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Multistage Analysis In Astrostatistics

Abstract

A sequence of statistical analyses often needs to be conducted by di↵erent

groups of researchers where the output of each analysis feeds into subse-

quent analyses. The statistical and systematic uncertainties of estimated

quantities, especially high dimensional quantities, are hard to quantify and

di�cult to carry forward into subsequent analyses. In practice, uncertainty

is often ignored and the estimated quantities are often treated as fixed and

known, leading to erroneous interpretation of the data and underestimation

of uncertainties.

An astrophysical example occurs when we use the spectra of the solar and

stellar coronae to estimate its density, temperature, and other composition.

This requires the use of the results of atomic physical experiments and calcu-

lations. In the example, the interaction of statistical and atomic uncertainties

in the context of a spectral model inform the analysis of the images of solar

and stellar physics. The interpretation of the spectral observations in rela-

tion to atomic data and their statistical uncertainties is necessary for deriving

meaningful uncertainties on the solar and stellar coronal plasma parameters

like electron density and temperature. Understanding how uncertainties in

the underlying atomic physics propagates to the uncertainties in the inferred

plasma parameters is an essential component of this analysis.

We propose a principled multistage analysis to carry forward the model-

generated atomic data uncertainties and statistical uncertainties obtained

from preliminary analyses to a primary analysis based on the observed spec-

tral lines under a Bayesian framework. Besides the Bayesian methodology

that considers the atomic data uncertainties as fully specified and uncor-

rectable (the so-called pragmatic Bayesian method), we allow for the ob-

served data to update the atomic data uncertainties (the fully Bayesian
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method). The former generally increases the uncertainties on the inferred

parameters compared with models that incorporate only statistical uncer-

tainties. In contrast, the latter reduces the uncertainties on the inferred

parameters. To incorporate uncertainties into a primary analysis, we sum-

marize a Monte Carlo sample of the atomic data that represents its statistical

uncertainty by treating these samples as equally likely. We also consider a

degenerated multivariate Gaussian model derived via a principal component

analysis as a low dimensional summary of the uncertainty in the atomic data.

Markov Chain Monte Carlo based model fitting is implemented including

Multi-step Monte Carlo Gibbs Sampler and Hamiltonian Monte Carlo.

The multistage analysis is able to cope with case studies of di↵erent levels

of complexity. Two-stage analysis is used to infer the plasma parameters

in spectral analysis with case studies on the density-sensitive only FeXIII

lines and the temperature-sensitive only FeXVII lines. Three-stage analysis

is used on the density- and temperature-sensitive OVII lines in the X-ray

regime considering one more parameter and its corresponding source of sta-

tistical uncertainties. This principled multistage analysis has the potential to

be applied on complicated models with a variety of sources of uncertainties.
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1
Introduction and Review

Solar and stellar coronae are complex and dynamic systems. Measuring phys-

ical properties of the corona is important for understanding the processes that

lead to the complex structure of corona. We aim to infer physical quantities

of the solar and stellar atmosphere, e.g., density and temperature, while we

only observe intensities or photon counts in several spectral lines. The infer-

ences also rely on models for the underlying atomic physics and the atomic

data serves as a bridge to enhance the connection between the inferred phys-

ical quantities of the solar and stellar atmosphere and the observed spectral

lines.

In this chapter, we introduce background about the spectrum and uncer-

tainties in atomic data, and the important role that atomic uncertainties

plays in the spectral analysis in order to obtain valid scientific estimations

of the physical quantities of the solar and stellar atmosphere. To account for

atomic uncertainties and all other source of uncertainties, we design a prin-

cipled multistage analysis which is applicable to complicated models with a

variety of sources of uncertainties.
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1.1 Spectrum and uncertainties in atomic data

1.1.1 Solar and stellar coronae

A corona is an aura, made up of plasma, that surrounds the Sun and other

stars, which can be detected using X-ray telescopes. A spectral line is a dark

or bright line in a spectrum corresponding to specific wavelengths of light

absorbed or emitted by an object. It originates from specified electronic

transitions between energy levels of ions after an inelastic collision of ions

in the plasma. Energy di↵erences are unique to the transition of electrons,

therefore, the energy of the spectral lines can identify the ions. Moreover, the

relative strength of the spectral lines can identify the density and temperature

of the plasma. From a statistical perspective, the atomic physics data provide

the relative likelihood of various transitions and thus the relative intensities

of the spectral lines as a function of the plasma parameters, like the electron

density and temperature of the plasma. Given the significant progress in

atomic calculations in recent years (e.g., see Del Zanna et al. 2004, Del Zanna

2011, Del Zanna & Storey 2012), high quality atomic data can be used in the

study of astrophysical and fusion plasmas to enhance the plasma parameter

estimations.

