as part of our joint posterior

distribution, as it has been shown that we can average over these latent variables in the derivation

of the posterior distribution. However, we typically would like to produce the log(N)− log(S) plot,

thus, we want to impute these latent variables. With model assumption, S ∼ Pareto (θ, τ), the

probability of observing a missing source is p(I = 0|S,B,L,E) = 1 − g(S,B,L,E). Note that the

dimension of the Smis vector is N − n, that is, it depends directly on the value of N and changes

from iteration to iteration. We sample vector Smis component-wise: for i = 1, . . . , N − n,

(Bi, Li, Ei) ∼ p(Bi, Li, Ei)

Smis,i|n,N, θ, τ, Bi, Li, Ei, Ii = 0 ∼ (1− g(Si, Bi, Li, Ei)) · Pareto (Si; θ, τ).

Sampling is done via rejection sampling.

1.3.2. Additional details.

Computing π(θ, τ): The marginal probability of observing a source as a function of θ and τ is

a multidimensional integral. We must revert to numerical techniques to evaluate this value. Direct

evaluation may proceed in two ways. It can be approximated numerically, such as by a combination

of Riemann Sums and the Trapezoid Rule. Or it can be approximated via Monte Carlo sampling.

Based on our numerical studies we have found that the latter method gives better performance in

terms of speed and accuracy, especially if the parameter dimension is large.
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We have

π(θ, τ) =

∫
p(I|S,B,L,E) · p(S,B,L,E|θ, τ) dS dB dE dL

=

∫
g(S,B,L,E) · p(S|θ, τ) · p(B,L,E) dS dB dE dL.

We collect Monte Carlo samples of B,L,E and S conditional on the parameters θ, τ and evaluate

the incompleteness probability, g(S,B,L,E). The empirical average of g is a good approximation

to π(θ, τ), provided that the Monte Carlo sample size is large enough.

Evaluating π at every instance of the blocked Gibbs sampler may hinder the speed of our

algorithm. For this reason we have made substantial efforts to conduct numerical studies about

computing π(θ, τ). We found that to achieve the desired accuracy for parameter estimation, 100,000

Monte Carlo samples is sufficient. In this case, pre-computing values of π over a grid of parameters

(vs. not pre-computing) can speed up the MCMC sampling tenfold. In addition, a pre-computed

surface of π can be re-used for any images produced by the same survey, that is unchanged detector

effects.

1.3.3. Validation. The complexity of our hierarchical Bayesian model and computation ne-

cessitates a validation method to make sure that the results are correct. Fortunately, the Bayesian

methods lend themselves to automatic self-consistency checks and validation using simulated data

(Cook et al., 2006). The main idea is to compare the results from the data-generating software and

the model-fitting software. If the generating procedure used is correct and the software works prop-

erly, then the “true” generated parameter should resemble a sample from the empirical distribution

of posterior parameter draws. Furthermore, the quantile of the “true” scalar parameter with respect

to the posterior distribution should follow Uniform(0,1) distribution. This fact allows to construct

powerful diagnostics of correctness of the software package. The procedure involves generating and

analyzing the data according to the same model, followed by calculating posterior quantiles of each

scalar parameter. We now describe the algorithm in more detail.
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Algorithm 3. Step 1: Simulate “true” parameters from the prior β(0) ∼ p(β), and data from

the model, given yobs ∼ p(yobs|β(0)).

Step 2: Fit the model to obtain MCMC samples of parameters β(l) ∼ p(β|yobs), l = 1, . . . , L and

compute posterior quantiles by the ⌊qL⌋-th order statistic of the MCMC sample. That is,

for 0 < q < 1, compute β̂q = min{β(l) : P̂r(β < βq) =
1
L

∑L
l=1 I{β(l)<β̂q} ≥ q} = β

(l)
(⌊qL⌋).

Step 3: Record whether or not the ‘true’ value of the parameter β(0) lies below the quantile C =

I{β(0)≤β̂q}.

Step 4: Repeat Steps 1 & 2 a number of times, say, M , and calculate the average coverage
1
M

∑M
j=1Cj .

Step 5: For each parameter, plot average coverage vs. nominal coverage, q, to compare to 45 degree

line.

The validation coverage plot produced visually checks agreement between the average and nom-

inal coverage. Deviation from the nominal coverage could result due to incorrect programming of

the algorithm and due to MCMC error; however, if the program is written correctly, MCMC error

is expected to lie within the binomial confidence bounds at the nominal probability. That is, the

coverage count based on M trials follows the binomial distribution with nominal coverage success

probability, if the program is written correctly. A validation coverage plot for our single-Pareto

log(N)− log(S) model is shown in Figure 1.2. Actual and nominal coverage (colored lines) agree to

within the binomial confidence bounds (dashed lines) for all levels of probability, hence our method

samples from the target posterior distribution correctly. Each colored line corresponds to the aver-

age coverage of each parameter: N, θ, τ = Smin, and mean of fluxes, Si, i = 1, ..., n. Taking average

of Si is needed because S’s are latent variables, and not parameters, and we do not expect to achieve

perfect coverage for each individual flux.

The potential of model failure can also be examined with posterior interval plots, in which Steps

1 & 2 in Algorithm 3 are repeated and extended to evaluate posterior credible sets C of level α:∫
C p(β|yobs)dβ = 1− α. The estimate based on MCMC samples is (β̂L, β̂U ) such that ˆq(βL) = α/2

and ˆq(βU ) = 1 − α/2. The posterior intervals of each of the M simulations are plotted as vertical

strips vs. the corresponding true values of the parameter. The intersection of the intervals and the

45 degree line is expected to occur approximately 100(1−α)% of the time. Figure 1.3 displays 90%
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Figure 1.2. Coverage plot of main parameters of 200 dataset simulations during
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Figure 1.3. Posterior credible intervals of τ from 200 dataset simulations during
validation process.

posterior intervals for parameter τ . There are 30 (or 15%) of the dark blue intervals which do not

cover the truth, as expected.
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Validation of the log(N)− log(S) model is contingent on the correct specification of the cumu-

lative incompleteness function, π(θ, τ). As mentioned in section 1.3.2, no analytic solution exists

for this integral and Monte Carlo simulation gives the fastest and most reliable approximation. We

considered two version of MC approximation: pre-computing π over a dense grid of θ and τ before

fitting the model and re-evaluating π during the model fitting stage. Our numerical experiments

show that re-evaluation of π within every Gibbs step of the MCMC sampler incurs numerical error

and induces biased coverage of key parameters of the model. The gain in the accuracy of the MC

approximation by increasing the number of MC samples results in only marginal improvement to

removing the bias in coverage. We experimented with various simulation scenarios up to 1,000,000

Monte Carlo samples for each integral estimate of π; all of them fail the validation. On the other

hand, our simulations suggest that pre-computing π over a dense grid with 100,000 Monte Carlo

samples is enough to achieve a validated result. This suggests that the Monte Carlo error has little

effect on the parameter estimation when error on π does not change within MCMC stage; whereas

the effect is amplified if Monte Carlo approximation for π is performed at each iteration within the

MCMC. Hence, we suggest to pre-compute π if the analyst is interested in correctly estimating the

tails of the distribution.

1.3.4. Statistical Inference. Once posterior samples have been obtained, those samples can

be used in a number of different ways to summarize and visualize both marginal and joint poste-

rior probability distributions. For all parameters, the samples from the posterior distribution are

typically summarized into posterior estimates, such as the posterior mean, mode or median, and

posterior credible intervals. In contrast to most non-Bayesian methods, having access to the full

posterior distribution allows the analyst to observe asymmetry and multi-modality in the posterior

distribution.

We now address the interpretation of several key parameters in the log(N) − log(S) model of

section 1.2.2, as well as what can be learned from our analysis. The most crucial inferential aspect for

log(N)− log(S) modeling is to realize that the characterization of the flux distribution can be done

in two subtly different ways. The first characterization of the flux distribution comes from the slope

θ in (1.2). This can be directly explored by plotting and summarizing the posterior samples for θ in

the usual manner. In addition to θ, we can also examine the empirical log(N)− log(S) relationship

for the complete source population. This involves plotting the distribution of log(N) − log(S)
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curves of the posterior samples of the flux for the observed and missing sources, as illustrated

in Figure 1.11. The resulting posterior distribution of the log(N) − log(S) curve can be used to

visualize the level of uncertainty of our estimate of the curve and to investigate possible deviations

from linearity in the curve. A formal method for the detection of non-linearity in the log(N)−log(S)

is more challenging and is addressed in section 1.4.4, where we introduce a ‘goodness-of-fit’ check

for our model. Whereas all prior methods for estimation of log(N)− log(S) relationship provide a

point-estimate for log(N)− log(S) (Crawford et al., 1970, Loredo and Wasserman, 1995, Maccacaro

et al., 1982, Wong et al., 2014), our method is unique in expressing the uncertainty for the whole

log(N)− log(S) curve.

The values of other parameters also provide important information about the underlying astro-

physical processes. The posterior distribution of N quantifies knowledge and uncertainty about the

total number of sources in the complete source population. When the detection probability is very

low, the complete source population can be much larger than the observed number of sources, thus

the parameter estimates draw much of their information from the model assumptions and less from

the data. Additionally, in situations of high-incompleteness, the posterior distributions tend to be

wider to reflect the relative information in the observed data. This naturally reflects the inferen-

tial balance, that is, for settings with low incompleteness we must rely on external knowledge to

understand the complete source population. In cases where such external information is available,

there can be substantial gains in the accuracy and efficiency of the inference. In contrast, in situ-

ations of low-incompleteness, the total number of sources will be close to the number of observed

sources and inference will typically be robust to the choice of incompleteness function. For these

reasons, the sensitivity of inference about model parameters to the accuracy of the incompleteness

function must be addressed. While our method requires accurate specification of the incompleteness

function, particularly for high-incompleteness datasets, as illustrated in section 1.4.3, it drastically

outperforms methods that ignore incompleteness altogether.

1.4. Simulation Studies of the Model Performance

We now investigate the ability of our model to estimate population model parameters, and the

sensitivity of inference to model assumptions and choices of prior distributions. Most notably, we

investigate the sensitivity of inference on θ, N , and τ to the choice of incompleteness function, and

the impact of prior distributions on inference for θ and N .
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We consider data simulated from our model with θ = 1.5, τ = 10−16.5, and N = 455. The

source-specific parameters (Bi, Li, Ei) are sampled from the empirical joint distribution of those

quantities for the CDFN survey to ensure compatibility with our analysis in section 2.7.1. The

exposure time is fixed at 670, 000 seconds with a conversion factor between photon counts and

photons of 430 cm2ct/ph. The energy conversion factor is set at γ = 1.6 × 10−9 ergs/ph. The

expected source and background photon counts are modeled as λi = SiEi/γ and ki = BiAi, where

Bi is the background rate per pixel and Ai is the number of pixels covered by a source i. The

proportion of observed simulated sources is 61%.

1.4.1. Sensitivity to Prior Distributions. In most settings the parameters of interest are

likely to be θ, N and possibly τ , so we now investigate the sensitivity of inference to the choice

of prior distribution for each of these parameters. We consider three different prior distributions

for θ and obtain the posterior distribution for θ in each case, while N and τ are kept fixed at true

values. The results are shown in Figure 1.4. In each case the prior distribution is shown as a dotted

curve, the true value of θ is shown with a vertical line and the posterior distribution as a solid

curve with the 95% central credible interval shaded. The left-most figure corresponds to a weak

prior distribution for θ, which we recommend unless strong prior information is available about θ.

The middle figure corresponds to a moderately informative prior distribution that is not centered

at the true value but is nonetheless consistent with the true value. In both cases the posterior

distribution effectively captures the truth. The right-most figure demonstrates what happens when

a very strong, and incorrect prior distribution is used. In this case the data pushes the posterior

distribution toward the true value, but the amount of data in this example is insufficient to overcome

the misplaced certainty of the prior distribution. We therefore recommend moderately or weakly

informative priors for θ in most settings.

Next we investigate the choice of prior distribution for N . We consider three prior distributions

corresponding to a weak prior, a moderately informative prior that is consistent with the true value

and a strongly informative but incorrectly specified prior while τ is kept fixed at the truth. Since

inferential interest is primarily in θ, for each of the settings we also examine the corresponding

impact on estimation of θ. The results for the three settings are shown in Figure 1.5. The left

column displays the prior distributions for N , and the corresponding posterior distributions for N

for each of the three priors. As expected the weak and moderately informative priors yield posterior
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Figure 1.4. (L) Weak prior and corresponding posterior for θ, (C) a moderately
informative prior for θ, and, (R) a strongly informative but incorrect prior for θ.

distributions that center around the true value of N , while the strongly informative and incorrect

prior yields a posterior that is barely consistent with the true value. The right column displays the

corresponding prior and posterior distributions for θ in each of the three settings. The results show

that misspecification of the prior distribution of N has minimal impact on inference for θ; in all

cases the central 95% posterior credible interval contains the true value. Hence, the estimates of θ

are robust to the prior specifications of N . We note, however, that a stronger connection between θ

and N is expected when τ is unknown and is to be estimated together with N and θ. We recommend

weakly informative priors for all model parameters unless strong and reliable information is available

to guide a more informative choice. A good “rule of thumb” for the selection of weak prior settings

is to identify the plausible range for the parameters, and set the inner 50% interval of the prior to

that range.

1.4.2. Sensitivity to Low-Threshold, τ . Estimates of log(N)− log(S) relationship in other

studies usually assume knowledge of the low flux threshold, chosen high enough to prevent missing

sources in the survey. In this section we examine to what sensitivity can we reliably estimate the

log(N)−log(S) relationship, if we allow missing sources in the survey. Clearly, as τ ↓ 0, the detection

probability decreases rapidly, thus inflating Nmis and imputing large numbers of missing sources.

In this regime, we expect the posterior inference to reflect the prior and model structures. We

remind the reader that the threshold of the detector is different from the flux population threshold,

τ = Smin. The detection threshold lowers the detection probability if it is greater than τ . For our

applications, it is translated into a function of the detector effects described by πN (θ, τ). We would
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Figure 1.5. Prior and posterior distributions for N and θ. From top to bottom
(Left column) these represent a weak prior for N , a moderately informative prior for
N and a strongly informative but incorrect prior for N . The right column shows the
corresponding prior and posterior distributions for θ.

like to investigate the reliability of our inferences as τ (or πN (θ, τ)) decreases. We consider two

aspects:
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Figure 1.6. The grey regions provide the posterior 95% credible intervals for θ at
the fixed τ case, with the θ estimate in the center line. The cross intervals show
posterior dispersion in both θ and τ for varying priors on τ .

(1) Conditional on the specified model, how sensitive are our estimates (and scientific infer-

ences) to the choice of threshold τ?

(2) If we had mis-specified the model (e.g., Schechter function or broken power-law instead of

single power-law), how would our estimates be effected?

The solution to the first of these questions is a dataset-specific, standard sensitivity test. As for the

second, it is primarily a method-specific evaluation of inferential robustness, and will be address in

the next chapter.

There are two potential approaches to handling the minimum population flux τ : fixing it to a

specific value, or, treating it as a regular parameter and obtaining a posterior distribution. Philo-

sophically, the second approach is preferable as it is consistent with treatment of unknown quantities
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in most Bayesian analyses. The argument for the former approach is that in small sample settings

there can be minimal information in the data to appropriately constrain τ ; as a result, estimation

for all parameters can be impacted. In practice, the impact of small sample size can be addressed

by the estimation of τ combined with a strongly informative prior distribution for τ .

To investigate the performance of our method for these two approaches we consider a larger

simulation study with two scenarios. In the first scenario, we treat τ as known but not necessarily

modeled with a correctly specified value. We simulate 200 datasets with log10(τ) = −16.5, θ =

1.5, and N = 400. For each of the 200 datasets we fit models with both τ fixed at values from

log(τ) = −18 to log(τ) = −15.5 in increments of 0.1. For each dataset the posterior medians and

95% credible intervals were computed for θ. The second scenario assumes three gamma prior choices

for τ . Broad informative prior uses E[τ ] = 0.9× 10−16, V ar[τ ] = (0.8 ∗ 10−16)2, mis-specified prior

with true value in the upper tail uses E[τ ] = 1.2 ∗ 10−17, V ar[τ ] = (1.0 ∗ 10−17)2, and mis-specified

prior with true value in the upper tail uses E[τ ] = 2.2 ∗ 10−16, V ar[τ ] = (1.1 ∗ 10−16)2. For each

of the 200 datasets, we obtain credible intervals for both θ and τ . We then average the credible

interval bounds and show the single cross region of coverage.

Figure 1.6 shows the 95% average credible intervals for θ for 200 datasets each fitted at a fixed set

of τ values, and the average credible intervals for individual simulations in which both θ and τ were

estimated. The horizontal portion of the red cross shows the average 95% posterior interval for τ ,

easily covering the true value. The vertical portion of the red crosses shows the average 95% credible

interval for θ, also containing the true value of 1.5. The coverage of the true parameter coordinate

(10−16.5, 1.5) is 96% out of 50 independently repeated crosses of varying weakly informative priors

(the results for three of which are shown in the figure in red, orange and purple crosses). The

credible intervals for θ for the fixed τ version of the model are shown by the green vertical bands. In

most of the cases shown in Figure 1.6 the average posterior interval for θ covered the truth, except

for one fixed scenario (green interval), when τ was fixed to τ = 10−16.7.

To obtain a more complete picture of the performance of the model when fixing τ , Figure 1.7

displays the bias, standard deviation and mean square error for estimating θ as well as the average

posterior median and credible intervals for each fixed value of log(τ). As expected, the bias is seen

to be close to zero when τ is selected correctly. If τ is specified to be lower than the true value

then estimates for θ have a slight negative bias induced by imputing too much missing data, thus

flattening the slope of the log(N)− log(S)curve. Despite this slight bias the estimates for θ perform
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reasonably well in contrast to estimates obtained when τ is fixed above the true value. In this

case, a large bias and variance are induced, resulting in a poor estimate. This is straightforward

to understand in that our model by definition forces all sources to have a flux above τ , and for

those sources whose flux is below the artificially set threshold the model produces a poor fit. This

illustrates how, in contrast to other methods for log(N)− log(S) fitting, τ specifies the population

minimum flux, not a threshold above which incompleteness is guaranteed to be minimal.

In light of the simulation results displayed in Figures 1.6 and 1.7, we recommend estimating the

population minimum flux τ from the data unless strong and reliable prior information is available.

We find that our proposed model is not especially sensitive to the prior of τ . If the user does prefer

to fix τ then a conservative way to specify τ is to set it at lower values, however, one should be

aware of the bias on the power-law slope estimate inherent with this specification: the model will

often underestimate θ.

1.4.3. Sensitivity to the Incompleteness Function. As noted in section 1.2.1, it is an-

ticipated that inference on some of the key model parameters may be sensitive to the choice of

incompleteness function g, an issue we now address. To examine this we now consider fitting mul-

tiple, possibly incorrect, incompleteness functions to simulated data. For simplicity we consider

four smooth incompleteness functions, shown in Figure 1.8. The true incompleteness function un-

der which the data is generated is shown in the second row, the other rows show incompleteness

functions that either systematically overestimate the detection probability (top) or systematically

underestimate the detection probability (bottom). The middle and right columns show the prior

and posterior distributions and true parameter values for N and θ for each of the four model fits.

To isolate the impact of the incompleteness function the same prior distribution was used for each

fit and the τ parameter was fixed at 10−16.5.

Figure 1.8 shows that θ can be estimated reasonably well when the incompleteness function

is correct or overestimated (rows 1 and 2), yet it is overestimated when incompleteness is mis-

specified in the lower direction (rows 3 and 4). In all cases considered, the dispersion of θ stays

reasonably constant. The estimate of N has a stronger connection to the specification of the detec-

tion probability. Only the correct specification results in the correct estimate of N . Overspecifying

the incompleteness results in fewer missing sources and a lowered estimate of N . Underspecifying

the incompleteness results in too many missing sources and a dramatic overestimation of N . We
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Figure 1.7. Sensitivity of τ on estimate of θ. Under the fixed τ scenarios, the plots
show: (top-left) bias of θ, (top-right) standard deviation of θ, (mid-left) posterior
regions and 95% credible intervals of θ, (mid-right) U-shape nature of MSE of θ.

conclude that it is safer to err on the larger specification of the detection probability, for which

estimation of θ is reasonably stable.

1.4.4. Model Checking via Goodness-of-fit. For structured hierarchical models such as

our log(N) − log(S) model it is necessary to check whether the model assumptions are plausible.

Luckily, Bayesian methods lend themselves to self-assessment via posterior predictive model checks

(see, Rubin (1984)). The existence of draws from the posterior distribution make construction of

posterior predictive model checks particularly easy which is not always possible for other methods

of log(N) − log(S) estimation (e.g., Schmitt and Maccacaro (1986), Wong et al. (2014)). Hence,

the ability to check for the suitability of the model assumptions is an advantage of our proposed

framework over the existing methods. We now describe our approach to checking the adequacy of the
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Figure 1.8. Left column: Four different incompleteness functions, Middle and
Right columns: Corresponding prior and posterior distributions of N and θ. The
2nd row corresponds to the correct incompleteness function.

model. The predictive distribution is the conditional distribution of the new data ynew conditional

on the observed yobs, integrating out all of the uncertainty in combined model parameters β, that
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is,

p(ynew|yobs) =

∫
p(ynew, β|yobs)dβ =

∫
p(ynew|β)p(β|yobs)dβ,

where the second identity follows only if the predictive distribution of Ynew is independent of yobs

given β. The posterior predictive check (PPC) was proposed by Rubin (1984), and expanded

by Meng (1994) and Gelman et al. (1996). A thorough description and applications of PPC are

described by Gelman et al. (2003). The main idea comes from the expectation that if the model

specifications are appropriate, the predictive distribution of the new data would look ‘similar’ to

the empirical distribution of the observed data, assuming that conditional independence holds. It

follows that even functions of the data and the parameter derived from either distribution should

be ‘consistent’ under the posterior predictive distribution (Meng, 1994). The degree of consistency

would indicate the strength of model mis-fit, that is, failure of the applied model to describe the

nature of the data.

We now describe the formal definition and procedure. Consider testing the hypothesis:

H0 : The model is correctly specified, vs., H1 : The model is not correctly specified.

Based on the MCMC samples of model parameters we generate new datasets from the posterior

predictive distribution. We take relevant summary statistics T (Y ) of the datasets to perform the

test, and define the posterior predictive tail-area to evaluate the fit of a Bayesian model as the

posterior predictive p−value (PPP) (Meng, 1994):

(1.9) pb = Pr(T (ynew) ≥ T (yobs)|yobs,H0) =

∫
I{T (ynew)≥T (yobs)}p(ynew|yobs,H0)dynew.

Since our interest is in the extrema of the distribution regardless of the direction, we use the

corresponding two sided PPP:

p∗b = 2 · min{pb, 1− pb}.

Large p∗b implies no obvious disagreement between the model and the observed data.

The choice of test statistic depends on the model assumptions we want to check, which allows

some freedom of selection and dependency on the model parameters. PPC is flexible by avoiding

a single global goodness-of-fit summary, which is, perhaps, a benefit. After all, posterior predictive

checks have a long history of favorable empirical results and provide useful insights into model

fitness for complex models Gelman (2007), Lynch and Western (2004).
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Violations of model assumptions in our application are examined in a number of statistics based

on a list of photon counts for the observed sources. The broad structure of the missing data

mechanism is captured by the sample size of the replicates. The tail behavior of the observation

process, the Poisson assumption, and the prior distribution of the detector properties p(B,L,E)

are addressed by the minimum and maximum photon count. General model ability to represent

the observed data is addressed by the median or IQR of the photon counts. Finally, the power-law

assumption of the model (1.1), i.e., the linearity of the log(N)− log(S) plot of the flux, is addressed

by a coefficient of determination, R2, based on “crude” estimates of the flux, Si = (Yi − ki)γ/Ei,

(see (1.6) and definition of λi). We call it a crude estimate because it is based on the observed

photon counts, not the missing. If the Pareto model is reasonable, then the crude log(N)− log(S)

plot is expected to appear linear and the crude R2 values are expected to be close to 1.

The correspondence of the posterior predictive distribution of the future summary statistics with

the value of observed summary statistic is summarized in p∗b , but is best summarized graphically. We

extend the notion of univariate summary statistics described above to bivariate summaries in order

to get additional insight to the correlations between model properties. We plot posterior predictive

replicates of two univariate statistics in a scatter plot and examine the relative standing of the

coordinate of two observed statistics against the bivariate density of the resulting plot. We define

the bivariate posterior predictive p-value as the extreme-tail probability of the resulting bivariate

density (also see (1.9)); it is the proportion points below the slice of the bivariate density at the

observed coordinate. As before, it represents a measure of surprise when some aspects of the model

under H0 are not represented by the data. To demonstrate, consider bivariate posterior predictive

distributions for two statistics: (i) the number of observed sources, and (ii) the median photon

count for the observed sources. In this case, let T (Ynew) = (length{Ynew},median{Ynew})
T .

Figure 1.9 shows an example of the consistent fit (left) and the poor fit (right). In the left plot,

the correct model is fit to the simulated data and the posterior predictive samples give the number

of observed sources consistent with the observed source number indicated by a vertical line. In the

right plot, an incorrect model is flagged as a poor fit; since the sizes of the posterior predictive

replicates are too small compared to the size of observed data. The figure also shows how small

p−value indicates that the model cannot capture this aspect of the data based on the value of

sample size (length) and median statistics. In the left plot, where the correct model is fit to the

simulated data, the posterior predictive samples are consistent with the values of the statistics for
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Figure 1.9. Bivariate posterior predictive scatter plot for the conditional model:
(left) fitted τ equal to truth, (right) fitted τ larger to truth.

the observed data, as displayed by the red dot. In contrast, the right plot shows an example where

an incorrect model was fit to the data, in this case τ was fixed to an incorrect value above the true

value, and the posterior predictive distribution is not consistent with the values of the statistics

for the observed data. The bivariate posterior predictive p−value is approximated as the tail area

of the extreme region outside the contour of the observed statistic. For the consistent model the

bivariate posterior predictive p−value is 0.287, for the incorrect model it is very close to zero.

Like all model checking procedures and goodness-of-fit tests, posterior predictive checking has

limitations in detecting violations of model assumptions (Bayarri and Berger, 1998). The posterior

predictive p−value is not a pivotal quantity by construction like the classical p−value and it cannot

have the same interpretation. Instead it should be considered as an informational summary of the

evidence of discrepancies between the model in question and the data. Inconsistency between the

observed data and the posterior predictive replicates indicates a lack of fit of the model. However,

the absence of evidence for a violation does not guarantee that the model fits the data well. Note

that we are not concerned with the Type I error rate or probability of rejecting the null hypothesis

when it is actually true. Also, since posterior predictive p−values are not calibrated and since this

procedure in a sense makes more than one use of the observed data, especially when many checks

are performed, the presence of borderline posterior predictive p−values is expected and it is not an

indictment. We strongly encourage the use of posterior predictive checks and p−values to diagnose

potential violations of the model assumptions.
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1.5. Application to Astronomical Data

1.5.1. Application: CHANDRA Deep Field North. We apply our methodology to a sample

of 225 X-ray sources from the CHANDRA Deep Field North (CDFN) survey. It is the deepest 0.5-

8.0 keV survey ever made, and nearly 600 X-ray sources are detected. This survey is comprised of 2

Ms of CHANDRA ACIS-I exposure covering 448 sq. arcmin. To preserve the signal in the sources

and avoid possible issues with false detections our sample is restricted to sources with an off-axis

angle below 8 arcmins. The combined color image of CDFN is shown in figure 1.10.

Figure 1.10. “True-color” CHANDRA image of the whole CDFN

We assume moderately informative priors, elicited from collaborators. θ ∼ Γ(a = 12, b = 10),

τ ∼ Γ(am = 1.78, bm = 1.48 · 1017), N ∼ Neg-Bin (aN = 9.278, bN = 0.03). Incompleteness

probability table and detector effects frequency table were directly provided by our collaborators.

The detection probability for a given source intensity, background, and off-axis angle is estimated

from simulations (Zezas and Fabbiano, 2002).

Using these priors, our Bayesian method yields a posterior median for the power-law slope θ̂ of

0.667, with a 95% credible interval (CI) of (0.563, 0.780). The estimate agrees with the other studies

completed (Wong et al., 2014). The population minimum flux is estimated at the posterior median

τ̂ of 10−16.28 with 95% CI (10−16.37, 10−16.20). The corresponding population size is estimated with

a posterior median N̂ of 293 with 95% CI (275, 313), estimating on average 77% completeness of

the survey. Table 1.1 summarizes the posterior estimates and central 95% credible intervals for

the other key parameters of our model. The posterior draws of the flux for the complete source

population give rise to the log(N)− log(S) plot shown in Figure 1.11. Each curve corresponds to a
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Mean SD 2.5% 97.5%
N 293.2 9.79 275.0 313.0
θ 0.6666 0.0559 0.5627 0.780
τ 10−16.2782 10−17.2640 10−16.3745 10−16.1989

Table 1.1. Posterior estimates of major parameters for the CDFN dataset of section 1.5.1

posterior sample for the fluxes of the complete source population, with missing source flux shown in

red and observed source flux in gray. The plot appears to be approximately linear, with no obvious

breaks or changes in slope. The width of the log(N)− log(S) curve reflects the posterior uncertainty

in the flux estimates.

Figure 1.11. The log(N) − log(S) plot for the CDFN data. Each line in the plot
corresponds to a set of fluxes for the complete source population sampled from a
single iteration of MCMC scheme with observed sources shown in grey and missing
sources in red. The plot shows a sample of 1000 posterior draws.

To examine the adequacy of the model assumptions we use the posterior predictive checks

described in section 1.4.4. Posterior predictive p−values for a selection of summary statistics are

presented in table 1.2. Both the univariate and bivariate posterior predictive p-values are large

(> 0.078) for all features we considered, hence no features are flagged as extreme, indicating there

is no lack of fit in all aspects of the predictive distribution. Note that this does not rule out the

possible presence of breaks or slope variation in the log(N) − log(S) curve, since the comparison

is performed to the distribution of the photon counts, not fluxes. Also, most values of the crude
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R2 are above 90%, hence linearity of the log(N) − log(S) is justified. Selected bivariate plots are

given in Figure 1.12 (where we log-transformed all statistics of photon counts for readability). We

emphasize that the posterior predictive check has only the potential to indicate problems with the

fit and it does not differentiate the models that fit adequately. Our fitted model assumes a linear

structure for the log(N)−log(S) curve at the population level, while curvilinear counterparts are not

considered. An appropriate procedure for selection between candidate Bayesian models is possible;

however, we will defer this discussion to be the main topic of the next chapter.

Figure 1.12. The bivariate posterior predictive plots show that the single Pareto
model fit is fairly adequate. The only unusual feature is the bivariate posterior
predictive plot of log(length) vs. crude estimate of R2 with p-value much below 0.05
level.

We also perform a comparative analysis of the misspecification of incompleteness by ignoring the

missing data. The estimate of θ has a posterior median for the power-law slope of 0.626 with 95%
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CI (0.539, 0.720). The posterior median estimate of the population minimum flux is 10−16.32 with

95% CI (10−16.37, 10−16.26). Both estimates are not much higher than those in the analysis with

correct incompleteness specification. However, ignoring missing information does underestimate the

uncertainty in the estimates. This implies that if one was to ignore the effect of missing data, one

would be misguided to think that there are fewer sources, and the log(N) − log(S) is more steep

than it actually is. The log(N)− log(S) plot is shown in Figure 1.13. It seems very similar by eye

to the original analysis.

Figure 1.13. The log(N)− log(S)plot for the CDFN data while ignoring missing data.

1.5.2. Application: CHANDRA Deep Field South. A more recent survey was done on

another part of the southern sky: CHANDRA Deep Field South (CDFS). This survey was selected

for analysis as a more conclusive example of the existence of non-linearity in the log(N) − log(S)

relationship. CDFS is another deep 0.5-7.0 keV survey covering 0.11 square degrees with over 2000

detected X-ray sources. This survey is comprised of 11 days of CHANDRA ACIS-I exposure. We

consider a sample of 358 sources. The combined color image of CDFS is shown in figure 1.14.

Our Bayesian method yields the posterior median of power-law slope θ̂ of 0.3367, with a 95%

credible interval (CI) of (0.2863, 0.3946). The estimate does not agree with the expectations.

The population minimum flux is estimated at the posterior median τ̂ of 10−17.30 with 95% CI

(10−17.81, 10−16.98). The corresponding population size is estimated at the posterior median N̂ of
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Statistic/feature Posterior predictive p-value
Number of observed sources 0.3389
Minimum photon count 0.2488
Maximum photon count 0.0786
Median photon count 0.1658
Lower quartile of photon counts 0.1015
Upper quantile of photon counts 0.1319
Photon count IQR 0.1404
Crude estimate of R2 0.0974
Number of observed sources vs. med photon count 0.6343
Lower quartile vs. upper quartile of photon counts 0.7239
Number of observed sources vs. photon count IQR 0.6730
Number of observed sources vs. crude estimate of R2 0.1194
Table 1.2. Univariate and bivariate posterior predictive p-values for assessing the
adequacy of the model assumptions for the CDFN dataset.

Figure 1.14. “True-color” CHANDRA image of the whole CDFS

629 with 95% CI (497,907), estimating on average 57% completeness of the survey. Table 1.3 sum-

marizes the posterior estimates and central 95% credible intervals for the other key parameters of

our model. The posterior draws of the flux for the complete source population give rise to the

log(N) − log(S) plot shown in Figure 1.15. The plot clearly does not appear to be linear. The

log(N)− log(S) curve reflects large posterior uncertainty in the flux estimates.

We examine the adequacy of the model assumptions with posterior predictive checks. Posterior

predictive p−values for a selection of summary statistics are presented in table 1.4. The posterior

predictive check reinforces the lack of fit of the model. The univariate posterior predictive p-values
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Mean SD 2.5% 97.5%
N 648.0 104.1 497.0 907.0
θ 0.3378 0.0278 0.2863 0.39460
τ 10−17.2832 10−17.6531 10−17.8108 10−16.9817

Table 1.3. Posterior estimates of major parameters for the CDFS dataset of section 2.7.2

Figure 1.15. The log(N)− log(S)plot for the CDFS data.

are small (> 0.051) for the maximum photon count and the crude estimate of R2, indicating there

is a lack of fit. The bivariate p-value is 0.0015 for length of photon sample vs crude estimate of

R2 of the flux. Also, most values of the crude R2 are above 95% for predicted datasets and only

87% for the observed dataset, hence the linearity of the log(N) − log(S) is only due to the model

assumption but the model fit is poor. Selected PPC plots given in Figure 1.16 demonstrate lack of

model fit. We conclude that the simple Pareto model does not provide an appropriate fit to these

data. We will examine other models which allow for non-linearity in the log(N)− log(S) in the next

chapter.

1.6. Discussion and Concluding Remarks

We have presented a comprehensive method for estimation of the log(N)− log(S) relationship

using a hierarchical Bayesian model. The strengths of the model are many. First, it allows a

comprehensive study of the incompleteness of surveys by correctly accounting for missing data and
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Statistic Posterior predictive p-value
Number of observed sources 0.1700
Minimum photon count 0.2375
Maximum photon count 0.0500
Median photon count 0.3088
Lower quartile of photon counts 0.1806
Upper quantile of photon counts 0.2306
Photon count IQR 0.2371
Crude estimate of R2 0.0069
Number of observed sources vs. max photon count 0.3551
Lower quartile vs. upper quartile of photon counts 0.9590
Number of observed sources vs. photon count IQR 0.6867
Number of observed sources vs. crude estimate of R2 0.0015
Table 1.4. Univariate and bivariate posterior predictive p-values for assessing the
adequacy of the model assumptions for the CDFS dataset.

bias from detector effects. Second, as a by-product, it provides an easy way of imputing missing

information, such as estimates of the flux for observed and missing sources. Third, the method is

built on a strong probabilistic foundation that has a support from physical observations. Fourth, it

allows goodness-of-fit diagnostic checks. Fifth, our method works reasonably fast.

One must keep in mind that our model depends heavily on the specification of incompleteness

curve. The sensitivity studies have shown that misspecification of the priors of unknown parameters

is not as crucial for biased inference as misspecification of the incompleteness function. Hence, most

efforts must be put to obtain valid incompleteness curves. On the other hand, this is to be expected,

just as calibrating the detector is a requirement for unbiased inference in astrophysical surveys.

Other potential limitations of the current model are that it allows only straight-line relationships

for the log(N)− log(S) curve. The real question of interest is whether the power-law is sufficient or

perhaps curvature in the log(N)− log(S) plot really exists and is not due to the incompleteness of

the survey. The next chapter deals with possible extensions to the model to allow flexible forms of

the curve yet still preserving the correspondence between standard probabilistic assumptions and

physically motivated models.

By modeling the log(N) − log(S) relationship within a hierarchical Bayesian framework we

achieve flexibility in describing the properties of both the source population and the detector induced

uncertainties. Our method explicitly corrects for the non-ignorable missing data mechanism that is

often ignored by competing methods.
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Figure 1.16. The posterior predictive plots show that the single Pareto model fit
of CDFS dataset is not adequate. The posterior predictive p-value is around 0 for
the univariate PPC (histogram plot).
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CHAPTER 2

Analysis of the log(N)− log(S) Problem Modeled via a

Broken-Pareto Population –

«We all agree that your theory is crazy,
but is it crazy enough?»

Niels Bohr
— Jewish Danish physicist

2.1. Introduction

When observing very faint sources, it is common for log(N)−log(S) relationship to appear either

curved or piece-wise linear, rather than linear. It is of interest to discern whether the curvature is due

to the missing data near the detection boundary, or whether the curvature and/or non-linearity is a

real property of log(N)− log(S) for faint source populations. The single power-law model, described

in the previous chapter, does not allow sufficient flexibility to answer these questions. In extending

the single power-law model we must be careful to retain the astrophysical interpretation of the

model, as well as the requirement that the log(N)− log(S) shape corresponds to a valid population

distribution of the flux. Note that this requirement restricts many available curvature models (e.g.,

a general polynomial). We choose to model the log(N) − log(S) relationship as a combination of

multiple power-laws, connected at the knots. This model is typically referred to as a “broken” power-

law in the astrophysical literature, for example, see Zezas and Fabbiano (2002), Jóhannesson et al.

(2006), Kim et al. (2007), and a recent paper by Wong et al. (2014). In section 2.2.1 we show that

this model is equivalent to a mixture of truncated Pareto distributions for the flux. Other model

options are available as general mixtures of Pareto distributions, however, these models may not

provide desired shapes of log(N) − log(S) plot. In section 2.3 we provide the details of parameter

estimation in the broken-Pareto model. In order to select between various competing models, we

review existing methods for model selection in section 2.4 and implement a novel Bayesian model

selection procedure to decide between a single- and broken-Pareto model in section 2.6.
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2.2. Broken Power-Law Models

The estimation of piece-wise linear log(N)− log(S) relationship of X-Ray sources is common in

the astrophysical literature. For example, Mateos et al. (2008) estimate two and three piece linear

log(N)− log(S) relationship of X-ray sources collected over many bands of energy. The source fluxes

here assume to come from a mixture of flux populations. Mateos et al. (2008) use the maximum

likelihood to estimate parameters of the flux populations and perform chi-square goodness-of-fit

to approve of their model. Wong et al. (2014) also considers estimation of the piece-wise linear

log(N) − log(S) relationship for X-ray sources. Their method uses interwoven EM algorithm to

estimate the power-law slopes, the breakpoints, and the number of breakpoints in the resulting

mixture population of the flux. Both of these methods, however, cannot account for missing data

and require to limit their survey at a minimum flux. Ignoring the missing data may potentially

result in a biased estimation of parameters and narrow confidence intervals. In this section we

propose a coherent approach to estimating the piece-wise linear log(N)− log(S) relationship, while

accounting for the non-ignorable missing data process and detector-induced effects. We build the

Bayesian hierarchical model from the first principle assumptions to the flux distribution and follow

up with the algorithm for parameter inference. Our method, similar to Mateos et al. (2008), assumes

a known number of pieces in the log(N)− log(S) relationship. In order to select appropriate number

of pieces we examine methods for model selection in sections 2.4 through 2.6. We apply our method

to the CDFN and CDFS CHANDRA surveys in section 2.7. The results of the CDFN analysis is

compared to those provided by Wong et al. (2014).

2.2.1. Single Broken Power-Law Model. To generalize the basic power-law model for the

log(N) − log(S) distribution we have several options. First, we note that, under independent

sampling the linear log(N)− log(S) plot corresponds to a Pareto distribution for the complete-data

fluxes. More general shapes for the population log(N) − log(S) curve will correspond to different

complete-data flux distributions. Recall the duality of the power-law model: log(N) − log(S) is

linear if and only if the flux distribution is a Pareto distribution. Formally, let the complete-data

flux distribution G have c.d.f. FG, and suppose Si
iid∼ G. Define

log10 (1− FG(s)) := H (log10(s)) .
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Then the function H is linear if and only if G is the Pareto distribution. Since the linearity of

log(N)− log(S) has both theoretical and empirical support, the simplest and most commonly used

generalization is a broken power-law:

log10 (1− FG(s)) =

 α1 − θ1 log10(s), τ1 ≤ s < τ2

α2 − θ2 log10(s), s ≥ τ2
,(2.1)

subject to the continuity constraint that (α1 − α2) = (θ1 − θ2) log(τ2). Here, we define the Pareto

minimum τ1 and the break point as τ2. It is natural to ask if the broken power-law in (2.1)

corresponds to a known distribution. The answer, as may be expected, is ‘yes’: a mixture of

(truncated) Pareto distributions. Similarly to the power-law setting, the result is also ‘if and only

if’ result.

Lemma 2. Any distribution whose log(N)−log(S) plot is a broken power-law can be represented

as a mixture of a truncated Pareto distribution and an (untruncated) Pareto distribution.