An emissivity curve is one of atomic data indicating how much energy is

radiated from a given level transition from unit volume of the plasma at

given density and temperature values. Spectral observations of solar and

stellar coronae, mostly taken in the X-ray, extreme-ultraviolet (EUV), and

ultraviolet (UV) part of the spectrum, are often combined with atomic data

to infer fundamental plasma parameters such as electron temperatures and

densities. This information is essential for constraining models of coronal

heating. Reliable and accurate atomic data is essential for interpreting and

modelling accurate X-ray observations (Kallman & Palmeri 2007). In reality,

instead of taking them as fixed and known, the uncertainties associated with

the plasma emissivities are likely to be comparable to or larger than those

from counting statistics, therefore, a proper statistical treatment should be

incorporated via a proper data analysis (Yu et al. 2018).
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1.1.2 Accounting for systematic uncertainty

The problem of interpreting astrophysical spectra is still complex. Ignoring

systematic uncertainties may lead to erroneous interpretation of the spectral

data and underestimation of uncertainties. The temptation of accounting

for any systematic uncertainties, like instrument calibration uncertainty and

atomic uncertainty, in the analysis with broad, ad hoc assumptions may result

in the failure of accounting for obvious correlations within the analysis. For

example, instead of assuming the same impact, the atomic data for strong

lines resulting of transitions from the ground state are likely to be more

accurate than the atomic data for weak lines influenced by many di↵erent

transitions (e.g., Foster et al. 2010).

Fortunately, the availability in the reductions of computational cost in recent

years has made it possible to carry out detailed statistical analysis on those

complex systems (Drake et al. 2006, Lee et al. 2011, Xu et al. 2014, Yu et al.

2018). Especially, Drake et al. (2006), Lee et al. (2011), and Xu et al. (2014)

have proposed quantitative methods and Bayesian approaches accounting for

calibration uncertainties in a subsequent spectral analysis, which is a good

direction for any future study on accounting for systematic uncertainties. The

works focused on an instrument calibration product, e↵ective area, which is

the area that must be used when calculating the physical properties of sources

in the sky.

Instead of being universally ignored or relying on the experience of the cali-

bration scientists, as an initial step, Drake et al. (2006) adopted a truncated

Gaussian distribution to represent the distribution of calibration uncertain-

ties. This method relies on a large calibration sample, demands a heavy

cost of computing, and requires prior knowledge of the unknown model pa-

rameters in practical implementation, while demonstrates the importance of

including calibration uncertainties with respect to the accuracy of error bars

for the model parameters. To address these problems, a pragmatic Bayesian

method for sampling from a distribution of plausible calibration curves was

presented by Lee et al. (2011). This method incorporates the calibration

uncertainties into a comprehensive spectral analysis of high-energy Chan-
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dra spectra while ignoring the potential information in the spectral data for

narrowing the uncertainty for the calibration product. They also used a Prin-

cipal Component Analysis (PCA) to e�ciently quantify the uncertainty of

the calibration curves of an X-ray telescope. The complex high-dimensional

calibration sample is represented by a compact and concise summary via a

small number of components from a PCA so that the computational e�ciency

can be improved significantly.

Following that work, Xu et al. (2014) enabled a principled fully Bayesian

method that consistently accounts for the calibration uncertainty in the

high-energy spectral analysis and updates estimation of calibration product

with the help of the observed spectral data. Comparing with the pragmatic

Bayesian method, the fully Bayesian method allows the data to simultane-

ously provide information for estimation of the source spectral parameters

and for the calibration product given the spectral model. Along with valid es-

timates of calibration uncertainty, the spectral parameters can be estimated

accurately and e�ciently. As a result, to narrow the uncertainty for the

calibration product, we are able to make use of information in large-count

observed spectra. Based on these previous works, we now can broadly apply

those general Bayesian statistical techniques in handling systematic errors

and extend them to account for the uncertainties in atomic data for several

main ions, which is described in the following chapters.

The accuracy of spectral observations and of the atomic data has progressed

hand in hand for a long time. In the past years, thanks to large-scale com-

putations, the atomic data calculations have improved significantly and the

atomic physicists have benchmarked the atomic data for several of the main

ions (e.g., see Del Zanna et al. 2004, Del Zanna 2011, Del Zanna & Storey

2012). In this thesis we consider the e↵ect of the uncertainties in the atomic

data and how these uncertainties propagate to the determination of the com-

position, the temperature and the density, of the plasma based on spectral

observations, via case studies in several main ions.
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1.1.3 The analysis we consider

We begin with a simple case that several spectral lines observed with the EUV

Imaging Spectrometer (EIS) on Hinode satellite (EIS, Culhane et al. 2007)

in the solar active region and associated with a widely used ion, FeXIII. The

EIS instrument observes many emission lines whose intensities are used to

form density-sensitive ratios and is regularly used to measure electron densi-

ties from coronal iron ions (e.g., see Watanabe et al. 2009, Young et al. 2009).