That is, we have:

(2.2) Y ∼

[
1−

(
τ2
τ1

)−θ1
]
X1 +

(
τ2
τ1

)−θ1

X2,

where: X1 ∼ Truncated-Pareto (τ1, θ1, τ2) with CDF given by

F1(s) =
1−

(
s
τ1

)−θ1

1−
(
τ2
τ1

)−θ1
, τ1 ≤ s < τ2(2.3)

and X2 ∼ Pareto (τ2, θ2). The proof of Lemma 2 is found in Appendix B. It is important to note that

the continuity constraint restricts the distribution of Y to contain only 4 free parameters instead of

5 (two for each straight line and the break-point location).

The broken-Pareto CDF can be explicitly shown to be:

FG(s) =

 1−
(

s
τ1

)−θ1
, τ1 ≤ s < τ2

1−
(
τ2
τ1

)−θ1 (
s
τ2

)−θ2
, s ≥ τ2
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with the density:

fG(s) =


θ1
τ1

(
s
τ1

)−(θ1+1)
, τ1 ≤ s < τ2

θ2
τ2

(
τ2
τ1

)−θ2 (
s
τ2

)−(θ2+1)
, s ≥ τ2.

(2.4)

We can generalize the broken power-law idea further to any number of truncated Pareto mix-

tures. However, first we must mention another consequence of such model: it is impossible for an un-

constrained mixture of two (untruncated) Pareto distributions to have a broken power-law in the plot

of log(N)− log(S). Suppose that X1 ∼ Pareto (θ1, τ1), X2 ∼ Pareto (θ2, τ1), Y = pX1 + (1− p)X2,

for some p ∈ [0, 1], and let the CDF of X1, X2, Y be F1(s) = 1 − eα1sθ1 , F2(s) = 1 − eα2sθ2 , and

FY (s) = pF1(s) + (1− p)F2(s), respectively.

Assume that there exists a broken power-law relationship such that the log(N) − log(S) plot

is made up of two connected straight lines with slopes θ1 and θ2 at some connection point s = B.

Then the log(N)− log(S) plot will be described by this curve:

Q(s) = α1 − θ1 log10(s) + I{s ≥ B} [(α2 − α1)− (θ2 − θ1) log10(s)]

We expect this curve to be derived from logarithm of the CDF of the Pareto mixture:

log10(1− FY (s)) = log10{1− [pF1(s) + (1− p)F2(s)]}

= log10

[
1− p

(
1− eα1s−θ1

)
− (1− p)

(
1− eα2s−θ2

)]
= log10

(
peα1s−θ1 + (1− p)eα2s−θ2

)
It is obvious that Q(s) ̸= log10(1− FY (s)) for any p ∈ (0, 1), since it is impossible to distribute the

logarithm inside the parentheses. Hence, the two Pareto populations in the mixture do not overlap

if the power-law is piece-wise linear.

2.2.2. Multiple Broken Power-Law Model. The broken power-law model of section 2.2.1

can be further generalized to a piece-wise linear log(N) − log(S) relationship. In other words, we

can allow for an arbitrary number m mixture pieces or, equivalently, m − 1 break-points. The

setting is similar to the single broken power-law model, with the analogous probabilistic model

being a mixture of truncated Pareto distributions and a single untruncated Pareto distribution. Let

τ2, . . . , τm denote the locations of the breakpoints, τ1 denote the minimum flux, and τm+1 = ∞. If
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we assume a piece-wise linear theoretical log(N)− log(S) relationship then:

FG(s) =



1− α∗
1s

−θ1 , τ1 ≤ s < τ2

1− α∗
2s

−θ2 , τ2 ≤ s < τ3
...

...

1− α∗
m−1s

−θm−1 , τm−1 ≤ s < τm

1− α∗
ms−θm , s ≥ τm

In a similar manner to the single broken power-law setting we can show that:

Fj(s) =
1

pj

{
1−

j−1∑
i=1

pi

}[
1−

(
s

τj

)−θj
]
, j = 1, . . . ,m.(2.5)

Constraints on the CDF lead to a recursive relationship among the mixture probabilities:

pj =

[
1−

(
τj+1

τj

)−θj
](

1−
j−1∑
i=1

pi

)
, j = 1, . . . ,m,(2.6)

where
(
τj+1

τj

)−θj
is understood as 0 when j = m. Plugging into (2.5) we obtain:

Fj(s) =
1−

(
s
τj

)−θj

1−
(
τj+1

τj

)−θj
I{τj≤s<τj+1}, j = 1, . . . ,m.

In other words, the multiple broken power-law assumption corresponds to the following probabilistic

model:

Y ∼ I1X1 + I2X2 + · · ·+ ImXm

where:

Ij ∼ Multinomial (1, p1, p2, . . . , pm) ,

Xj ∼ Truncated-Pareto (τj , θj , τj+1) , j = 1, . . . ,m.

and p1, . . . , pm are defined by th following:

pj =

[
1−

(
τj+1

τj

)−θj
]

j−1∏
i=1

(
τi+1

τi

)−θi

,(2.7)
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which gives rise to the following identity:

1−
j∑

i=1

pi =

j∏
i=1

(
τi+1

τi

)−θi

(2.8)

(see Appendix B). Note that the final Pareto distribution is actually untruncated since τm+1 = ∞.

As expected, the continuity constraints leave only 2m free parameters: m slopes for the line segments

and m− 1 breakpoints, plus the minimum point τ1.

2.3. Posterior Inference for Multiple Broken Power-Law Model

The previous section described the distribution of the fluxes only. We now describe the full

Bayesian hierarchical model including modeling the photon counts and the missing data mechanism

for general multiple broken power-law.

2.3.1. Building the Posterior Distribution. Construction of the model for log(N)− log(S)

based on multiple broken power-law follows a similar structure to that of the single power-law model.

Again, let N be the (unknown) total number of sources in the complete source population, with

n and Nmis the number of observed and missing sources respectively, so that N = n + Nmis. We

assume a Negative-Binomial prior distribution for the total number of sources in the population

with flux above a given threshold, τ1 i.e., N ∼ Neg-Bin (aN , bN ). Conditional on the total number

of sources and model parameters, we assume that source fluxes for the complete source population

follow a broken power-law, i.e., a mixture of truncated Pareto distributions. We assume that the

number of mixture populations m is known. The model parameters are the m power-law slopes,

θ = (θ1, . . . , θm), the flux population minimum threshold τ1, and consequent breakpoints τ2, . . . , τm.

We note again that the value of τ1 is the flux population minimum threshold, which is not the same

as a flux detector threshold. We assume a conditionally conjugate Gamma prior distribution for θ

and τ1 i.e., θj ∼ Gamma (aj , bj) , j = 1, ...,m and τ1 ∼ Gamma (aτ , bτ ).

In order to build the broken power-law model assumption into our Bayesian hierarchical model,

we only need to modify two distributional assumptions from the single Pareto model scenario. First,

the model for the flux S = (S1, . . . , SN ) is changed to a broken-Pareto. Next, we need additional

prior distributions for the breakpoints τ = (τ1, . . . , τm). It can be shown (see Appendix B) that the
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general m-component broken power-law density of the flux is expressed as:

fY (s) =
m∑
j=1

{
j−1∏
i=1

(
τi+1

τi

)−θi
}(

θj
τj

)(
s

τj

)−(θj+1)

I{τj≤s<τj+1},(2.9)

where we define
∏0

i=1

(
τi+1

τi

)−θi
= 1. The choice of prior for τ1, . . . , τm is tricky because of the

complicated support of this multivariate distribution: 0 < τ1 < τ2 < · · · < τm. The dependence

among variables τj and further dependence of the latent flux variables Si: τj ≤ Si < τj+1 can

greatly reduce the efficiency of the Gibbs sampler of these parameters. We examined a number of

various sampling strategies of τj and found that the following procedure works well. We propose

to split the Gibbs sampler into two blocks: [τ1] and [τ2, . . . , τm] and utilize a transformation of

variables in the latter block to another space, where the transformed variables are unconstrained

and independent. We let τ1 ∼ Gamma(aτ , bτ ). We further define a log transformation on τj as

ηj = hj(τj |τj−1) = log(τj − τj−1) for j = 2, . . . ,m. In this situation τ̃ = (τ2, . . . , τm)T can be

expressed as:

τ̃ = h−1(η|τ1) =


τ1 + eη2

τ1 + eη2 + eη3

...

τ1 +
∑m

j=2 e
ηj


(2.10)

where we assume η = (η2, . . . , ηm)T
indep∼ Multivariate-Normal(µ,C) with µ = (µ2, . . . , µm)T and

C = diag{c−1
2 , . . . , c−1

m }. Let τ̃ = (τ2, . . . , τm)T . This transformation preserves non-negativity and

increasing order of τj ’s, hence the sampling of the breakpoints τ̃ can be efficiently performed on the

space of η.

Using (2.9) we can now derive the posterior distribution and describe the sampling strategies of

all unknown parameters, where we marginalize the complete data posterior across all the missing

source information. Assume the total number of broken-Pareto pieces, m is known in advance. Let
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θ = (θ1, . . . , θm)T and τ = (τ1, . . . , τm)T . The posterior distribution of the break-point model is:

(2.11) p(N, θ, τ, Sobs, Y
src
obs |n, Y tot

obs , Bobs, Lobs, Eobs)

∝

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)

 ·

 m∏
j=1

b
aj
j

Γ(aj)
θ
aj−1
j e−bjθj I{θj>0}


·

 N + aN − 1

aN − 1

( 1

1 + bN

)N ( bN
1 + bN

)aN

I{N∈Z+}


· p (τ1, . . . , τm) I{0<τ1<τ1<···<τm} ·

[
n∏

i=1

p (Bi, Li, Ei) · g(Si, Bi, Li, Ei)

·
m∑
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}(

θj
τj

)(
Si

τj

)−(θj+1)

I{τj≤Si<τj+1} ·
(λi + ki)

Y tot
i

Y tot
i !

e(λi+ki)I{Y tot
i ∈Z+}

·

 Y tot
i

Y src
i

 ( λi

λi + ki

)Y src
i
(
1− λi

λi + ki

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

]
,

with τm+1 = +∞, λi ≡ λ(Si, Bi, Li, Ei), ki ≡ k(Bi, Li, Ei),
∏0

i=1

(
τi+1

τi

)−θi
≡ 1, and

π(θ, τ) =
∫
g(S,B,L,E) · p(S,B,L,E|θ, τ) dS dB dE dL, the marginal probability of detecting a

source. Full derivation of this posterior is given in Appendix B.

We note that the form of this distribution is not much more complex than the single-Pareto

posterior distribution of previous chapter. The main differences are in the prior distribution of

the break-points and the broken-Pareto likelihood function (2.9). Sampling from the posterior

distribution via MCMC is described in the next section.

2.3.2. Sampling of Parameters. The posterior distribution (2.11) allows us to compute full

conditional distributions of all unknown parameters and describe their sampling techniques. In this

section we describe the sampling methods for the parameters θ = (θ1, . . . , θm)T , τ̃ = (τ2, . . . , τm)T ,

and Sobs. Note that the sampling methods for parameters N,Y tot
obs , Y

src
obs for this hierarchical broken-

Pareto model are very similar to that of the single-Pareto model, so we omit further discussion

of this topic. The details of derivation of the full conditional distributions can be found in the

Appendix B.
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Sampling θ = (θ1, . . . , θm)T : We have

p(θ| · ) ∝
[
(1− π(θ, τ))N−n

]
·

·
m∏
j=1

Gamma

(
θj ; aj + n(j)− 1,

bj + I{j ̸=m} log

(
τj+1

τj

) m∑
i=1

[
n(i)I{i≥j+1}

]
+
∑

i∈I(j)

log

(
si
τj

) ,

where I(j) = {i : τj ≤ si < τj+1} and n(j) is the cardinality of I(j) i.e., I(j) (n(j)) denotes the set

(number) of source indices whose flux is contained in the interval corresponding to the j-th mixture

component.

All terms apart from those involving π(θ, τ) factorize in terms of θ1, . . . , θm. This partial factor-

ization allows for the exact (conditional) posterior draws to be obtained by rejection sampling (see

Appendix B). The rejection sampling procedure is beneficial because it is guaranteed to produce

conditionally independent posterior draws. However, in practice the acceptance rate of this rejection

sampler can be very low. For this reason we choose to use the Metropolis-Hastings algorithm to

obtain approximate (conditional) posterior draws of θ. We use normal distribution proposals with

the variance tuned to insure acceptance for MH between 20%-60%. The sampling via MH procedure

is selected at random with success probability 0.9, otherwise, the rejection sampling method is used.

Sampling τ̃ = (τ2, . . . , τm)T via η = (η2, . . . , ηm)T : Recall that τ̃ = h−1(η|τ1) and consider

components τj = h−1
j (η|τ1) = τ1 +

∑j
k=2 e

ηk , as in (2.10). We have

p(η| · ) = p(h(τ̃ |τ1)| · ) ∝
[
(1− π(θ, τ))(N−n)

]
· exp

−1

2

m∑
j=2

{cj(ηj − µj)}2
 · I{τ1<τ2<···<τm}

·

 m∏
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}n(j) ∏

i∈I(j)

(
θj
τj

)(
si
τj

)−(θj+1)

I{τ1<min(s1,...,sn)}

 ,

where I(j) = {i : τj ≤ si < τj+1} and n(j) is the cardinality of I(j). Sampling of whole η vector

is done via the Metropolis-Hastings algorithm. We use normal proposal distribution for η with a

variance tuning parameter. This transformation satisfies all constraints on τ : 0 < τ1 < τ2 < · · · <

τm, but performs sampling in η space.
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Figure 2.1. Coverage line plot for the broken-Pareto model. Validation is implied
since all parameter quantiles (colored lines) correspond to the nominal levels and fall
close to the 45 degree line.

Sampling Sobs = (S1, . . . , Sn)
T : For i = 1, . . . , n, we have

p (Si| · ) ∝ g(Si, Bi, Li, Ei) · Pareto (Si; θ, τ)

· Poisson (Y tot
i ;λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)) ·

· Binomial
(
Y src
i ;Y tot

i ,
λ(Si, Bi, Li, Ei)

λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)

)
Sampling is done with the Metropolis-Hastings algorithm. We use a normal distribution proposal

with the tuning variance parameter.

2.3.3. Validation. As described in previous chapter, the MCMC samples from the posterior

distribution admit themselves to a self-consistency check. We perform the validation check of the

broken-Pareto model to estimate parameters N, θ, τ, Sobs. Results in Figure 2.3.3 shows that the

convergence to the stationary distribution is reached because all coverage proportions (colored lines)

lie within the approximate binomial error bounds (dashed black lines).

We note that the validation is much harder to achieve for missing data models because it requires

the accurate computation of the marginal probability of observing a source, π. Our results show
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that numerical approximation to π performed within the Gibbs sampler makes it much harder to

attain a validated result. We suggest pre-computing and smoothing π prior to application of the

Gibbs. We find that relaxing the stringent requirements on knowledge of probability of observing a

source to within 0.01 of the truth results in reasonable parameter estimates. In practice, once the

algorithm has been validated, convergence of the Monte Carlo chain should be verified through the

trace plots of the parameter draws and numerical summaries, such as the effective sample size.

2.3.4. Parameter Inference. The inferences for the log(N)− log(S) parameters are based on

the posterior MCMC draws. The main interest falls on the estimates of broken power-law slopes,

θ1, . . . , θm, and location of the flux breakpoints τ2, . . . , τm. Of secondary interest are estimates

of the minimum threshold, τ1, and the population size N . We use posterior mean, median, or

mode to represent the estimates and construct 95% posterior credible intervals to represent the

uncertainty in these estimates. The log(N)− log(S) plot can be constructed after the sampling of

Smis given MCMC draws of other parameters. This plot helps to visually examine the potential

curvature of log(N)− log(S) and helps to determine if the parameter estimates are reasonable from

the astrophysical point of view. We also examine the posterior predictive checks of this model to

verify goodness-of-fit.

We emphasize that the current log(N) − log(S) model is a conditional model assuming the

knowledge of the number of broken-Pareto components, m. Formal methodology for the estimation

of the number of breakpoints is an obvious extension of the method. We leave this problem for future

work, but supply ideas of the associated challenges in the Discussion section below. On the other

hand, in the subsequent sections we describe how to select the number of broken-Pareto components

utilizing model selection criteria in Bayesian settings and a novel model selection approach called

Bayesian adaptive fence method.

2.4. Model Selection

When one is presented with multiple plausible models, it is of interest to have an automated

procedure for model selection. In log(N)− log(S) setting it is crucial to be able to choose among the

candidate models, e.g., single Pareto model vs. broken-Pareto model with one break point. Model

selection procedures have been adapted for Bayesian methodology and are typically designed based

on evaluation of model performance given the data. Even though it is a widely researched topic,

it is often a difficult problem that does not have a unique best solution. We present some popular
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methods for Bayesian model selection, including the Bayes Factor and Information Criteria. In

section 2.5 we present simulation results examining their performance in various classical scenarios

for model selection and identify their weaknesses. In section 2.6 we introduce a new method for

model selection called the Bayesian adaptive fence method and show its improvement over the

present methods in simulation.

2.4.1. Bayes Factor. In comparing two available models M1 and M2, a popular method for

evaluating model performance is the Bayes Factor, which is the ratio of the marginal likelihoods

of the data under model 1 and model 2. Suppose that the data is in the form of a vector y, and

a continuous parameter vector β ∈ ΩMk
under model Mk where k = 1, 2. When Mk is the true

model, the marginal likelihood is given by:

(2.12) p(y|Mk) =

∫
ΩMk

p(y|β,Mk)p(β|Mk)dβ.

This quantity is sometimes referred to as the Bayesian evidence of model Mk and represents the

average of the likelihood p(y|β,Mk) under the prior p(β|Mk). Simple application of Bayes rule gives

the posterior probability

(2.13) p(Mk|y) =
p(y|Mk)p(Mk)

p(y|M1)p(M1) + p(y|M2)p(M2)
, (k = 1, 2),

where p(Mk) is the model prior with p(M1) = 1− p(M2). Taking the ratio of the posterior proba-

bilities, we have:

(2.14)
p(M1|y)
p(M2|y)

=
p(y|M1)

p(y|M2)

p(M1)

p(M2)
= BF12

p(M1)

p(M2)
,

where the Bayes Factor (BF) is defined as

(2.15) BF12 =
p(y|M1)

p(y|M2)
.

The Bayes Factor in (2.14) is the ratio of the posterior odds and prior odds when M1,M2 are

the only model choices. It is the factor by which the relative odds between two models improve

after accounting for the data. Hence, the value BF12 represents the change in strength of evidence

provided by the data in favor of one scientific theory (M1) as opposed to another (M2). Jeffreys

(1961) and Kass and Raftery (1995) give reference scales for interpretation of strength of evidence

(see Table 2.1).
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log(B12) Evidence against M2

0 – 0.5 Not worth mentioning
0.5 – 1 Substantial

1 – 2 Strong
>2 Decisive

Table 2.1. Interpretation of the evidence against model M2 compared to model M1

based on logarithm of the Bayes Factor.

When multiple candidate models are involved, enumerable by a set M = {M1, M2, ...}, the

same idea generalizes to Bayes factor BFjk. It shows the change in strength of evidence for Mj

against Mk.

The marginal probability p(y|Mk) is central for evaluating the BF. However, in the majority

of hierarchical Bayesian models, the unknown parameter has multiple dimensions and makes the

evaluation of (2.12) intractable. In practice, therefore the marginal probabilities must be approxi-

mated based on the Monte Carlo draws of the parameter. The difficulty with this approach stems

from the fact that the use of prior distribution as the importance density is extremely inefficient

in practice because the prior is too broad to provide good samples that maximize the likelihood.

If the parameter has multiple dimensions, then the likelihood peak is very narrow, so it becomes

virtually impossible to efficiently sample good parameter configurations from the prior. For this

reason, samples from the posterior distribution may be more useful in providing a better approxi-

mation to the integral. A comprehensive review of standard methods for approximating marginal

probabilities (2.12) is given in Kass and Raftery (1995), Chen et al. (2000), and Ardia et al. (2009).

In the following we will be focusing on model Mk for fixed k. Thus, for simplicity of notation, we

drop dependence on Mk, so that

p(y|Mk)
def
= p(y) =

∫
Ω
p(y|β)p(β)dβ

is the familiar marginal density of the data, a normalizing constant of the joint posterior density.

Newton and Raftery (1994) show that, due to the identity,

(2.16) E

[
1

p(y|β)

∣∣∣∣ y] = ∫ 1

p(y|β)
p(β|y)dβ =

∫
p(y|β)p(β)
p(y|β)p(y)

dβ =
1

p(y)

∫
p(β)dβ =

1

p(y)
,
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a natural estimator of (2.12) is the harmonic mean of the likelihood, evaluated at the posterior

samples of parameters β(1), ..., β(L):

(2.17) p(y) ≈

(
1

L

L∑
i=1

1

p(y|β(i))

)−1

.

This estimator has been a part of large debate. p(y) is known to be very sensitive to changes to the

prior, however, the estimator (2.17) is typically not sensitive to the prior choice. Also, the variance

of the harmonic mean estimator is often not finite (Kass and Raftery, 1995), hence this estimator

is not expected to perform well. For example, Robert et al. (2009) or Neal (2008) show that this

estimator performs poorly. We present the BF result based on (2.17) for simplicity of computation

and for comparison.

Many approximations to the Bayesian evidence or directly to the Bayes Factor have been pro-

posed in the literature. Unfortunately, all methods we considered are not computationally viable

when applied to the log(N)− log(S) problem. Laplace approximation to the integral is not appro-

priate due to the high dimensionality of the parameter space and highly skewed posterior distribu-

tions. Newton and Raftery (1994) suggest modifications to (2.17) using simulated annealing and an

iterative approximation to the marginal likelihood. Due to the extreme small order of magnitude

of the flux parameters with skewed posteriors, numerical error is usually incurred. Meng and Wong

(1996) describe a bridge sampling estimate of the BF, which is another twist on the importance

sampling idea. We implemented an approximation based on the harmonic mean and geometric

mean (Meng and Wong, 1996), but found that neither of these methods were precise enough to

give useful results. Skilling (2004) describes a nested sampling algorithm, in which the multidi-

mensional integral is recast into a one-dimensional integral for ease of numerical evaluation. The

log(N)−log(S) problem has many types of parameters with highly skewed and peaked distributions,

and we have not yet found an appropriate recasting function.

If the BF does not have an analytic solution and priors have similar volume, it is not always

clear if the approximated BF value can be trusted, and whether improvement in quality of fit of

the model is actually visible. Besides, the BF does not measure goodness of fit of the model and

does not penalize for overfitting. Penalization type class of model selection methods have been

proposed that set a default penalty for complex models. Given the computational and theoretical
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issues with the Bayes Factor for the log(N) − log(S) problem, we now consider other methods for

model selection.

2.4.2. Information Criteria. The most widely used information criterion is the Akaike In-

formation Criterion (AIC) (Akaike, 1974), defined as:

(2.18) AIC = −2 log p(y|β̂MLE) + 2k,

where the conditional likelihood, p(y|β), is maximized at the maximum likelihood estimate β̂MLE

of the unknown parameter β, and k is the number of parameters in the model. AIC consists of two

terms: a measure of goodness of fit, which decreases with more complex models, and a penalty for

model complexity, which increases for more complex models. The model is selected based on the

minimum AIC. In practice for Bayesian problems, AIC has a good performance when flat priors

are used and when a maximum likelihood estimate is easily available; however, in other situations

AIC is not guaranteed to work well. From a Bayesian point of view, the AIC may be considered as

−2 times the estimate of out-of-sample predictive accuracy, the expected log predictive distribution

E[log p(y∗|β̂(y))] =
∫
log p(y∗|β̂(y))p(y∗)dy∗, where the posterior distribution is summarized by a

maximum likelihood point estimate of the parameter. This expression cannot be estimated directly.

The standard approach is to use the log posterior density of the observed data given β̂(y) and

correct for bias due to overfitting. The value k is the bias correction for the amount of increase in

predictive accuracy given the maximum likelihood estimate by fitting k parameters. Informative

prior distributions and hierarchical structures, such as in log(N)− log(S) problem, tend to reduce

the amount of overfitting, so k may be too large for needed bias correction. For our log(N)− log(S)

model, AIC is also not applicable because the MLE is not available due to nature of the missing

data.

A modified Bayesian version of AIC is defined by Spiegelhalter et al. (2002) and is called the

Deviance Information Criterion (DIC). It is computed by replacing the MLE by its posterior estimate

β̃Bayes, for example β̃PostMean = E[β|y], and by replacing k with a data-driven bias correction:

(2.19) DIC = −2 log p(y|β̃Bayes) + 2pDIC .

The term log p(y|β̃Bayes) is the estimate of the expected log predictive density, which we consider

as a semi-Bayesian version of the measure of predictive accuracy. The bias correction term, pDIC ,
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is the estimated effective number of parameters and is defined by:

pDIC = 2
{
log p(y|β̃Bayes)−E[log p(y|β)|y]

}
,

where the expectation is the average of β over the posterior distribution. In practice, the poste-

rior expectation is approximated from simulations by replacing the expectation E[log p(y|β)|y] by

average over the L posterior draws β
(l)
MCMC :

1

L

L∑
l=1

{
N∑
i=1

log p(yi|β(l)
MCMC)

}
.

Similarly, the plug-in estimate of β, the posterior mean, can be evaluated as 1
L

∑L
l=1 β

(l)
MCMC . β̃Bayes

estimate may not be unique. Using posterior mean, median, or mode, we arrive at DICMean,

DICMedian, and DICMode, respectively.

The advantage of DIC is in the ease computation, because it can be evaluated using already

available MCMC draws of the parameter vector. The DIC approach gained popularity from its

implementation in WinBugs package for Bayesian data analysis. Among many criticisms of the DIC,

two issues stand out. For missing data problems, the definition of a parameter, and hence, of the

DIC, becomes somewhat arbitrary. For example, Celeux et al. (2003) gives eight modifications to the

DIC. Another issue is that pDIC is not guaranteed to be positive for models outside of log-concave

densities. An alternative definition of the penalty that guarantees positivity is:

pDIC,V = 2V ar[log p(y|β)|y],

with corresponding value for DIC: DICV . Gelman et al. (2013) show that both penalties give the

correct limit for fixed model and increasing sample size, while pDIC is more numerically stable.

In the next subsections we present the performance of the DIC method for model selection for

hierarchical models.

A “fully” Bayesian version of AIC is introduced by Watanabe (2010) and is called the Watanabe-

Akaike Information Criterion, or a “widely applicable information criterion” (WAIC). It assumes

that all observations are independent. It uses the expected log pointwise predictive density as a

new dataset as measure of predictive accuracy instead of plug-in predictive density, as in DIC. The
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correction for the effective number of parameters to adjust for overfitting is defined as:

pWAIC1 = 2

N∑
i=1

{logE[p(yi|β)|y]− E[log p(yi|β)|y]} ,

where first term inside the summation is the log pointwise predictive density of the i-th data point:

logE[p(yi|β)|y] = log

∫
p(yi|β)p(β|y)dβ

and is estimated in practice with the use of parameter draws form the posterior distribution:

log

{
1

L

L∑
l=1

p(yi|β(l)
MCMC)

}
.

The second term is evaluated similarly:

p̄ =

{
1

L

L∑
l=1

log p(yi|β(l)
MCMC)

}
.

An alternative definition is to use the variance of the individual terms in log predictive density

combined across all data points:

pWAIC2 =

N∑
i=1

V ar[log p(yi|β)|y],

where the variance is estimated by

1

L− 1

L∑
l=1

{
log p(yi|β(l)

MCMC)− p̄
}2

.

Note that the pWAIC2 expression omits the factor of 2. It shows the fluctuation of the posterior

distribution. With respect to the posterior distribution, log p(yi|β), 1 ≤ i ≤ N are not independent

even if yi, 1 ≤ i ≤ N are, indeed, independent. The WAIC is defined similarly to AIC and DIC in

estimating predictive accuracy with bias correction:

WAICj = −2
N∑
i=1

logE[p(yi|β)|y] + 2pWAICj .

Finally, another well known information criterion is due to Schwarz (1978), who defines the

Bayesian Information Criterion (BIC). BIC has a similar form to AIC (2.18), however, the penalty
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is replaced by k log(n), that is,

BIC = −2 log p(y|β̂MLE) + k log(n),

which for large datasets gives a larger penalty per parameter when compared to AIC. BIC is derived

from approximating marginal probability of the data, which is different from the goal of other

information criteria to approximate the predictive accuracy of the model. Nevertheless, we present

the BIC results whenever possible for comparison.

2.5. Simulation Studies for Bayesian Model Selection

In this section we perform multiple simulation studies for model selection performance. We

consider the classical setting, where the goal is to select the true model that is one of the models in

the candidate set. Admittedly, it is rare for the true model to be part of the candidate set of models,

and the usual approach in practice is to focus on the selection of a model with the goal of optimal

prediction. In this situation, the chosen model can be incorrect but useful. From here arises the

common Bayesian point of view to compare model selection rules in hopes of understanding the fitted

models, instead of selecting one best model. On the other hand, for problems like log(N)− log(S),

where the selection of a useful model is desirable, the Bayesian point of view may not acceptable. One

is then to search for the best available Bayesian model selection rule (among AIC, DIC, WAIC and

BIC). Hence, the classical settings we consider now are useful in comparing performance of model

selection methods to know which method has a potential to perform poorly even in reasonably

simple scenarios.

2.5.1. Performance of Information Criteria in Bayesian Multiple Linear Regression.

We now examine the performance of DIC and WAIC in the classical setting of Bayesian multiple

linear regression. We judge the performance in terms of correctly selecting a correct model out of

3 candidate nested models. It is known that DIC tends to overfit the data and is not consistent as

n → ∞. Little is known about WAIC. Usually, these statistics are used in comparison when applied

to the single dataset. However little information about reliability is known in this case.
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Selection Criteria N20 N50 N100 N200 N500 N1000 N10000
DICmean 0.94 0.96 0.92 0.84 0.88 0.89 0.82

DICmedian 0.94 0.96 0.92 0.84 0.88 0.89 0.82
DICmode 0.88 0.92 0.89 0.84 0.82 0.88 0.82

DICV 1.00 1.00 0.99 0.97 0.98 0.94 0.84
WAIC1 0.90 0.94 0.92 0.80 0.86 0.88 0.82
WAIC2 0.91 0.95 0.92 0.82 0.86 0.89 0.82

AIC 0.76 0.85 0.86 0.74 0.82 0.84 0.80
BIC 0.84 0.94 0.96 0.94 1.00 0.98 1.00

Table 2.2. (Flat prior) Proportion that Model M2 with 2 predictors was selected
against Models M1 and M3. Model M1 was never selected.

Selection Criteria N20 N50 N100 N200 N500 N1000 N10000
DICmean 0.94 0.96 0.92 0.84 0.88 0.89 0.82

DICmedian 0.94 0.96 0.92 0.84 0.88 0.89 0.82
DICmode 0.88 0.92 0.89 0.84 0.82 0.88 0.82

DICV 1.00 1.00 1.00 0.97 0.98 0.94 0.84
WAIC1 0.90 0.94 0.92 0.80 0.86 0.88 0.82
WAIC2 0.91 0.95 0.92 0.82 0.86 0.89 0.82

AIC 0.76 0.85 0.86 0.74 0.82 0.84 0.80
BIC 0.84 0.94 0.96 0.94 1.00 0.98 1.00

Table 2.3. (Informative prior) Proportion that Model M2 with 2 predictors was
selected against Models M1 and M3. Model M1 was never selected.

Three nested models are considered as follows:

M1 :yi = β1 + β2x1i + ϵi

M2 :yi = β1 + β2x1i + β3x2i + ϵi

M3 :yi = β1 + β2x1i + β3x2i + β4x3i + ϵi

ϵi
iid∼ N(0, σ2)

We simulate data under M2, with true β1 = 2, β2 = 1, β3 = 1, σ = 0.5, and independent

set of predictors Xj ∼ Normal (0, 1), j = 1, 2, 3, 4, which corresponds to a fairly low signal-to-

noise. To probe consistency, we simulate the data of various scales for y1, . . . , yN , where N =

20, 50, 100, 200, 500, 1000, 10000. To evaluate under- and overfitting, we fit all 3 nested models to

each dataset. To do this, we assume conjugate priors: σ2 ∼ Scaled-Inverse-Chi-Squared (ν0, s
2
0)

and β|σ2 ∼ Normal (β0, σ2Λ−1
0 ). Informative priors were set with ν0 = 50, s20 = 0.5, β0 =

(2, 1, . . . , 1)T ,Λ−1
0 = 2I. Flat priors can be achieved by setting ensured with s20 = 0 and Λ−1

0 = 0.
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We simulate 10000 Monte Carlo draws of the parameters from the posterior distribution. The sim-

ulation was repeated 200 times for each dataset. We select the model based on the minimum DIC,

WAIC, AIC, and BIC, and report the proportions of correctly selected models out of 200.

Results in Tables 2.2 and 2.3 show that the DIC and WAIC perform well for both prior scenarios.

Both tables give very similar results. Methods never select the under-fitted model M1. Some

methods select the overfitted model M3 that includes all important predictors in addition to a third

predictor. The proportion of overfitting ranges between 0% and 18% at various sample size datasets.

This means that all methods perform well with at least 82% of probability of correctly selecting

true model out of three candidates. In both prior setting scenarios, DICV outperforms all other

methods for small to moderate sample sizes, achieving perfect selection in a few cases. Our results

demonstrate that, with increasing sample sizes, the rate of correctly selecting the true model does

not increase to 1 for any method. Hence, neither DIC nor WAIC are consistent for model selection.

The performance of AIC and BIC is as expected. BIC has a perfect selection for large sample sizes,

it is consistent. AIC is not consistent and performs slightly worse than DIC and WAIC. These

results suggest the model selection based on DIC and WAIC in linear models can perform well, with

DICV being the best among measures based on posterior parameter draws.

2.5.2. Performance of Information Criteria in Simulation Study of Flux Data. Model

selection criteria of AIC, DIC, and WAIC are derived under the assumption of approximate Gaussian

estimation. We now consider a hierarchical Bayesian model for which the MCMC draws of param-

eters produce highly skewed posteriors. We demonstrate that in these situations, performance of

the information criteria for model selection is not adequate. The model is defined as follows:

Yi|τ, θ,m ∼ Pareto (τ, θ)T , τ = (τ1, ..., τm)T , θ = (θ1, ..., θm)

θ
iid∼ Gamma (a, b)

τ1 ∼ Gamma (α, β)

ηj
iid∼ Normal(µ, c)

τj = τ1 +

j∑
k=2

eηk , j = 2, ...,m

The above model is the Flux model part of the hierarchy within log(N)− log(S) for complete data

scenario (no missing data). We assume the number of Pareto mixture components, m, is known
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in advance. Hence, our model can be viewed as a conditional model given m. Nevertheless, we do

not treat m as a parameter. When m = 1, the model is called bp0, simple Pareto model without

breakpoints. When m = 2, the model is called bp1, the broken-Pareto model with 1 breakpoint.

When m = 3, the model is called bp2, the broken-Pareto model with 2 breakpoints. Even though

these models are not nested theoretically, they can be considered approximately nested as the

breakpoints move closer to the minimum flux, τ1. In results that follow, the true model of the data

generating process is bp1, the “underfitted” model is bp0, and the “overfitted” model is bp2. The

goal is to select the correct model using information criteria DIC, WAIC, AIC, and BIC.

The hyperparameters of the priors of unknown parameters θ, τ, and η are assumed to be

completely known. We consider two settings: vaguely informative priors (Weak Prior) use θj ∼

Gamma (2.5, 1), η ∼ Normal(−37.7, 0.7), and τ1 ∼ Gamma (1.02, 1.02 × 1016) to match E[τ1] =

10−16 and SD[τ1] = 9.9×10−17; informative priors (Informative Prior) use θj ∼ Gamma (25, 16), η ∼

Normal(−38, 0.6), and τ1 ∼ Gamma (9, 6 × 1017) to match E[τ1] = 1.5 × 10−17 and SD[τ1] =

5× 10−18.

Every dataset was generated under the true model with the following parameters: θ = (1.1, 1.5), τ =

(10−17, 2 × 10−17), with m = 2 (True model bp1). We generated the data at various sample sizes:

N = 15, 50, 100, 200, and 500. Each scenario was repeated 200 times.

MCMC was used to estimate the parameters under bp0, bp1, and bp2 models. We omit the

derivation here, noting that θ can be sampled directly from gamma distribution, and the flux

breakpoints require Metropolis. For Metropolis updates of τ1 and ηj , the proposal variances were

tuned every 100 iterations out of first 5,000, resulting in an approximate acceptance rate of 35%.

We used 10,000 burn-in and additional 50,000 kept iterations for our MCMC sampler. All posterior

evaluations were based on these kept draws. Model selection criteria DIC and WAIC are based

directly on the posterior draws of parameters. In order to produce AIC and BIC, we also computed

MLE of the parameters assuming a traditional frequentist approach via log likelihood (derivation

omitted).

Table 2.4 shows that all methods perform rather poorly in selecting the correct bp1 model.

The best performance is seen only for larger sample size data N = 500, where the best model

selection method is WAIC2 followed by WAIC1 and BIC. Only at N = 500 the DIC at median

and mode, WAIC1, WAIC2, and BIC correctly select the true model with probability just above

50%. At smaller sample sizes all methods demonstrate their failure to select the correct model with



2.5. SIMULATION STUDIES FOR BAYESIAN MODEL SELECTION 64

N bp DICmean DICmed DICmode DICV WAIC1 WAIC2 AIC BIC
15 0 0.20 0.24 0.38 0.89 0.77 0.67 0.54 0.72

1 0.11 0.14 0.17 0.08 0.08 0.13 0.34 0.26
2 0.69 0.62 0.45 0.04 0.15 0.20 0.12 0.03

50 0 0.14 0.25 0.39 0.93 0.67 0.61 0.18 0.79
1 0.27 0.20 0.20 0.07 0.18 0.18 0.36 0.18
2 0.59 0.55 0.41 0.01 0.15 0.20 0.46 0.03

100 0 0.12 0.17 0.38 0.89 0.62 0.58 0.07 0.72
1 0.24 0.33 0.21 0.09 0.18 0.20 0.23 0.25
2 0.65 0.49 0.41 0.03 0.19 0.21 0.70 0.03

200 0 0.07 0.12 0.33 0.88 0.48 0.47 0.01 0.68
1 0.40 0.34 0.29 0.09 0.36 0.39 0.10 0.30
2 0.54 0.53 0.39 0.04 0.15 0.14 0.90 0.01

500 0 0.01 0.04 0.10 0.65 0.14 0.14 0.00 0.34
1 0.44 0.52 0.56 0.26 0.71 0.73 0.01 0.62
2 0.55 0.45 0.34 0.09 0.14 0.13 0.98 0.04

Table 2.4. (Weak prior) Proportion of selecting Model bp0, bp1, and bp2 when
True Model is bp1. For example, for sample size N=15, the BIC procedure selected
model bp0 72%, model bp1 26%, and model bp0 3% out of 200 datasets.

1 breakpoint. For example, the DIC at mean, median, mode tend to select a larger model with

2 breakpoints instead of 1. DICV , WAIC1, WAIC2, BIC methods tend to over-penalize, whereas

DIC at mean, median, mode methods tend to under-penalize. AIC under-penalizes for large sample

sizes, but over-penalizes for small sample sizes. BIC vaguely exhibits consistency behavior when

the sample size is increasing. AIC and DIC are not consistent with increasing sample size.

Overall, no good model selection procedure exists from the ones we examined. It is possible

that the selection criteria are not capable in picking up the difference between models. For a given

dataset, the values of the criterion function are very similar between different models. It appears

that for the smaller sample size the selection based on minimum value of the criteria among the 200

datasets is almost due to chance. Evidently, there is no difference in predictive power among the 3

models when judged by DIC or WAIC.

In this simulation, the DIC procedure has a very serious problem: negative penalty is a common

occurrence. The penalty term is the measure of complexity and is associated with the effective

number of parameters, so it is unreasonable for its measure to be negative. A negative penalty will

further decrease the value of the criterion and hence can mistakenly point to select a model. We

found that 62% of the datasets produced a negative penalty in DIC at mean, 10% of the datasets

produced that in DIC at median, and 6% of the datasets produced that in DIC at mode. Hence,

DIC method is not recommended for model selection in application to the flux data.
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N bp DICmean DICmed DICmode DICV WAIC1 WAIC2 AIC BIC
15 0 0.26 0.23 0.28 0.68 0.46 0.40 0.54 0.72

1 0.24 0.29 0.29 0.20 0.28 0.30 0.34 0.26
2 0.50 0.47 0.42 0.13 0.27 0.30 0.12 0.03

50 0 0.16 0.23 0.35 0.84 0.47 0.44 0.18 0.79
1 0.26 0.26 0.27 0.12 0.27 0.28 0.36 0.18
2 0.58 0.51 0.38 0.04 0.26 0.28 0.46 0.03

100 0 0.14 0.14 0.34 0.82 0.36 0.34 0.07 0.72
1 0.24 0.25 0.20 0.12 0.30 0.32 0.23 0.25
2 0.61 0.61 0.46 0.06 0.34 0.34 0.70 0.03

200 0 0.07 0.10 0.28 0.82 0.32 0.30 0.01 0.68
1 0.35 0.31 0.33 0.14 0.39 0.41 0.10 0.30
2 0.58 0.59 0.39 0.04 0.29 0.28 0.90 0.01

500 0 0.03 0.04 0.12 0.55 0.10 0.10 0.00 0.34
1 0.50 0.50 0.56 0.33 0.68 0.69 0.01 0.62
2 0.47 0.47 0.32 0.12 0.22 0.21 0.98 0.04

Table 2.5. (Informative pior) Proportion of selecting Model bp0, bp1, and bp2
when True Model is bp1. The structure is similar to Table 2.4.

Result in Table 2.5 is similar to the weak prior simulation result we just discussed. Only at

N = 500 most methods attain the correct model selection proportion of 50% or more. WAIC1 and

WAIC2 methods show the best performance, followed by BIC. DIC at mean and median, and AIC

tend to overfit and select the larger model with 2 breakpoints instead of 1. For smaller sample sizes

all methods fail to select the correct model. Overpenalizing methods are DICV , WAIC1, WAIC2.