Figure 1.1 demonstrates a representative observation of a solar active region.

The intense magnetic fields in the active region lead to the formation of 3�4

MK plasma on the relatively short loops in the active region core (e.g., see

Warren et al. 2012, Del Zanna 2013, Del Zanna & Mason 2014). It also illus-

trates the spectral region near 202 Å observed with EIS, dominated by the

intense FeXIII lines. FeXIII is a particular ion that the corresponding emis-

sivity curves are density-sensitive only, i.e., do not depend on temperature.

This reduces the dimension of the parameter space in the statistical analysis

and simplifies the problem greatly. By attaching reasonable uncertainties to

the FeXIII atomic data, atomic physicists developed simple models for the

uncertainties in some of the atomic parameters for FeXIII and generated

realizations of the plasma emissivities that capture this uncertainty. We can

then apply this ensemble of emissivity curves to analyze the density sensitive

FeXIII spectral lines (Yu et al. 2018). In short, we firstly characterize the

uncertainties of the atomic data. Following that, we aim to incorporate the

atomic uncertainty and to infer the plasma parameters, in particular, plasma

densities, in a spectral analysis using Bayesian statistical techniques.

FeXVII is a popular line system for temperature measurements where its

density sensitivity is pretty much ignorable (Brickhouse et al. 1995). This

is another simplified case with reduced dimension of the parameter space in

the statistical analysis. Because of the temperature dependence, we have to

consider di↵erential emission measures (DEMs) which are a summary of the

temperature structure of the coronae of star (Brickhouse et al. 2000). The

ensemble of FeXVII emissivity curves can first be generated in the same way

as FeXIII. Following that, the models and algorithms used for FeXIII anal-

ysis above is also applicable to FeXVII in order to incorporate the FeXVII
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Figure 1.1: Observations of NOAA active region 11785 on 8 July 2013 near 2 UT (Univer-
sal Time). The top panels show the photospheric magnetic field measured with HMI instru-
ment, million degree emission observed with the AIA instrument in Fe IX 171 Å channel, and
high temperature loops observed with XRT instrument. The middle panels show EIS rasters
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The bottom panel shows an EIS spectrum near 202 Å from a single spatial pixel with the
FeXIII lines of interest highlighted. The EIS rasters are from an observation that began at
01:55 UT, and this field of view is indicated by the dotted lines in the top panels. The EIS
full CCD spectrum is from an observation that began at 00:20 UT; this field of view is indi-
cated by the dashed lines in the top panels.
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atomic uncertainty and to infer the plasma parameters, in particular, plasma

temperature.

We then move onto a more complicated case. We aim to estimate both the

coronal density and temperature of Capella using the OVII line systems in

the soft X-ray regime over the course of the Chandra mission (Mewe et al.

2001). The Capella, a quadruple star system organized in two binary pairs,

is one of the brightest stellar X-ray sources in the sky. Unlike the FeXIII

and FeXVII emissivity curves, the OVII emissivity curves are dependent on

both density and temperature. Besides atomic uncertainties, density esti-

mates must be conditional on temperature estimates as well, which comes

from the output information of FeXVII spectral analysis. In summary, the

uncertainties of the OVII atomic data is characterized first. Secondly, the

uncertainties of temperature is characterized from the above FeXVII spec-

tral analysis. Lastly, we combine measures of uncertainty due to the OVII

atomic data with all kinds of statistical uncertainties and explore the e↵ect

of di↵erent emission measure distributions in order to derive meaningful un-

certainties on the plasma density and temperature on the coronae of Capella.

1.1.4 Summary

In conclusion, the solar and stellar coronae are complex and dynamic sys-

tems. Instead of being measured directly, information about the physical

properties of astrophysical objects can be inferred by interpreting spectral

observations in relation to the atomic physics calculations. Specifically, the

relative intensity of the emission lines depends on both the electron density

and temperature of the emitting plasma. Emissivity curves can be used as

a bridge to relate the expected intensity of the emission lines as a function

of the electron density and temperature. Understanding how uncertainties

in the underlying atomic physics propagates to the uncertainties in the in-

ferred plasma parameters is an essential component of this analysis. Existing

methodologies cannot use uncertainties on the atomic parameters which are

not even included in the atomic physics databases.