Underpenalizing methods are DIC at mean, median, mode. AIC and BIC result did not change

from before.

To summarize, all methods demonstrate their inability to select the correct model with 1 break-

point. This result supports the notion that DIC nor WAIC should not be used for classical model

selection in hierarchical model with non-Gaussian errors. The negative penalty of the DIC at mean,

median and mode render these procedures unusable.

2.5.3. Performance of Information Criteria in Simulation for log(N) − log(S). We

examine the performance of model selection methods for choosing the number of Pareto mixture

components in the log(N)− log(S) problem. We perform a simulation study with 23 experimental

settings summarized in Table 2.6.

Each experimental setting is fitted with a single Pareto model and a broken-Pareto model with

one and two break-points. These parameter values are chosen to mimic Wong et al. (2014). We set

the background noise, off-axis angle, effective areas, source area, and expected background counts
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to Bi = 0.1, Li = 4.294, Ei = 1019, Areai = 100 and ki = BiAreai = 10, respectively for all

i = 1, . . . , N . The exposure time is set at 670, 000 seconds. Recall that the expected source counts

are λi = SiEi/γ, where the energy conversion factor is set at γ = 1.6× 10−9 ergs/ph. Conditional

on the dimension m, the number of free parameters in the model is 1+2m+n. This number includes

n unobserved fluxes of observed sources, which usually changes for different datasets according to

the probability of observing a source g = Φ((λi+700)/1400), where Φ denotes the standard normal

CDF.

In all settings, we assume a uniform distribution for p(Bi), p(Li), p(Ei) of volume 1, so that priors

for (Bi, Li, Ei) has no effect. We summarize prior distribution assumptions for the parameters as

follows.

For single Pareto model, m = 1,

• N ∼ Neg-Bin (α = 9.278, β = 0.0309) so that E[N ] = 300 and V ar[N ] = 1002;

• θ1 ∼ Gamma (a = 3.5, b = 2.5);

• τ1 ∼ Gamma (am = 1.494, bm = 2.716 × 1016) so that E[τ1] = 5.5 × 10−17 and V ar[τ1] =

(4.5× 10−17)2.

For broken-Pareto model with one break point, m = 2,

• N ∼ Neg-Bin (α = 9.278, β = 0.0309) so that E[N ] = 300 and V ar[N ] = 1002;

• θ1 ∼ Gamma (a1 = 4, b1 = 3), θ2 ∼ Gamma (a2 = 5, b2 = 3);

• τ1 ∼ Gamma (am = 2.1511, bm = 9.7778× 1016) so that E[τ1] = 2.2× 10−17 and V ar[τ1] =

(1.5× 10−17)2;

• τ2|τ1 = eη2 + τ1 where η2 ∼ Log-Normal(µ = −38, σ = 0.7).

For broken-Pareto model with two break points, m = 3,

• N ∼ Neg-Bin (α = 9.278, β = 0.0309) so that E[N ] = 300 and V ar[N ] = 1002;

• θ1 ∼ Gamma (a1 = 3.5, b1 = 2.4), θ2 ∼ Gamma (a2 = 5, b2 = 3), θ3 ∼ Gamma (a3 = 7, b2 =

3.6);

• τ1 ∼ Gamma (am = 2.1511, bm = 9.7778× 1016) so that E[τ1] = 2.2× 10−17 and V ar[τ1] =

(1.5× 10−17)2;

• τ2|τ1 = eη2 + τ1 where η2 ∼ Log-Normal(µ = −38, σ = 0.7), and

• τ3|τ1, τ2 = eη3 + τ1 + τ2 where η3 ∼ Log-Normal(µ = −37.7, σ = 0.8).



2.5. SIMULATION STUDIES FOR BAYESIAN MODEL SELECTION 67

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

p(
θ)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

p(
θ)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

θ

p(
θ)

Figure 2.2. Prior densities for θ parameters. Top: m = 1, middle: m = 2, bottom
m = 3.
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Figure 2.3. Prior densities for τ parameters. Top: m = 1, middle: m = 2, bottom
m = 3.



2.5. SIMULATION STUDIES FOR BAYESIAN MODEL SELECTION 68

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

Theta Distance
P

ro
p.

co
rr

ec
t

●●

●
●

● ● ●

●

●

●

●

● ● ●

●● ● ● ● ●
●

Model Selection, Tau.1=1e−17

●

●

●

Method

DIC.mean
DIC.median
DIC.mode
BIC
BF

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

Theta Distance

P
ro

p.
co

rr
ec

t

●

● ●

●

● ● ●

●

●

●

●

●

● ●

●● ● ● ● ●
●

Model Selection, Tau.1=5e−17

●

●

●

Method

DIC.mean
DIC.median
DIC.mode
BIC
BF

Figure 2.4. Model selection performance compared across gap of θ corresponding
to θ2 − θ1.

The coverage of these priors can be visualized in Figure 2.2 and Figure 2.3. The vertical lines

in the plot represent locations of the true parameters.

For each experimental setting, we generate and analyze 200 datasets attempting to fit either

a single Pareto model or a broken Pareto model with one breakpoint. Experimental settings 1-20

have a unique true model, whereas for settings 21-23, both models are incorrect, but the broken

Pareto model with 1 breakpoint is slightly better than no break point model. The analysis is done

with our MCMC procedure based on 110,000 iterations and 10,000 burn-in samples. The model

selection results based on DIC, BIC, and Bayes Factor are provided below in Table 2.7. We report

three DIC statistics based on plug-in estimates of parameters using posterior mean, median, and

mode. (Crude estimate of) BIC was evaluated from the average of log-likelihoods. Bayes Factor

was approximated via harmonic mean estimates of normalizing constants.

The favored measure of model selection is DIC based on posterior mode, followed by DIC based

on posterior median. The DIC selects the true model more than 80% of the time when the separation

between two slopes of the power-laws is reasonably large, i.e., θ2− θ1 > 0.5. Selection of the correct

model is much more difficult when two slopes are nearly identical, thus showing a nearly linear

log(N) − log(S). Still, in these situations, the DIC at the mode has at least 60% rate of correct
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Figure 2.5. Model selection performance compared across gap of τ corresponding
to τ2 − τ1 in broken Pareto models with a single breakpoint.

model selection. We consider two sets of settings 6-10 and 11-16 for which the distances range

between 0.05 to 2.5. These results are summarized in two panels of Figure 2.4.

The separation between the breakpoint and the minimum flux, τ2 − τ1 is also very important

for good performance of model selection. The large enough sample size of each Pareto component

drives good estimation of parameters. In the event of a broken Pareto model with one breakpoint,

the ideal is to have roughly 50% of all sources in each of the two populations in the mixture. A

very small distance between τ1 and τ2 forces the majority of sources (observed and missing) to be

in the second population of the mixture. In this situation, the first population is small in size and

the overall number of missing sources in this population is small. Simulating these missing sources

would not provide enough flexibility to log(N)− log(S) to appear linear, and hence, the proportion

to correct model selection is high, around 95%. On the other hand, a very large distance forces the

majority of sources to be in the first population of the mixture, which also includes the majority of

all missing sources. The proportion of correctly selected models is reduced to around 66% in some

cases. We consider settings 17,6,18 and 19,13,20 for which the distances were selected in such a way

as to force approx 15%, 50%, 85% to the first mixture, respectively. These results are summarized

in the two panels of Figure 2.5.
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Setting True Model log10(τ1) log10(τ2) log10(τ3) N θ1 θ2 θ3
1 bp0 -17.0000 300 0.50
2 bp0 -16.3010 300 1.00
3 bp1 -17.0000 -16.3010 300 0.50 0.55
4 bp1 -17.0000 -16.3010 300 0.50 0.60
5 bp1 -17.0000 -16.3010 300 0.50 0.70
6 bp1 -17.0000 -16.3010 300 0.50 1.00
7 bp1 -17.0000 -16.3010 300 0.50 1.50
8 bp1 -17.0000 -16.3010 300 0.50 2.00
9 bp1 -17.0000 -16.3010 300 0.50 3.00

10 bp1 -16.3010 -16.0000 300 1.00 1.05
11 bp1 -16.3010 -16.0000 300 1.00 1.10
12 bp1 -16.3010 -16.0000 300 1.00 1.20
13 bp1 -16.3010 -16.0000 300 1.00 1.50
14 bp1 -16.3010 -16.0000 300 1.00 2.00
15 bp1 -16.3010 -16.0000 300 1.00 2.50
16 bp1 -16.3010 -16.0000 300 1.00 3.50
17 bp1 -17.0000 -16.8539 300 0.50 1.50
18 bp1 -17.0000 -15.3010 300 0.50 1.50
19 bp1 -16.3010 -16.2291 300 1.00 2.00
20 bp1 -16.3010 -15.3979 300 1.00 2.00
21 bp2 -17.0000 -16.0969 -15.7447 300 0.30 1.00 3.00
22 bp2 -17.0000 -16.0969 -15.7447 300 0.50 0.70 0.90
23 bp2 -17.0000 -16.0969 -15.7447 300 1.50 1.70 1.90

Table 2.6. Simulation Settings for Model Selection

Performance of model selection based on Bayes Factor is not favorable to DIC. The criterion

BIC penalizes larger parameter models too much and always selects a single power-law. We will no

longer consider BF and BIC for future model selection.
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DIC.mean DIC.median DIC.mode BIC BF
Set.1 0.51 0.43 0.41 1.00 0.23
Set.2 0.52 0.43 0.40 1.00 0.20
Set.3 0.61 0.72 0.65 0.00 0.28
Set.4 0.55 0.71 0.72 0.00 0.30
Set.5 0.69 0.83 0.84 0.00 0.29
Set.6 0.80 0.91 0.92 0.00 0.34
Set.7 0.93 0.96 0.99 0.00 0.49
Set.8 0.95 0.98 1.00 0.01 0.55
Set.9 0.99 0.99 1.00 0.08 0.62

Set.10 0.43 0.54 0.60 0.00 0.28
Set.11 0.54 0.68 0.66 0.00 0.29
Set.12 0.56 0.67 0.74 0.00 0.35
Set.13 0.65 0.77 0.84 0.00 0.46
Set.14 0.82 0.93 0.94 0.00 0.43
Set.15 0.91 0.96 0.99 0.01 0.49
Set.16 0.96 0.98 1.00 0.04 0.58
Set.17 0.95 0.97 0.95 0.35 0.50
Set.18 0.68 0.77 0.79 0.00 0.37
Set.19 0.88 0.96 0.95 0.12 0.47
Set.20 0.54 0.66 0.68 0.00 0.33
Set.21 0.90 0.94 0.99 0.03 0.53
Set.22 0.67 0.78 0.85 0.00 0.34
Set.23 0.51 0.61 0.58 0.00 0.24

Table 2.7. Model Selection Results: DIC at mean, DIC at median, DIC at mode,
BIC based on average log-likelihood, and BF based on harmonic mean.
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2.6. Bayesian Adaptive Fence Method

Jiang et al. (2008) introduced a different approach to model selection called the adaptive fence

method. The idea of the fence method is to construct a fence to isolate a set of “correct” models

that are suitable to reasonably describe the data and then choose an “optimal” model according

to a criterion of optimality from the models within the fence. The fence is constructed using the

inequality:

(2.20) Q(M)−Q(M̃) ≤ c,

where Q is a measure of lack of fit, M is a candidate model, M̃ is the baseline model whose Q is

minimum, and c is a constant. For a given c, a model is labeled Mc if it is in the fence and satisfies

the optimality criterion. Let Mopt be the actual optimal model. The standard optimality criterion

is, but is not limited to, the minimal dimension criterion. In such a case, Mopt is a true model

with minimal dimension. Since selection of a model with high parsimony is desirable, the minimal

dimension criterion is a good choice. Also, it works well when the candidate models are submodels

of a full model, M̃ , which necessarily has the minimum Q.

Adaptive Fence (AF) selects the cut-off c by maximizing the empirical probability of selection.

Ideally, this means to maximize

(2.21) p = P (Mc = Mopt)

over c. The probability P in (2.21) is approximated under model M̃ via the use of a parametric

bootstrap as follows. First estimate the unknown parameters under the full model M̃ . Treating

the estimated parameters as the true parameters, draw B bootstrap samples under M̃ . Fit all

candidate models in the set M, including the full model, to each bootstrap sample. For a given

c, let p∗(M) = P ∗(Mc = M) be the relative frequency among all bootstrap samples that model

M satisfies (2.20) and is optimal. Finally, let p∗ = maxM∈M p∗(M) be the maximal probability of

selection under M̃ for each c. The plot of p∗ vs c usually resembles a “W-shape”. p∗ = 1 at c = 0,

for which the full model is always selected because it is the only model in the fence. p∗ = 1 at a

very large c, say cmax, for which the minimum model is always selected because all candidates are

in the fence and criteria is minimum dimension. However, p∗ also peaks somewhere in between this

range of c. AF method aims to maximize p∗ over c restricted to (0, cmax). In other words, it aims
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to select the cut-off c corresponding to a “significant peak in the middle” in p∗. Consistency of the

selected model under the chosen c is guaranteed when the sample size increases to infinity and the

true model is among the candidate model set M, see Jiang et al. (2008).

The fence method is versatile in that it does not restrict the choice of goodness-of-fit measure,

parameter estimation, and optimality criterion. Goodness of fit measure Q can incorporate aims for

estimation or prediction. In particular, choice of Q can be related to methods of estimation. For

example, estimation by maximum likelihood goes naturally with negative log-likelihood evaluated

at MLE as the Q. One important requirement is that the chosen goodness of fit measure should

separate the candidate models. In the event that models perform equally well by a choice of Q, it

will be difficult to detect a significant peak in the p∗ vs. c plot.

There are situations when the fence method does not perform well because p∗ vs. c looks

“V-shaped” and no significant peak in the middle is detected. It can occur if Q is the same for

all models, or in special situations where the true model is on the boundary of the candidate set,

for example, either the full model or the minimum model. Jiang examined possible strategies to

overcome the latter problem (e.g., Jiang et al., 2008). On the other hand, the fence method shows

very good performance if the true model is in the middle of the candidate set.

We extend the AF method for model selection in application to Bayesian data analysis. We

call it Bayesian Adaptive Fence (BAF) method. So far, the fence method has not been considered

in Bayesian inference. In many Bayesian problems including log(N) − log(S), MLE is difficult to

evaluate, but MCMC draws from the posterior distribution are easily available. It seems desirable

and natural to define Q based on the posterior draws of parameters. We can use numerous definitions

of the negative log-likelihood following DIC and WAIC derivations. For example, one may consider

the negative log likelihood evaluated at the posterior mean: Q = − log p(y|β̃PostMean). We keep the

optimality criterion as minimum-dimension for the model within the fence. Performance of these

choices of Q is not as good as the negative log-likelihood evaluated at the MLE because in some

cases the Q values are very similar for various models.

We present performance of the AF method applied to the Flux data simulation. In this simula-

tion, the MLE is available and the data is complete. We consider the following measures of goodness
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of fit:

Q1 = − log p(y|β̂MLE),

Q2 = − log p(y|β̃PostMean),

Q3 = − log p(y|β̃PostMedian),

Q4 = − log p(y|β̃PostMode),

Q5 = − 1

L

L∑
l=1

log p(y|β(l)
MCMC),

Q6 = −
N∑
i=1

log

[
1

L

L∑
l=1

p(yi|β(l)
MCMC)

]
.

The first measure Q1 is the same as in the original fence method procedure proposed by Jiang et al.

(2008) using the negative log-likelihood maximized at MLE. Measures Q2-Q4 are modeled after the

predictive measure based on DIC. Measure Q6 is modeled after the predictive measure based on

WAIC.

Table 2.8 gives the result of applying BAF method for model selection for the flux data, according

to weak prior assumption. We average the proportion of selecting the correct model over 50 datasets,

each evaluated by using 100 bootstrap samples. It shows that the fence method works best when

using the Q1 measure. However, it performs reasonably well for Q6, the approximated log of the

average pointwise log-densities based on the posterior draws of parameters. This suggests that the

WAIC-type approximation to measure of lack of fit is much more reasonable and stable estimate

compared with DIC-type. It is important to design a good measure of lack of fit for the fence

method.

In log(N) − log(S) problem, the selection is needed regarding the presence of the breakpoint

leading to the candidate set of models. Here we consider three cases: M1 model with no breakpoint,

M2 model with one breakpoint, M3 model with two breakpoints. These three models are not nested

theoretically. However, model M2 will appear to have the same log(N) − log(S) plot as M1 if the

breakpoint is very close to τ1 and missing data exists. Hence, the models can be considered nested

in the practical sense.

Recall that the fence works well when the true model is “in the middle”. Thus, for convenience,

we consider introducing two additional fake models. Let model M0 represent a model with a known,
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N bp Q1 Q2 Q3 Q4 Q5 Q6
15 0 0.00 0.85 0.60 0.30 0.20 0.00

1 0.90 0.15 0.40 0.65 0.55 0.65
2 0.10 0.00 0.00 0.05 0.25 0.35

50 0 0.00 0.40 0.15 0.05 0.00 0.00
1 1.00 0.50 0.60 0.60 0.40 0.65
2 0.00 0.10 0.25 0.35 0.60 0.35

100 0 0.00 0.70 0.05 0.00 0.05 0.00
1 1.00 0.30 0.60 0.55 0.55 0.75
2 0.00 0.05 0.35 0.45 0.40 0.25

200 0 0.00 0.35 0.05 0.00 0.00 0.00
1 1.00 0.50 0.55 0.55 0.60 0.80
2 0.00 0.15 0.40 0.45 0.40 0.20

500 0 0.00 0.20 0.00 0.00 0.00 0.00
1 1.00 0.70 0.70 0.70 0.70 0.75
2 0.00 0.10 0.30 0.30 0.30 0.25

Table 2.8. (Weak prior) Proportion of selecting Model bp0, bp1, and bp2 when
True Model is bp1 for Flux simulation using BAF method with automated detection
of a peak in p* plot.

incorrect value for parameter θ, thus leaving only 1 unknown parameter τ to estimate. Note that M0

is the model of minimum dimension. Now the single Pareto model M1 is no longer considered on the

boundary. Let model M4 be a full phantom model that theoretically overfits the data. The specific

parametrization of M4 is not important. Instead, it is important to know that its value Q is the

lowest among Q of other candidates. We suggest to use Q(M4) = minM∈{M0,M1,M2,M3}Q(M) − ϵ,

for a positive constant ϵ. The actual value of epsilon does not matter as long as it helps to keep

Q(M4) below other Q but on relatively the same scale as other Q. The use of M4 makes sure that

none of M1,M2,M3 are full models. With the addition of M0 and M4, the candidate set M consists

of 5 approximately nested models. So that the AF method can be applied. Our method draws some

similarities with the invisible fence method described in Jiang et al. (2011).

We apply the BAF method to the log(N)− log(S) simulation, for which MLE are not available,

some data are missing (non-ignorable), and the model contains an additional level of hierarchy

compared to the Flux data simulation. It is important to design a good measure of lack of fit for

the fence method. We design the following goodness-of-fit measures Q as functions of posterior
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Case bp Q1 Q2 Q3 Q4 Q5 Q6
1 0* 1.00 0.97 0.97 1.00 1.00 1.00
1 1 0.00 0.03 0.03 0.00 0.00 0.00
1 2 0.00 0.00 0.00 0.00 0.00 0.00
5 0 0.03 0.00 0.00 0.00 0.00 0.03
5 1* 0.34 0.47 0.57 0.70 0.33 0.30
5 2 0.63 0.53 0.43 0.30 0.67 0.67
7 0 0.03 0.00 0.00 0.00 0.00 0.03
7 1* 0.54 0.47 0.57 0.70 0.33 0.30
7 2 0.43 0.53 0.43 0.30 0.67 0.67

21 0 0.00 0.00 0.00 0.00 0.00 0.00
21 1 0.20 0.10 0.07 0.00 0.20 0.20
21 2* 0.80 0.90 0.93 1.00 0.80 0.80
22 0 0.10 0.00 0.00 0.00 0.00 0.05
22 1 0.20 0.20 0.25 0.35 0.25 0.25
22 2* 0.70 0.80 0.75 0.65 0.75 0.70

Table 2.9. Model selection proportions for log(N) − log(S) simulation using
Bayesian adaptive Fence Method with automated detection of a peak in p* plot.

parameter draws:

Q1 = −
N∑
i=1

log

[
1

L

L∑
l=1

p(yi|β(l)
MCMC)

]
,

Q2 = − log p(y|β̃PostMean),

Q3 = − log p(y|β̃PostMedian),

Q4 = − log p(y|β̃PostMode),

Q5 = − 1

L

L∑
l=1

log p(y|β(l)
MCMC),

Q6 = −Median
{
log p(y|β(l)

MCMC), l = 1, . . . , L
}
.

An example of the plot p* vs c is shown in Figure 2.6. The method does not produce a “W-shape”

because we have introduced the best-fitting model, the baseline model “4” (in red), against which all

other comparisons are made. By default, the choice of the baseline model only occurs at minimum

c. Since this model does not exist and can never be selected, we assign it to have probability of 0.

The automated procedure proceeds to select the first significant peak and its corresponding model.

In this case, model “2” (in red) is selected.

Table 2.9 reports the model selection results based on the BAF method for the log(N)− log(S)

simulation. The models listed with an asterisk are the true models to be selected. The fence method
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Figure 2.6. p* vs c plot for the Bayesian adaptive fence method. The model
associated with each c is shown as a number in red.

result is based on the 100 bootstrap resamples of 30 datasets. The simulation Case 1, 21, and 22,

perform better in selecting the correct model than do DIC and WAIC methods, as shown in previous

section. The Cases 5 and 7 do not give a better performance, and tend to overestimate in some

cases. Overestimation problem with the DIC and WAIC for log(N)− log(S) analysis has been seen

noted before. These results suggest that the BAF method outperforms in some cases the usual

Bayesian methods for model selection. The BAF method outperforms all other methods of DIC,

WAIC, AIC and BIC in model selection. We conclude that the BAF method has a potential to

improve model selection in Bayesian data applications.

The original paper by Jiang et al. (2008) uses a parametric bootstrap in order to approximate

the probability of selection under the full model. The parametric bootstrap gives tighter confidence

bounds for parameter estimation than the standard normal theory, and also automatically inherits

any preexisting dependence structure in the parameters. Hence any functional, such as p*, formed

from the estimate parameters produced via bootstrapping also inherits such benefits. Thus, the

parametric bootstrap is expected to give better performance than the non-parametric bootstrap.

The BAF method does not share all of the benefits of the FM.
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In our simulation studies we find that the choice of Q is very important when the BAF method

is used. When Q is chosen primarily on the consideration for the prediction, BAF method can

sometimes select an overfitted model. Care must be put into such a choice. The selection of

the significant peak in the plot of p* vs c is also not very straightforward. When the automated

procedures are used to evaluate the significant peak, the final choice depends on the smoothing in

the p* vs. c plot. We recommend to consider various smoothing options for comparison. A highly

significant peak is expected to show up for most smoothing settings.

From a computational viewpoint, the fence method takes time or abundant computing resources.

However, we believe that with increasingly vast computing capabilities, this drawback of the fence

method is a small price to pay for a reasonable model selection for tool Bayesian inference. We

conclude that the Bayesian adaptive fence method is a powerful tool for model selection and should

be considered for model selection in the hierarchical Bayesian inference with missing data.

2.7. Data Analysis

We revisit the analysis of the two datasets CDFN and CDFS to estimate the log(N) − log(S)

relationship of potential mixtures of the flux distributions. Ultimately, our goal is to select the most

useful model among the postulated candidate models. We compare BAF, DIC, and WAIC methods

when applied to the data. To assess that the chosen model has a good fit, we also perform posterior

predictive check, described in section 1.4.4 of previous chapter.

2.7.1. Application: Chandra Deep Field North. We apply our model and the model

selection to the real data. We begin with the CDFN dataset. Recall that this dataset consists of

225 X-Ray sources of CHANDRA observation of the Northern sky. The sample of sources is based

on off-axis angle threshold of 8 arcmin. Previous log(N) − log(S) analysis had shown that the

presence of a break in log(N) − log(S) is possible, yet it is not clear. We apply the BAF method

to select an appropriate model for this data choosing between three candidate models: the single

Pareto, bp0; the broken Pareto with 1 breakpoint bp1; and the broken Pareto with 2 breakpoints,

bp2. In addition to the BAF, we report the model selection results of DIC and WAIC and examine

posterior predictive p-values.

We assume moderately informative priors, elicited from collaborators. For j = 1, 2, 3, θj ∼

Gamma (15, 30), τ1 ∼ Gamma (2.78, 1.85 × 1017), N ∼ Neg-Bin (9.278, 0.03), and for k = 2, 3,
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BAF criterion Sel. model Method bp0 bp1 bp2
Q1 bp2 DICMean 1839.3 1833.1 1839.4
Q2 bp2 DICMedian 1842.4 1835.1 1839.6
Q3 bp2 DICMode 1835.0 1817.8 1830.2
Q4 bp2 DICV 1985.2 1862.8 1856.7
Q5 bp2 WAIC1 1716.5 1701.1 1698.9
Q6 bp2 WAIC2 1797.4 1780.5 1778.1

Table 2.10. BAF, DIC, and WAIC for CDFN analysis. BAF always selects bp2
model. Lowest DIC and WAIC of the selected model is marked in bold.

Posterior Predictive Statistic bp0 bp1 bp2
Number of observed sources 0.21 0.21 0.21

Minimum photon count 0.31 0.31 0.31
Maximum photon count 0.10 0.08 0.07

Median photon count 0.28 0.25 0.24
Lower quartile of photon counts 0.14 0.12 0.11
Upper quantile of photon counts 0.19 0.17 0.14

Photon count IQR 0.21 0.20 0.17
Crude estimate of R2 0.13 0.12 0.14

Number of observed sources vs. med photon count 0.69 0.69 0.60
Lower quartile vs. upper quartile of photon counts 0.73 0.64 0.56
Number of observed sources vs. photon count IQR 0.70 0.71 0.64

Number of observed sources vs. crude estimate of R2 0.17 0.14 0.21
Table 2.11. Posterior predictive p-values for CDFN analysis.

ηk ∼ Normal (−38, 0.72). Incompleteness probability table and detector effects frequency table were

directly provided by our collaborators.

Table 2.10 reports the model selection results for BAF, DIC, and WAIC for selecting between

candidate models bp0, bp1, and bp2. BAF method consistently selects bp2 model under every

criterion function Q we considered. (For the list of criterion functions Q1 through Q6, please refer

to the previous section.) This result implies that the data strongly suggests that bp2 model is

appropriate. The DIC and WAIC are not in agreement in their selected model. The favored model

is bp1 for DIC at mean, median, and mode measures, but it is model bp2 based on DICV and WAIC

measures. Noting that the actual criterion measures for the DIC at mean are fairly similar across

candidate models, we do not recommend its use for model selection in CDFN analysis. DICV and

WAIC results agree with the BAF method model selection. We therefore conclude that the model

bp2, the broken-Pareto model with 2 breakpoints, provides a good fit to these data. The chosen

model by our model selection criteria implies that 3 populations of the source flux are present in

the CDFN survey.
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The posterior predictive p-values (PPP) are given in Table 2.11. The table shows that all

candidate models bp0, bp1, and bp2 provide a reasonable fit these data because PPP are large. The

maximum photon count of the posterior predictive datasets shows the lowest PPP (ranging from

0.1 to 0.07); however, it is still within the reasonable bounds. We conclude that the chosen model

by model selection, bp2, has no significant departures in posterior predictive datasets and it should

perform well in prediction.

Table 2.12 reports the parameter estimates of the candidate models bp0, bp1, bp2 of the Bayesian

analysis of CDFN data after accounting for incompleteness. The same table also reports the esti-

mated parameters of the competing method by Wong et al. (2014), which estimated the breakpoints

of other log(N) − log(S) parameters via interwoven EM algorithm, but ignored the missing data

structure. The final chosen model based on BAF is bp2 by BAF, while the estimated model by

interwoven EM is bp1. The parameter estimates of the second and third flux population from our

method agrees very well with the parameter estimates of the model fitted by Wong. Our method for

bp2 fit shows that the first two flux populations have two power-law slopes estimated by posterior

mean as 0.52 (with 95% central credible of (0.31, 0.77) ) and 0.48 (0.30, 0.67). Wong’s method for

bp1 fit shows that the first flux population has a power-law slope of 0.48 (standard error 0.06).

Similarly, the first two flux populations of our method have two minimum flux thresholds estimated

as 10−16.46(10−16.62, 10−16.35) and 10−16.11(10−16.40, 10−15.80). Wong’s method fits the minimum

flux threshold as 10−16.344(100.03). The last untruncated Pareto flux population has the estimated

power-law slope of 0.78 (0.62, 0.91) by our method, and 0.854 (0.224) by Wong’s method, and the

estimated breakpoint of 10−15.81(10−16.08, 10−15.59) by our method, and 10−15.57(100.271) by Wong’s

method. The main difference between these models is that accounting for missing data reflects

a third possible population of the flux in the lower flux boundary with very similar population

characteristics as the next truncated Pareto flux population.

Our analysis suggests the possibility of a slightly overfitted model. The model with one break-

point exhibits a bimodal posterior distribution in the power-law slope. One of the modes is at 0.5,

while the other mode is at 1.10. There are two potential reasons for this jump. First, it is conceivable

that the MCMC sampler needs to be ran for longer than 50000 iterations. Second, it is very likely

that the incompleteness function has not been perfectly specified. Observing that the model with

two breakpoints estimates has two nearly identical power-law slopes (around 0.5) and the distance

between the minimum flux and the first breakpoint is fairly negligible, we consider the possibility
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Model bp0 bp1 bp2 bp1
(Wong et.al.,2014)

Mean [Median]
(95% central

Parameter interval) Estimate (SE)
θ1 0.66 [0.66] 1.08 [0.59] 0.52 [0.52] 0.483 (0.060)

(0.55, 0.77) (0.47, 1.46) (0.31, 0.77)
θ2 0.63 [0.62] 0.48 [0.48] 0.854 (0.224)

(0.53, 0.76) (0.30, 0.67)
θ3 0.78 [0.74]

(0.62, 0.91)
log10(τ1) −16.28 [−16.27] −16.34 [−16.34] −16.46 [−16.46] −16.344 (0.030)

(−16.40,−16.21) (−16.44,−16.29) (−16.62,−16.35)
log10(τ2) −16.23 [−16.27] −16.11 [−16.15] −15.657 (0.271)

(−16.35,−15.86) (−16.40,−15.80)
log10(τ3) −15.81 [−15.84]

(−16.08,−15.59)
N 294 [293] 296 [296] 280 [278]

(275, 314) (272, 322) (257, 312)
Table 2.12. Parameter estimates of major parameters for the CDFN data based
on bp0, bp1, and bp2 models. Compared to the competing method for estimation
of the number of breakpoints and parameters via interwoven EM (Wong et al., 2014).

Figure 2.7. log(N) − log(S) plots for models bp0 (left), bp1 (middle), and bp2
(right) for CDFN data.

that CDFN survey exhibits two flux populations. Moreover, the location of the breakpoint and the

log(N)− log(S)parameters are consistent to the result by Wong et al. (2014).

Figure 2.7 shows the log(N) − log(S) fits based on our method for models bp0, bp1, and

bp2. Even though all models produce very similar figures, inferential properties of each model are

different. Uncertainty in the log(N)−log(S) relationship due to missing data is clearly demonstrated

in the lower tail of the curve. The method estimates approximately 80% completeness of the survey.
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BAF criterion Sel. model Method bp0 bp1 bp2
Q1 bp1 DICMean 2979.5 2968.9 2988.9
Q2 bp1 DICMedian 2987.4 2975.3 2993.6
Q3 bp1 DICMode 2989.5 2974.2 2990.2
Q4 bp1 DICV 3126.2 3091.0 3634.7
Q5 bp0 WAIC1 2785.2 2770.9 2795.1
Q6 bp1 WAIC2 2909.1 2894.3 2913.7

Table 2.13. BAF, DIC, and WAIC for CDFS analysis. BAF tends to select bp1
model. Lowest DIC and WAIC of the selected model is marked in bold. Both DIC
and WAIC select bp1 model.

Posterior Predictive Statistic bp0 bp1 bp2
Number of observed sources 0.03 0.10 0.23

Minimum photon count 0.01 0.02 0.00
Maximum photon count 0.38 0.17 0.03

Median photon count 0.03 0.09 0.00
Lower quartile of photon counts 0.00 0.00 0.00
Upper quantile of photon counts 0.06 0.24 0.02

Photon count IQR 0.03 0.28 0.04
Crude estimate of R2 0.12 0.03 0.01

Number of observed sources vs. med photon count 0.06 0.04 0.00
Lower quartile vs. upper quartile of photon counts 0.00 0.00 0.00
Number of observed sources vs. photon count IQR 0.15 0.45 0.11

Number of observed sources vs. crude estimate of R2 0.03 0.02 0.01
Table 2.14. Posterior predictive p-values for CDFS analysis.

2.7.2. Application: Chandra Deep Field South. We return to our data analysis of CDFS.

Recall that this data consists of 358 X-Ray sources of Chandra observation of the Southern sky in

0.5-7.0 keV. The analysis from previous chapter suggested evidence of non-linear log(N) − log(S).

The CDFS survey is a much fainter survey than the CDFN. Our method currently does not handle

false positive sources. For that reason we consider a subset of these data based on the following

cuts. First, we limit the off-axis angle to 10.5 arcmin, and then we cut all potentially false sources

with the negative significance of measure from the wavdetect software and a crude estimate of the

source photon counts of −10. The resulting subsample contains 341 sources. We use the BAF,

DIC, and WAIC to select a model for this data from the familiar three candidate models: bp0, bp1,

and bp2. In addition to the model selection, we report the PPP to make sure the chosen model is

appropriate.
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Model bp0 bp1 bp2

Mean [Median]
(95% central

Parameter interval)
θ1 0.57 [0.57] 0.49 [0.49] 0.14 [0.13]

(0.52, 0.64) (0.43, 0.56) (0.07, 0.27)
θ2 0.95 [0.95] 0.37 [0.36]

(0.74, 1.19) (0.21, 0.52)
θ3 0.85 [0.84]

(0.70, 1.00)
log10(τ1) −16.00 [−16.00] −16.04 [−16.03] −16.27 [−16.27]

(−16.04,−15.96) (−16.08,−15.99) (−16.44,−16.15)
log10(τ2) −14.72 [−14.73] −15.85 [−15.89]

(−14.78,−14.63) (−16.05,−15.55)
log10(τ3) −15.40 [−15.39]

(−15.60,−15.27)
N 501 [501] 419 [419] 377 [376]

(472, 532) (400, 440) (364, 390)
Table 2.15. Parameter estimates of major parameters for the CDFS data based on
bp0, bp1, and bp2 models.

We assume moderately informative priors, elicited from collaborators. For j = 1, 2, 3, θj ∼

Gamma (12, 16), τ1 ∼ Gamma (1.38, 3.46 × 1016), N ∼ Neg-Bin (4.05, 0.014), and for k = 2, 3,

ηk ∼ Normal (−38, 0.72).

Table 2.13 summarizes model selection results based on the BAF, DIC, and WAIC. Majority of

the methods favor the model bp1, the broken Pareto with 1 breakpoint. The posterior predictive

p-values are given in Table 2.14. All models show a poor fit with many PPP around 0, especially

for bp2 model. We believe that this result can be due to the fact that it is challenging to specify the

marginal detection probability, π(θ, τ), correctly. Our pre-computed π over a 6-dimensional grid

of the parameters (θ, τ) seems to have been insufficient. The log(N) − log(S) plots for fitting all

models ti CDFS are shown in Figures2.8. The long thin tail of low flux in bp2 model fit indicate

potential misspecification of the detection probability. Hence, further investigation of analysis this

dataset is needed.

The parameter estimates of all candidate models are provided in Table 2.15. The chosen model,

bp1, implies that the CDFS dataset contains two flux populations. The power-law slope of the first

flux population is estimated a posterior mean of 0.49 with 95% credible intervals (0.43, 0.56). The

low flux threshold is estimated at 10−16.04 (10−16.08, 1015.99). The second flux population estimates
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Figure 2.8. log(N) − log(S) plots for models bp0 (left), bp1 (middle), and bp2
(right) for CDFS data.

the power-law slope of 0.95 (0.74, 1.19) and the flux breakpoint of 10−14.72(1014.78, 1014.63). The

method estimates approximately 81% completeness of the survey.

2.8. Discussion and Concluding Remarks

Estimation of log(N)− log(S) is a challenging problem from the methodological point of view.

Astrophysical assumptions about the flux distribution yields probabilistic foundation of the model.

It requires to correctly account for missing data and bias from detector effects. It necessitates

the proper treatment of the missing data. It calls for a unified estimation approach in order to

estimate the power-law slope and the flux to build the log(N) − log(S) curve. We have presented

a comprehensive method for estimation of the log(N) − log(S) relationship for broken power-laws

using a hierarchical Bayesian model. Our method explicitly corrects bias associated with the non-

ignorable missing data mechanism that is often ignored by competing methods. We also presented

a Bayesian adaptive fence (BAF) method for discrimination and selection of the models of optimal

number of breakpoints. While BAF is computationally intensive, it has the potential to fill the

model selection methodology gap in Bayesian data analysis.

2.8.1. Limitations and Alternative Approaches. One limitation of our method is that

it cannot account for false positive sources, that is, sources that are recorded as such, but are

not actually there. However, it would be straightforward to extend our method to overcome this

problem. Consider a probability of a source to be a false positive as a function, g, of the flux and

the detector effects. Define FP as the event that the source is incorrectly identified as a source, and

define Obs to be the event that the source is observed. Then the probability of a true observed source



2.8. DISCUSSION AND CONCLUDING REMARKS 85

in a survey is Pr(FP c ∩ Obs) = (1 − Pr(FP )) Pr(Obs|FP c) = (1 − g)π. Hence, the probabilistic

paradigm, upon which this method is built, allows the investigator to include all possible observation

uncertainties in similar manner.

Another obvious drawback of our approach for the log(N) − log(S) problem is the inability

to estimate the number breakpoints, or, equivalently, the number of broken-Pareto components,

m. Our hierarchical model is derived conditionally on the number of breakpoints. However, it is

conceivable to design a model of deeper hierarchy, in which the number of breakpoints is also a

parameter. In this case, the dimension parameters N and m form the outer layer of the hierarchy,

and all other parameters θ, τ, Sobs, etc., form the inner layers. The main challenge of this approach

is the change in dimension of parameter vectors θ and τ for different MCMC draws of m.

The standard MCMC applications rely on the fixed parameter dimension to simulate from

posterior distribution. A special extension to MCMC methodology for trans-dimensional problems

is called Reversible-Jump Markov chain Monte Carlo (RJMCMC) (Green, 1995). It assumes that

the stationary distribution is the joint posterior distribution of a set of states of a model indicator

and model dimension. For the log(N)− log(S) problem, for example, the model can be the single- or

broken-Pareto with number of components m = 1 or m = 2, respectively. The number of models in

the set does not have to be finite. To allow valid proposals of the model/dimension state, one must

design a one to one and differentiable mapping function with non-zero support. The differential in

the model dimension is to be absorbed with a random component, so that the total dimension of

the proposed state vs current state is matched. Dimension matching can be achieved with many

possible mapping functions. However, some give much better convergence performance than others.

Designing appropriate mappings for RJMCMC is not an obvious task. For log(N) − log(S)

problem, the MCMC chain of the sampler must be able to move to and from any model with 0,

1, 2, or more breakpoints. The easiest mapping to consider is the identity mapping. However, it

is not guaranteed to produce efficient sampling. It is difficult to come up with effective proposal

distribution for trans-dimensional jumps. Nevertheless, we believe that the application of RJMCMC

can provide a useful extension to our method.

The specification of single and broken power-law forms for the log(N) − log(S) relationship

are physically motivated, but we may wish to consider more flexible forms to allow for possible

contamination of populations. To achieve this, one may consider a general mixture of Pareto

distributions for the flux. Ideally, we would be able to estimate the mixture probabilities and the
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minimum flux of each Pareto mixture, but practically this may be infeasible. We have developed

the mixture Pareto model for fixed minimum flux vector, however, the estimation of this parameter

requires more work. Our current simulations have not attained convergence. We believe that

alternate MCMC sampling procedures, such as ancillary-sufficiency interweaving strategy (Yu and

Meng, 2011) or Hamiltonian MCMC (Neil, 2011) may be used to boost MCMC efficiency.

Accounting for contamination of flux populations via a mixture Pareto flux distribution is rea-

sonable, however, it does not provide a flexible enough model to account all variations of slopes

in log(N)− log(S) relationship. Various configurations of mixture proportions and slopes result in

extremely smoothed “elbows” in log(N) − log(S). At the same time, it is impossible to achieve a

sharp “elbows” using this model. Hence, other models are needed. One may specify a more flexible

functional form for p(Scom|θ, τ), such as higher order polynomial or other smoother. These models

can be embedded within the broader Bayesian computational framework, however, executing the

integration based on these models will require much work.

2.8.2. Model Selection Performance. The ultimate goal of model selection is two-fold; it

is desirable to select the correct model and for the selected model to predict well. In practice, a

single model selection rule is not always capable of achieving both sides of the goal. Thus, selection

consistency can be interpreted by focusing on either the consistent model selection or prediction.

In the former sense, the consistency of a model selection criterion means that the probability of the

selected model equal to the true model converges to 1. This definition is obvious assuming that the

true model is approximately one of the candidate models. In the latter sense, assuming that none

of the candidate models can possibly match the complexity of the true model, consistency means

that prediction of the future observations is the best for the chosen model among all other models.

Model selection rules AIC, DIC, and WAIC are designed to predict optimally. It is not surprising

that their performance in selecting the correct model is poor, as we have shown in section 2.5.

However, optimal prediction is not the main goal for log(N)− log(S) problem. In many situations,

the estimates of the low-flux component of the broken-Pareto model are fall below the reasonable

detection limits. As a result, the missing data can considerably influence the lower flux tail of

log(N) − log(S) curve. The prediction criterion is usually in favor of such “overfitted” models. In

addition, our simulations show that the DIC and WAIC can have very similar measures across

the candidate models, which implies that they may be not sensitive enough to capture differences
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between models in some cases. Thus, we believe that DIC and WAIC are not appropriate for the

selection of the number of breakpoints.

Conversely, the BAF method does not discriminate between the goals of model selection because

the selected model is closest to the true model implying good predictive performance. The original

fence method (Jiang et al., 2008) is designed to select the optimal model in two steps. The first is

to identify the set of true or best approximating models by utilizing a measure of goodness-of-fit

or best prediction. The second is to select a model based on some optimality criterion, which need

not be unique. For log(N) − log(S) problem the approximate subsets nature of candidate models

gives natural optimality criterion of minimum dimension. The final selected model is optimal in the

sense that it cannot be further reduced or simplified, and consistent if n → ∞ (Jiang et al., 2008).

In Bayesian application, consistency is not assured, but may be approximate under some regularity

conditions. We defer the proof of this result to future work. Our simulations show an improvement

in model selection over DIC and WAIC. We therefore promote the use of BAF method for model

selection in Bayesian inference.

From a practical point of view, the Bayesian adaptive fence method has a few obvious disad-

vantages. First, the adaptive nature of the fence method requires high computational cost because

each candidate model needs to be fitted to each bootstrap dataset via MCMC. The log(N)− log(S)

method is already computationally intensive. Serial evaluation of the posterior all bootstrap re-

samples on a single computing machine is out of question. However, if one has parallel computing

capabilities, the computation time can be reduced to the computing time of a single MCMC fit.

Second, the device of introducing the most parsimonious but incorrect model, M0, to serve as a

boundary of candidate model space can be considered as ad hoc. It can be argued that in reality the

true model and the true parameters are unknown, therefore it would seem strange to label model

M0 as incorrect. Also, even if the true model was a minimal dimension model (single Pareto model

M1), for which the parameter estimates are readily available, the definition of an “incorrect” model

is ambiguous. Say, if the true model is a single Pareto model with true θ = 0.5, then an incorrect

model would be any model for which θ ̸= 0.5. The choices θ = 0.3 and θ = 0.7 both mis-specify

the models to be incorrect, yet the model selection result via BAF can be very different for these

models. Then which of the two mis-specified models is appropriate to be used as M0? We argue that

both of them are appropriate. From this point of view, it is most useful to fit model M1 to get an

estimate of θ, and then try a number of M0 model candidates with θ specified in the neighborhood
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of M1 estimate and look for consistency, i.e., the middle ground. The values of θ that are specified

too high or too low will produce the measure of goodness-of-fit, Q, that is too large compared to Q

of other candidate models. Since our goal is to select a model inside the candidate set but not the

boundary model M0, the middle ground will necessarily produce a model on the inside.

Third, the standard non-parametric bootstrap (resampling of size n with replacement) has

a potential to produce a sub-optimal result in model selection. Bootstrapping is a particularly

useful tool for estimating the distribution of any statistic when the original data can be considered

an independent identically distributed sample. In Bayesian inference, the estimators are produced

based on posterior MCMC draws instead of the data alone. Furthermore, in log(N)−log(S) problem,

the photon count observations are independent but are not identically distributed. Therefore, the

distributional properties of the bootstrap samples are a slightly different from that of the original

data. Efron observed that the total new information carried from the original data to the bootstrap

resample with replacement is roughly (1 − e−1)n = 0.632n (Efron, 1983). That is, only 63.2% of

the observations in the resample are truly independent, which limits the finite sample performance

of resulting statistics (estimating the probability that the optimal model is in the fence). Possible

extension to improve the sampling properties of the bootstrap is to use the sequential resampling

scheme due to Rao et al. (1997). The sequential resampling proceeds with drawing observations

sequentially one at a time, randomly and with replacement, until at least 0.632n distinct observations

are collected. Asymptotic consistency of this sampling scheme has been established. We consider

examination of this and other bootstrap schemes to achieve the same goal as future work.

The ideas of this chapter are important to the astrophysical community because it provides a

unified Bayesian approach for parameter estimation and its uncertainty. The method is unique in

application to estimation of log(N) − log(S) by appropriate treatment of missing data. Similar

approaches can be applied in other astronomical surveys with missing data.
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APPENDIX A

Appendix A: Single-Pareto Model for log(N)− log(S)

In this appendix we provide proofs and sketches of derivations necessary for chapter 1.

A.1. Proof of Lemma 1

Proof of Lemma 1. Given the survival function of G, we can easily derive the distribution

function G and the density function g of Si.

G(s) = Pr(Si < s) = 1− Pr(Si > s) =


1− α · s−θ, if s > τ

0, if s ≤ τ

g(s) =
d

ds
G(s) = θ · α · s−θ−1, if s > τ, and 0 elsewhere.

With total probability rule, we obtain the required proportionality constant.∫ ∞

−∞
g(s)ds =

∫ ∞

τ
θ · α · s−θ−1ds = α · τ−θ = 1

Which implies that α = τ θ. Hence, G(s) = 1−
(
s
τ

)−θ. By uniqueness of the distribution function,

G is a Pareto distribution. □

A.2. Model Assumptions for Single Pareto Model

The distributional assumptions are listed below. These components will be useful for derivation

of the posterior distribution. We fill-in the gaps to derivations of section 1.3.

p (N) =

 N + aN − 1

aN − 1

( 1

1 + bN

)N ( bN
1 + bN

)aN

∼ Neg-Bin (N ; aN , bN )

p (n|N, θ) =

 N

n

 (π(θ))n (1− π(θ))N−n ∼ Binomial (n;N, π(θ))
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p (θ) =
ba

Γ(a)
θa−1e−bθ ∼ Gamma (θ; a, b)

p (τ) =
bamm

Γ(am)
τam−1e−bmτ ∼ Gamma (τ ; am, bm)

g(S,B,L,E) = Pr(I = 1|S,B,L,E)

π(θ, τ) =

∫
p(I = 1|S,B,L,E) · p(S,B,L,E|θ, τ) dS dB dE dL

=

∫
g(S,B,L,E) · p(S,B,L,E|θ, τ) dS dB dE dL

p (Sobs|n,N, θ, τ, Bobs, Lobs, Eobs) =

n∏
i=1

p (Sobs,i|n,N, θ, τ, Bobs,i, Lobs,i, Eobs,i)

=
n∏

i=1

p (Si, Ii = 1|n, θ, τ, Bi, Li, Ei)

=
n∏

i=1

[p (Si|n, θ, τ) p (Ii = 1|Si, Bi, Li, Ei)]

=

n∏
i=1

[
θτ−1

(
Si

τ

)−(θ+1)

g(Si, Bi, Li, Ei)

]

∼
n∏

i=1

Pareto (Si; θ, τ)g(Si, Bi, Li, Ei)

p (Smis|n,N, θ, τ, Bobs, Lobs, Eobs) =

n∏
i=1

p (Smis,i|n,N, θ, τ, Bobs,i, Lobs,i, Eobs,i)

=
N−n∏
i=1

p (Si, Ii = 0|n,N, θ, τ, Bi, Li, Ei)

=

N−n∏
i=1

[p (Si|n,N, θ, τ) p (Ii = 0|Si, Bi, Li, Ei)]

=

N−n∏
i=1

[
θτ−1

(
Si

τ

)−(θ+1)

(1− g(Si, Bi, Li, Ei))

]

∼
N−n∏
i=1

Pareto (Si; θ, τ)(1− g(Si, Bi, Li, Ei))
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Observe that, in the case of "step"-function g:

p (Sobs|n,N, θ, τ, Bobs, Lobs, Eobs) =

n∏
i=1

p (Sobs,i|n,N, θ) =

n∏
i=1

p (Si, Ii|n, θ)

=

n∏
i=1

p (Si|n, θ) I{Si > Ci(Ei)}

=

n∏
i=1

p (Si|n, θ, τ) I{Si > Ci(Ei), Si > τ}

=
n∏

i=1

p (Si|n, θ, τ, Ci(Ei)) I{Si > max{τ, Ci(Ei)}}

∼ Pareto (θ,max{τ, Ci(Ei)}), for each i = 1, . . . , n.

Let λi = λ(Sobs,i, Bobs,i, Eobs,i, Lobs,i) and ki = k(Bobs,i, Eobs,i, Lobs,i).

p
(
Y tot
obs |n,N, Sobs

)
=

n∏
i=1

p
(
Y tot
obs,i|n,N, Sobs,i

)
=

n∏
i=1

(λi + ki)
Y tot
obs,ie−(λi+ki)

Y tot
obs,i!

∼
n∏

i=1

Poisson (Y tot
obs,i;λi + ki)

p
(
Y src
obs |n,N, Y tot

obs , Sobs

)
=

n∏
i=1

p
(
Y src
obs,i|n,N, Y tot

obs,i, Sobs,i

)
=

n∏
i=1

p(Y src
obs,i, Y

tot
obs,i|n,N, Sobs,i)

1

p(Y tot
obs,i)

Let X = Y src
obs,i ∼ Poisson (λi), V = Y bkg

obs,i ∼ Poisson (ki), W = Y tot
obs,i = X + V, X⊥V.

Then we have,

pX|W=w(x) =
Pr(X = x,W = w)

Pr(W = w)
=

Pr(X = x) Pr(V = w − x)

Pr(W = w)

=

λx
i e

−λi

x! · kw−x
i e−ki

(w−x)!

(λu
i +ki)we−(λi+ki)

w!

=
w!

x!(w − x)!

(
λi

λi + ki

)x( ki
λi + ki

)w−x

Hence, X|W = w ∼ Binomial
(
X;w,

λi

λi + ki

)
.
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p
(
Y src
obs |n,N, Y tot

obs , Sobs

)
=

n∏
i=1

p(Y src
obs,i, Y

tot
obs,i|n,N, Sobs,i)

1

p(Y tot
obs,i)

=

n∏
i=1

λ
Y src
obs,i

i k(Y
tot
obs,i−Y src

obs,i)e−(λi+ki)

Y src
obs,i!(Y

tot
obs,i − Y src

obs,i)!

Y tot
obs,i!

(λi + ki)
Y tot
obs,ie−(λi+ki)

=
n∏

i=1

Y tot
obs,i!

Y src
obs,i!(Y

tot
obs,i − Y src

obs,i)!

(
λi

λi + ki

)Y src
obs,i

(
ki

λi + ki

)Y tot
obs,i−Y src

obs,i

=

n∏
i=1

 Y tot
obs,i

Y src
obs,i

( λi

λi + ki

)Y src
obs,i

(
1− λi

λi + ki

)Y tot
obs,i−Y src

obs,i

∼
n∏

i=1

Binomial
(
Y src
obs,i;Y

tot
obs,i,

λi

λi + ki

)

p
(
Y tot
mis|n,N, Smis

)
=

N−n∏
i=1

p
(
Y tot
mis,i|n,N, Smis,i

)
=

N−n∏
i=1

(λi + ki)
Y tot
mis,ie−(λi+ki)

Y tot
mis,i!

∼
N−n∏
i=1

Poisson
(
Y tot
mis,i;λi + ki

)

p
(
Y src
mis|n,N, Y tot

mis, Smis

)
=

N−n∏
i=1

p
(
Y src
mis,i|n,N, Y tot

mis,i, Smis,i

)
=

N−n∏
i=1

p(Y src
mis,i, Y

tot
mis,i|n,N, Smis,i)

1

p(Y tot
mis,i)

=

N−n∏
i=1

λ
Y src
mis,i

i k(Y
tot
mis,i−Y src

mis,i)e−(λi+ki)

Y src
mis,i!(Y

tot
mis,i − Y src

mis,i)!

Y tot
mis,i!

(λi + ki)
Y tot
mis,ie−(λi+ki)

=
N−n∏
i=1

 Y tot
mis,i

Y src
mis,i

( λi

λi + ki

)Y src
mis,i

(
1− λi

λi + ki

)Y tot
mis,i−Y src

mis,i

∼
N−n∏
i=1

Binomial
(
Y src
mis,i;Y

tot
mis,i,

λi

λi + ki

)
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A.3. Derivation of Posterior Distribution for Single Pareto Model

Using above calculations, we now derive the joint posterior distribution of the parameters of

interest.

p
(
N, θ, τ, Sobs, Y

src
obs |n, Y tot

obs , Bobs, Lobs, Eobs

)
=

1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p
(
N, θ, τ, Sobs, Y

src
obs , Y

tot
obs , Bobs, Lobs, Eobs, n

)
=

1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

·

·
∫

p
(
N, θ, τ, Icom, Scom, Y src

com, Y tot
com, Bcom, Lcom, Ecom, n

)
dImis dSmis dBmis dLmis dEmis dY src

mis dY tot
mis

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p (N, θ, τ)

·
∫

p
(
n, Icom, Scom, Y src

com, Y tot
com, Bcom, Lcom, Ecom|N, θ, τ

)
dImis dSmis dBmis dLmis dEmis dY src

mis dY tot
mis

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p (N, θ, τ)

·
∫

p
(
Icom, Scom, Y src

com, Y tot
com, Bcom, Lcom, Ecom|N, θ, τ

)
· I{∑N

i=1 Ii=n}

dImis dSmis dBmis dLmis dEmis dY src
mis dY tot

mis

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p (N, θ, τ)

·
∫
A

p
(
Icom, Scom, Y src

com, Y tot
com, Bcom, Lcom, Ecom|N, θ, τ

)
dImis dSmis dBmis dLmis dEmis dY src

mis dY tot
mis

where A = {all permutations of vector I of length N with

entries Ij ∈ {0, 1}, s.t.
∑
j

Ij = n}

Note: how do we know which components Si of Scom are the missing sources? i.e. how to perform

such integral w.r.t. Imis? We integrate all N −n components Si for which Ii = 0. That is, integrate

across all permutations of Icom vector of length N in which there are exactly n 1’s. Consider

integrating out the first missing source, supposedly if N−n = 1; there are N possibilities that there
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is a source with Ii = 0 and all other components are 1. In this special case,∫
A

p
(
Icom, Scom, Y src

com, Y tot
com, Bcom, Lcom, Ecom|N, θ, τ

)
dImis,1 dSmis,1 dBmis,1 dLmis,1 dEmis,1 dY src

mis,1 dY tot
mis,1

=

∫
A

N∏
i=1

p(Ii, Si, Bi, Li, Ei, Y
tot
i , Y src

i |N, θ, τ)

dImis,1 dSmis,1 dBmis,1 dLmis,1 dEmis,1 dY src
mis,1 dY tot

mis,1

= N ·
∫ N∏

i=2

p(Ii = 1, Si, Bi, Li, Ei, Y
tot
i , Y src

i |N, θ, τ)

· p(I1 = 0, S1, B1, L1, E1, Y
tot
1 , Y src

1 |N, θ, τ) dS1 dB1 dL1 dE1 dY src
1 dY tot

1

= N · p(Iobs, Sobs, Bobs, Lobs, Eobs, Y
src
obs , Y

tot
obs |N, θ, τ)

·
∫

p(B1, L1, E1) ·
[∫

p(S1|θ, τ) · p(I1 = 0|S1, B1, L1, E1) dS1

·
∫

p(Y tot
1 |N, θ, S1, B1, L1, E1) dY

tot
1

·
∫

p(Y src
1 |N, θ, S1, B1, L1, E1, Y

tot
1 ) dY src

1

]
dB1 dL1 dE1

= N · p(Iobs, Sobs, Bobs, Lobs, Eobs, Y
src
obs , Y

tot
obs |N, θ, τ)

·
∫

p(B1, L1, E1) ·
{∫

(1− g(S1, B1, L1, E1)) p(S1|θ, τ) dS1 ·

·

 ∞∑
ytot1 =0

(λ1 + k1)
ytot1

ytot1 !
e(λ1+k1)


·

 ytot1∑
ysrc1 =0

 ytot1

ysrc1

 ( λ1

λ1 + k1

)ysrc1
(
1− λ1

λ1 + k1

)ytot1 −ysrc1

] dB1 dL1 dE1

(with λ1 ≡ λ(S1, B1, L1, E1) and k1 ≡ k(B1, L1, E1))

= N · p(Iobs, Sobs, Bobs, Lobs, Eobs, Y
src
obs , Y

tot
obs |N, θ, τ)

·
∫

(1− g(S1, B1, L1, E1)) · p(S1|θ, τ) · p(B1, L1, E1) dS1 dB1 dL1 dE1

= N · p(n, Sobs, Bobs, Lobs, Eobs, Y
src
obs , Y

tot
obs |N, θ, τ) · (1− π(θ, τ))
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Now consider that N−n = 2 and we integrate out both of these missing sources. There are

 N

2


arrangements of I containing exactly two 0’s. Also, by independence of sources, the integral over

all other missing variables will simplify to a product of two 1− π values: (1− π(θ, τ))2. Continuing

in this manner we get the following result for N − n missing sources.

p
(
N, θ, τ, Sobs, Y

src
obs |n, Y tot

obs , Bobs, Lobs, Eobs

)
=

1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p (N, θ, τ)

·
∫
A

p
(
Icom, Scom, Y src

com, Y tot
com, Bcom, Lcom, Ecom|N, θ, τ

)
dImis dSmis dBmis dLmis dEmis dY src

mis dY tot
mis

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p (N, θ, τ)

·

 N

n

 I{n≤N} · p(Iobs, Sobs, Bobs, Lobs, Eobs, Y
src
obs , Y

tot
obs |N, θ, τ) · (1− π(θ, τ))(N−n)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

·

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)

· p (N) · p (θ|N) · p (τ |N, θ) · p (Bobs, Lobs, Eobs|N, θ, τ)

· p (Iobs, Sobs|N, θ, τ, Bobs, Lobs, Eobs)

· p
(
Y tot
obs |N, θ, τ, Bobs, Lobs, Eobs, Iobs, Sobs

)
· p
(
Y src
obs |Y tot

obs , N, θ, τ, Bobs, Lobs, Eobs, Iobs, Sobs

)
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=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

·

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)

· p (N) · p (θ) · p (τ) · p (Bobs, Lobs, Eobs) · p (Sobs|N, θ, τ) · p (Iobs|Sobs, Bobs, Lobs, Eobs)

· p
(
Y tot
obs |Bobs, Lobs, Eobs, Iobs, Sobs

)
· p
(
Y src
obs |Y tot

obs , Bobs, Lobs, Eobs, Iobs, Sobs

)
=

1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

·

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)

·

 N + aN − 1

aN − 1

( 1

1 + bN

)N ( bN
1 + bN

)aN

I{N∈Z+}

· ba

Γ(a)
θa−1e−bθI{θ>0}

· bamm
Γ(am)

τam−1e−bmτ I{τ>0}

·

[
n∏

i=1

p (Bi, Li, Ei) · θτ θS−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei)

· (λi + ki)
Y tot
i

Y tot
i !

e(λi+ki)I{Y tot
i ∈Z+}

·

 Y tot
i

Y src
i

 ( λi

λi + ki

)Y src
i
(
1− λi

λi + ki

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

]

with λi ≡ λ(Si, Bi, Li, Ei) and ki ≡ k(Bi, Li, Ei).
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A.4. Full-Conditional Distributions for Single Pareto Model

A.4.1. Sampling Y src
obs : Deriving the full conditional distribution for Y src

obs , we arrive at:

p (Y src
obs | · ) ∝ p(Y src

obs |Y tot
obs , Bobs, Lobs, Eobs, Iobs, Sobs)

=

n∏
i=1

 Y tot
i

Y src
i

( λi

λi + ki

)Y src
i
(
1− λi

λi + ki

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

Thus, by independence of observed sources, we can sample vector Y src
obs component-wise:

for i = 1, . . . , n,

p (Y src
i | · ) ∝ p(Y src

i |Y tot
i , Si, Bi, Li, Ei)

∼ Binomial
(
Y src
i ;Y tot

i ,
λ(Si, Bi, Li, Ei)

λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)

)
A.4.2. Sampling Sobs: Deriving the full conditional distribution for Sobs, we arrive at:

p (Sobs| · ) ∝ p (Sobs|N, θ, τ) · p (Iobs|Sobs, Bobs, Lobs, Eobs) ·

· p
(
Y tot
obs |Bobs, Lobs, Eobs, Iobs, Sobs

)
· p
(
Y src
obs |Y tot

obs , Bobs, Lobs, Eobs, Iobs, Sobs

)
=

[
n∏

i=1

θτ θS
−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei) ·

(λi + ki)
Y tot
i

Y tot
i !

e(λi+ki)I{Y tot
i ∈Z+} ·

·

 Y tot
i

Y src
i

 ( λi

λi + ki

)Y src
i
(
1− λi

λi + ki

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

]

Thus, by independence of observed sources, we can sample vector Sobs component-wise:

for i = 1, . . . , n,

p (Si| · ) ∝ p (Si|N, θ, τ) · p (Ii = 1|Si, Bi, Li, Ei) · p
(
Y tot
i |Si, Bi, Li, Ei

)
·

· p
(
Y src
i |Y tot

i , Si, Bi, Li, Ei

)
∼ Pareto (Si; θ, τ) · g(Si, Bi, Li, Ei) · Poisson (Y tot

i ;λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)) ·

· Binomial
(
Y src
i ;Y tot

i ,
λ(Si, Bi, Li, Ei)

λ(Si, Bi, Li, Ei) + k(Bi, Li, Ei)

)
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A.4.3. Sampling θ: We now derive the full conditional distribution for θ.

p (θ| · ) ∝ p (θ) · p (Sobs|N, θ, τ) · (1− π(θ, τ))(N−n)

=
ba

Γ(a)
θa−1e−bθI{θ>0} ·

[
n∏

i=1

θτ−1

(
Si

τ

)−(θ+1)

I{τ<Si}

]
· (1− π(θ, τ))(N−n)

∝ θa−1e−θb · θne
∑n

i=1 log
(

Si
τ

)−θ

I{θ>0} · (1− π(θ, τ))(N−n)

= θ(a+n−1)e
−θ

[
b+

∑n
i=1 log

(
Si
τ

)]
I{θ>0} · (1− π(θ, τ))(N−n)

∝ (1− π(θ, τ))(N−n) · Gamma

(
θ; a+ n, b+

n∑
i=1

log

(
Si

τ

))

A.4.4. Sampling N : We now derive the full conditional distribution for N .

p (N | · ) ∝

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n) · p (N) · p (Sobs|N, θ, τ)

=

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n) ·

 N + aN − 1

aN − 1

( 1

1 + bN

)N ( bN
1 + bN

)aN

I{N∈Z+}

∝ Γ(N + 1)

Γ(n+ 1)Γ(N − n+ 1)
· (1− π(θ, τ))(N−n) · Γ(N + aN )

Γ(aN )Γ(N + 1)

(
1

bN + 1

)N

I{n≤N}

∝ Γ(N + aN )

Γ(N − n+ 1)
·
(

1

bN + 1

)N

· (1− π(θ, τ))(N−n) I{n≤N}

A.4.5. Sampling τ : We now derive the full conditional distribution of τ .

τ ∼ Gamma (am, bm), am, bm > 0, s > 0.

Recall that for the single power-law model, the flux density is a Pareto:

p(s|θ, τ) = θτ θs−(θ+1), s > τ.
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A gamma prior on τ gives the following full conditional distribution of τ :

p(τ | · ) ∝ p(τ, θ,N) · p (Bobs, Lobs, Eobs|τ, θ,N) · p (n, Sobs, Iobs|N, θ, τ, Bobs, Lobs, Eobs)

· p
(
Y tot
obs , Y

src
obs |n,N, θ, Sobs, Iobs, τ, Bobs, Lobs, Eobs

)
= p(τ) · p(θ) · p(N) · p (Bobs, Lobs, Eobs) · p (n, Sobs, Iobs|N, θ, τ, Bobs, Lobs, Eobs)

· p
(
Y tot
obs , Y

src
obs |n,N, θ, Sobs, Iobs, τ, Bobs, Lobs, Eobs

)
∝ p(τ) · p (n, Sobs, Iobs|N, θ, τ, Bobs, Lobs, Eobs)

=
bamm

Γ(am)
τam−1e−bmτ I{τ>0}

·

 N

n

 (1− π(θ, τ))N−n I{n≤N} ·
n∏

i=1

θτ θS
−(θ+1)
i g(Si, Bi, Li, Ei)I{τ<Si}

∝ τnθ+am−1 · e−bmτ · (1− π(θ, τ))N−n · I{0<τ<cm},where cm = min{S1, . . . , Sn},

∝ Gamma (τ ; am + nθ, bm) · (1− π(θ, τ))N−n · I{0<τ<cm}

The sampling of τ proceeds with the Metropolis-Hastings algorithm. Care must be exercised to make

sure samples are drawn in the proper region. In order to preserve the positivity of the parameter

and to avoid numerical instability of making samples very close to zero, we first take a logarithm

transformation:

η = log(τ)

p(η| · ) = eη · p(τ = eη| · ) ∝ eη(nθ+am+1) · e−bmeη · (1− π(θ, τ = eη))N−n · I{η<log(cm)}.

The upper bound for η is reflected in the truncated normal distribution chosen as the asymmetric

jumping distribution.

J(ηprop|ηcurr) =
1
σϕ(

ηprop−ηcurr

σ )

Φ( log(cm)−ηcurr

σ )
.

(For standard normal PDF ϕ and CDF Φ.)

The algorithm proceeds as follows. Consider a starting point: ηcurr = log(τ curr), where τ curr is the

current state value of the minimum flux.
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Algorithm 4. Step 1: Sample a proposal ηprop ∼ J(ηprop|ηcurr).

Step 2: Compute the ratio of densities for MH algorithm:

α =
p(ηprop|data) · J(ηcurr|ηprop)
p(ηcurr|data) · J(ηprop|ηcurr)

=
eη

prop · p(τprop = eη
prop | · ) · Φ( log(cm)−ηcurr

σ )

eηcurr · p(τ curr = eηcurr | · ) · Φ( log(cm)−ηprop

σ )

Step 3: Draw U ∼ Uniform (0, 1).

Step 4: If U < α, accept ηnew = ηprop, otherwise keep ηnew = ηcurr.

Step 5: Transform back τnew = eη
new for the new draw of the minimum flux.

A.4.6. Sampling Smis: The vector of parameters Smis is not required as part of our Gibbs

sampler, and it has been shown that we can average over these latent variables in the derivation

of the posterior distribution. However, we require to produce the log(N) − log(S) plot, thus, we

want impute these latent variables. At the same time, we do not want to introduce the dependence

of Smis on all parameters in our Gibbs sampler. Instead of re-deriving the posterior distribution

with Smis included in the parameter set, we proceed with the unconditional approach. Through

model assumption, S ∼ Pareto (θ, τ), and the probability of observing a missing source is p(I =

0|S,B,L,E) = 1−g(S,B,L,E). Note that the dimension of Smis vector is N−n, that is, it depends

directly on the value of N and changes from iteration to iteration.

p (Smis|n,N, θ, τ, Bmis, Lmis, Emis, Imis) =
N−n∏
i=1

p(Si, Ii = 0|n,N, θ, τ, Bi, Li, Ei)

=

N−n∏
i=1

p(Si|n,N, θ, τ) · p(Ii = 0|Si, Bi, Li, Ei) =

N−n∏
i=1

θτ−1

(
Si

τ

)−(θ+1)

(1− g(Si, Bi, Li, Ei))

Hence, for i = 1, . . . , N − n,

(Bi, Li, Ei) ∼ p(Bi, Li, Ei)

Si|n,N, θ, τ, Bi, Li, Ei, Ii = 0 ∼ (1− g(Si, Bi, Li, Ei)) · Pareto (Si; θ, τ).

Sampling is done via rejection sampling method.
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APPENDIX B

Appendix B: Broken-Pareto Model for log(N)− log(S)

In this Appendix we provide a sketch of distributional derivations and whenever necessary

description to the computation required for the model in chapter 2.

B.1. Summary of Distributions

(1) Pareto distribution. X ∼ Pareto (τ1, θ)

pdf: fX(x) = θ
τ θ1

xθ+1
, x ≥ τ1.

cdf: FX(x) = 1− τ θ1
xθ

, x ≥ τ1.

quantile: xq =
τ1

(1− q)1/θ
.

(2) Truncated-Pareto distribution. X ∼ Truncated-Pareto(τ1, θ, τ)

pdf: fX(x) = θ
x−(θ+1)

τ−θ
1 − τ−θ

, τ1 ≤ x < τ.

cdf: FX(x) =
τ−θ
1 − x−θ

τ−θ
1 − τ−θ

, τ1 ≤ x < τ.

quantile: xq =
(
τ−θ
1 − q(τ−θ

1 − τ−θ)
)−1/θ

.

(3) Mixture of Truncated-Pareto distributions. Y ∼ p1X1 + p2X2 + · · ·+ pmXm,

where

Xj ∼ Truncated-Pareto (τj , θj , τj+1) ,

0 < τ1 ≤ τ2 ≤ · · · ≤ τm,

0 < pj < 1,
m∑
j=1

pj = 1,

pj =

[
1−

(
τj+1

τj

)−θj
]

j−1∏
i=1

(
τi+1

τi

)−θi

, j = 1, . . . ,m.
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pdf: fY (x) =

m∑
j=1

{
j−1∏
i=1

(
τi+1

τi

)−θi
}(

θj
τj

)(
x

τj

)−(θj+1)

I{τj≤x<τj+1}.

cdf: FY (x) =

m∑
j=1

pjI{x>τj+1} +

m∑
j=1

pjFXj (x)I{τj≤x<τj+1}

=

m∑
j=1

{
j−1∏
i=1

(
τi+1

τi

)−θi
}[

1−
(

s

τj

)−θj
]
I{τj≤x<τj+1}.

(4) Mixture of Pareto distributions. Y ∼ p1X1 + p2X2 + · · ·+ pmXm,

where

Xj ∼ Pareto (τj , θj) ,

0 < τ1 ≤ τ2 ≤ · · · ≤ τm,

0 < pj < 1,

m∑
j=1

pj = 1, j = 1, . . . ,m.

pdf: fY (x) =

m∑
j=1

pjθj
x−(θ+1)

τ−θ
j

I{x≥τj}.

cdf: FY (x) =

m∑
j=1

pj

(
1− x−θj

τ−θ
j

)
I{x≥τj}.

B.2. Proofs of Lemma 2 and Identity for pj

Proof of Lemma 2. Given the CDF defined by the broken power-law in (2.1), we can repre-

sent G in the form:

Y = pX1 + (1− p)X2 ∼ G,

where p ∈ [0, 1], X1 ∈ [τ1, τ2] and X2 ∈ (τ2,∞). Denote the CDF of X1 and X2 by F1 and F2,

respectively, then we have the following four required conditions on F1 and F2:

(1) F1(τ1) = 0, (2) F1(τ2) = 1, (3) F2(τ2) = 0, (4) lim
s→∞

F2(s) = 1.
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For simplicity we denote α∗
j = 10αj for j = 1, 2. The above conditions and piecewise linearity yield

the following constraints:

FG(s) =

 pF1(s) = 1− α∗
1s

−θ1 s ≤ τ2

p+ (1− p)F2(s) = 1− α∗
2s

−θ2 s > τ2.
.

The lower limits (1) and (3) imply α∗
1 = τ θ11 and α∗

2 = (1− p)τ θ22 . So far we have:

F1(s) =
1−

(
s
τ1

)−θ1

p
(B.1)

F2(s) =
(1− p)− (1− p)

(
s
τ2

)−θ2

1− p
= 1−

(
s

τ2

)−θ2

On the other hand, the upper limit (2) and (B.1) allow us to solve for p:

p = 1−
(
τ2
τ1

)−θ1

.

So, the first mixture component distribution is:

F1(s) =
1−

(
s
τ1

)−θ1

1−
(
τ2
τ1

)−θ1
, τ1 < s < τ2.(B.2)

Thus, we have:

Y ∼

[
1−

(
τ2
τ1

)−θ1
]
X1 +

(
τ2
τ1

)−θ1

X2,

where: X1 ∼ Truncated-Pareto (τ1, θ1, τ2) with CDF given by (B.2), and X2 ∼ Pareto (τ2, θ2). It

is important to note that the continuity constraint restricts the distribution of Y to contain only 4

free parameters instead of 5 (two for each straight line and the break-point location). □
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Proof of Identity (2.8). Consider the general m-component broken power-law density of the

flux. We begin with the flux mixture Y ∼ p1X1 + p2X2 + · · ·+ pmXm, where Xj ∼ Pareto (τj , θj),

τ1 ≤ τ2 ≤ · · · ≤ τm, 0 < pj < 1,
∑m

j=1 pj = 1, j = 1, . . . ,m. The CDF of Y is:

FY (s) =

m∑
j=1

pjFj(s) =

m∑
j=1

{
1−

j−1∑
i=1

pi

}[
1−

(
s

τj

)−θj
]
I{τj≤s<τj+1}.

The density is given by differentiating:

fY (s) =
m∑
j=1

{
1−

j−1∑
i=1

pi

}(
θj
τj

)(
s

τj

)−(θj+1)

I{τj≤s<τj+1}.

Constraints on Fj give rise to the recursive relationship of pj , j = 1, . . . ,m:

pj =

[
1−

(
τj+1

τj

)−θj
](

1−
j−1∑
i=1

pi

)
.(B.3)

Based on this recursive relationship, we can show that:

1−
j∑

i=1

pi = pj


(
τj+1

τj

)−θj

1−
(
τj+1

τj

)−θj

 .(B.4)

Combining (B.3) and (B.4) we see that:

pj+1 = pj

[
1−

(
τj+2

τj+1

)−θj+1
]

(
τj+1

τj

)−θj

1−
(
τj+1

τj

)−θj

 .

Noting the cancellation of successive terms, we obtain:

pj =

[
1−

(
τj+1

τj

)−θj
]

j−1∏
i=1

(
τi+1

τi

)−θi

.(B.5)

Lastly, we use (B.5) to show that for q = 1, . . . ,m:

1−
q∑

j=1

pj = 1−
q∑

j=1

{[
1−

(
τj+1

τj

)−θj
]

j−1∏
i=1

(
τi+1

τi

)−θi
}

= 1−
q∑

j=1

{
j−1∏
i=1

(
τi+1

τi

)−θi

−
j∏

i=1

(
τi+1

τi

)−θi
}
.
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Let c(j) =
∏j

i=1

(
τi+1

τi

)−θi
with restriction that c(0) = 1. Then we have:

1−
q∑

j=1

pj = 1−
q∑

j=1

{c(j − 1)− c(j)}

= 1− (c(0)− c(q)) = c(q)

=

q∏
i=1

(
τi+1

τi

)−θi

.

□

B.3. Derivation of Posterior Distribution for Broken-Pareto Model

The posterior derivation under the broken-Pareto setting follows the same strategy as that for

single Pareto setting. That is, we marginalize across the missing source information to use only the

observed data. The only change in the posterior distribution is the p.d.f. model for the flux. It

follows that the posterior distribution of the break-point model is:

p(N, θ, τ, Sobs, Y
src
obs |n, Y tot

obs , Bobs, Lobs, Eobs)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p (N, θ, τ)

·
∫
A

p
(
Icom, Scom, Y src

com, Y tot
com, Bcom, Lcom, Ecom|N, θ, τ

)
dImis dSmis dBmis dLmis dEmis dY src

mis dY tot
mis

where

A = {all permutations of vector I of length N with entries Ij ∈ {0, 1}, s.t.
∑
j

Ij = n.}

Thus

p(N, θ, τ, Sobs, Y
src
obs |n, Y tot

obs , Bobs, Lobs, Eobs)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

· p (N, θ, τ) ·

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)


· p(Iobs, Sobs, Bobs, Lobs, Eobs, Y

src
obs , Y

tot
obs |N, θ, τ)
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=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

·

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)


· p (N) · p (θ) · p (τ) · p (Bobs, Lobs, Eobs)

· p (Sobs|N, θ, τ) · p (Iobs|Sobs, Bobs, Lobs, Eobs)

· p
(
Y tot
obs |Bobs, Lobs, Eobs, Iobs, Sobs

)
· p
(
Y src
obs |Y tot

obs , Bobs, Lobs, Eobs, Iobs, Sobs

)

(B.6) =
1

p(n, Y tot
obs , Bobs, Lobs, Eobs)

·

 N

n

 I{n≤N} · (1− π(θ, τ))(N−n)


·

 N + aN − 1

aN − 1

( 1

1 + bN

)N ( bN
1 + bN

)aN

I{N∈Z+}

 ·

 m∏
j=1

ba

Γ(a)
θa−1
j e−bθj I{θj>0}


· p (τ1, . . . , τm) I{0<τ1<τ2<···<τm} ·

[
n∏

i=1

p (Bi, Li, Ei) · g(Si, Bi, Li, Ei)

·
m∑
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}(

θj
τj

)(
Si

τj

)−(θj+1)

· I{τj≤Si<τj+1}

· (λi + ki)
Y tot
i

Y tot
i !

e(λi+ki)I{Y tot
i ∈Z+}

·

 Y tot
i

Y src
i

 ( λi

λi + ki

)Y src
i
(
1− λi

λi + ki

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

]

with τm+1 = +∞, λi ≡ λ(Si, Bi, Li, Ei), ki ≡ k(Bi, Li, Ei), and
∏0

l=1

(
τl+1

τl

)−θl
≡ 1.

B.4. Full-Conditional Distributions for Broken-Pareto Model

B.4.1. Sampling θ = (θ1, . . . , θm)T : Using (B.6) we can derive the conditional posterior dis-

tribution of θ = (θ1, . . . , θm)T :

p(θ|N,Sobs, τ) ∝

 m∏
j=1

θ
aj−1
j e−θjbj I{θj>0}

 ·
[(

n

m

)
π(θ, τ)n(1− π(θ, τ))N−n

]

·

 n∏
i=1

p (Bi, Li, Ei) g(Si, Bi, Li, Ei)

m∑
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}(

θj
τj

)(
si
τj

)−(θj+1)

I{τj≤si<τj+1}


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Distributing the successive sum terms of the product, we note that the indicators I{τj≤si<τj+1}

will eliminate all but single j-th terms of the sum. Define I(j) = {i : τj ≤ si < τj+1} and n(j)

is the cardinality of I(j) i.e., I(j) (n(j)) denotes the set (number) of source indices whose flux

is contained in the interval corresponding to the j-th mixture component. Collecting all product

terms with common powers, we have:

∝

 m∏
j=1

θ
aj−1
j e−θjbj I{θj>0}

 ·
[
(1− π(θ, τ))N−n

]

·

 m∏
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}n(j) ∏

i∈I(j)

(
θj
τj

)(
si
τj

)−(θj+1)


∝
[
(1− π(θ, τ))N−n

]
·

 m∏
j=1

θ
aj+n(j)−1
j I{θj>0}


·

 m∏
j=1

e−θjbj

 ·

 m∏
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}n(j)

·
m∏
j=1

e
−θj

∑
i∈I(j) log

(
si
τj

) .

All terms apart from those involving π(θ, τ) factorize in terms of θ1, . . . , θm:

p(θ|N,Sobs, τ) ∝
[
(1− π(θ, τ))N−n

] m∏
j=1

θ
aj+n(j)−1
j I{θj>0}

· exp

−

θjbj + n(j)I{j ̸=0}

j−1∑
l=1

θl log

(
τl+1

τl

)
+ θj

∑
i∈I(j)

log

(
si
τj

)
=
[
(1− π(θ, τ))N−n

] m∏
j=1

θ
aj+n(j)−1
j I{θj>0}

· exp

−θj

bj + I{j ̸=m} log

(
τj+1

τj

) m∑
i=1

[
n(i)I{i≥j+1}

]
+
∑

i∈I(j)

log

(
si
τj

) .

This partial factorization allows for the exact (conditional) posterior draws to be obtained by rejec-

tion sampling as follows:
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Algorithm 5. Step 1: For j = 1, . . . ,m, draw:

θ∗j ∼ Gamma

aj + n(j), bj + I{j ̸=m} log

(
τj+1

τj

) m∑
i=1

[
n(i)I{i≥j+1}

]
+
∑

i∈I(j)

log

(
si
τj

) ,

and denote θ∗ = (θ∗1, . . . , θ
∗
m).

Step 2: Generate U ∼ U [0, 1]. If U ≤ (1− π(θ∗, τ))N−n, then accept θ∗, else return to step 5.

Alternatively, this partial factorization also allows for the approximate (conditional) posterior

draws to be obtained by Metropolis-Hastings algorithm. The sampling via MH procedure will be

selected at random with success probability 0.9.

B.4.2. Sampling τ̃ = (τ2, . . . , τm)T via η̃ = (η2, . . . , ηm)T : Recall that τ = h−1(η|τ1) and

define components τj = h−1
j (η|τ1) = τ1 +

∑j
k=2 e

ηk , as in (2.10). Using (B.6) we can derive the

conditional posterior distribution of η̃ = (η2, . . . , ηm)T :

p(η̃|N,Sobs, θ, τ1) ∝

 N

n

 I{n≤N} (1− π(θ, τ))(N−n)

 p(η2, . . . , ηm|τ1)I{τ1<τ2<···<τm}

·

 n∏
i=1

p (Bi, Li, Ei) g(Si, Bi, Li, Ei)

m∑
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}(

θj
τj

)(
Si

τj

)−(θj+1)

I{τj≤Si<τj+1}


∝
[
(1− π(θ, τ))(N−n)

]
· exp

−1

2

m∑
j=2

{cj(ηj − µj)}2
 I{τ1<τ2<···<τm}

·

 m∏
j=1

{
j−1∏
l=1

(
τl+1

τl

)−θl
}n(j) ∏

i∈I(j)

(
θj
τj

)(
si
τj

)−(θj+1)

I{τ1<min(s1,...,sn)}

 ,

where I(j) = {i : τj ≤ si < τj+1} and n(j) is the cardinality of I(j).

It is impossible to factor out τ2, . . . , τm and further simplify the expression. Sampling of whole

η vector is done via Metropolis-Hastings algorithm. The proposal distribution must satisfy all

constraints on τ . As described earlier during the derivation of the joint posterior distribution, the

constraint 0 < τ1 < τ2 < · · · < τm can be implemented via a variable transformation (2.10), where

h(τ2, . . . , τm|τ1) ∈ Rm−1.
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