7



We propose a robust and principled statistical method to deal with such prob-

lems with di↵erent complexities in this thesis. We start with two families of

spectral lines, the FeXIII spectral lines that are not sensitive to the temper-

ature and the FeXVII spectral lines that are not sensitive to the density. In

both cases, the emissivities are in lower dimensions and as is the model pa-

rameters, simplifying the analysis greatly. Another case study on the OVII

spectral lines follows to derive complete plasma parameter estimations.

1.2 Multistage analysis

Even though it is well known that the measurements of the physical prop-

erties, e.g., emissivities, have associated measurement uncertainties and it is

recognized that these uncertainties can cause large systematic errors in the

inferred plasma parameters of the spectral model, the uncertainties are often

based on experience, with only nominal estimates used in data analysis. The

astrophysicists often use the standard approach that treats the measurements

as fixed and known, e.g., does not account for uncertainties in emissivities

and obtains the best-fit values of the parameters. We call this approach

the standard method. However, this method can produce biased estimates of

the model parameters and can underestimate the error bars associated with

these estimates significantly. Such biases and underestimations can result in

inaccurate, even incorrect, interpretations of the analytical results.

There are always multiple sources of information a↵ecting parameter estima-

tions in complex problems. Considering only one source of information may

not be good enough to obtain parameter estimations and corresponding er-

ror bars accurately. Solving complex problems is often divided into multiple

stages depending on the source of information. Output information obtained

in earlier stages may constrain parameter estimations in all later stages.

In an example discussed above, in a first stage, the calibration scientists

learned about the calibration uncertainties with e↵ective area curves. In

a second stage, Lee et al. (2011) and Xu et al. (2014) presented general

Bayesian statistical methods to sample from a distribution of plausible cali-

bration curves and to incorporate calibration uncertainties into a comprehen-

8



sive spectral analysis of high-energy Chandra spectra. These two stages have

reduced the bias in the estimation of model parameters and have improved

the accuracy of the variance of these estimates. In particular, in the sec-

ond stage, they also compared di↵erent statistical frameworks, the standard

method, the pragmatic Bayesian method that does not allows the spectra

data to provide any information for the calibration products, and the fully

Bayesian method that allows the spectra data to provide information for both

estimation of model parameters and the calibration products. Jones et al.

(2015) developed a Bayesian statistical method that first probabilistically

assigns photons to di↵erent sources. They then fitted spectral analyses and

estimated the parameters describing each of the individual sources account-

ing for the uncertainty in the photon allocation. They presented a two-stage

analysis that combines both spatial information and spectral information to

separate photons among the sources and increases the accuracy with which

the parameters are inferred. Blocker et al. (2013) demonstrated that carry-

ing out multiple procedures sequentially and properly, where each procedure

taking the output of the previous procedure as its input, can surpass single-

procedure estimations in e�ciency and robustness.

Along the same theme, here we design a robust principled method, as a com-

mon language or a standard procedure, to improve the accuracy of model

parameter inference when the output from one or several preliminary analy-

ses is required for a following primary analysis. We refer to this approach as

the multistage analysis to carry forward the output from a preliminary stage

to a primary stage. The statistical and systematic uncertainties of estimated

quantities, especially high dimensional quantities, can be carried forward into

subsequent analyses easily. A general two-stage analysis is specified and the

detailed generic statistical methods are discussed in Section 3.2. In general,

the physicists deploy a simple, but realistic, model to describe the uncer-

tainties in some of the atomic parameters, use it to generate sets of di↵erent

realizations of the plasma emissivities in a preliminary stage. We then apply

this ensemble of atomic data to analyze the spectral lines observed in solar

or stellar active region using a complex statistical framework in the primary

stage. In summary, combining an ensemble of emissivities with observed
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spectral data to account for uncertainties in atomic data fits a two-stage

methodology well. Applications of a two-stage analysis via case studies in

di↵erent ions are described in Chapter 4 and Chapter 5 respectively. A more

complicated three-stage analysis, where more sources of uncertainties are

considered, and its application are described in Chapter 6. The big picture

for the application of the multistage analysis on astrophysical problems with

di↵erent complexities is shown in Figure 1.2.

Ultimate AIM: To incorporate various uncertainties into spectral analysis  
via multistage analysis

more 

complex

plasma density of  
temperature-insensitive Fe XIII  
from Sun (Hinode/EIS)

atomic uncertainties 
⇒ samples of !

Yu et al. (2018, ApJ 866, 146) 
⤇ sparsity in ! samples

PCA to fill in gaps  
in ! samples

temperature of  
density-insensitive Fe XVII  
from Capella (Chandra)

density and temperature 
of O VII from Capella (Chandra)

density and temperature  
of Fe XVII & O VII 
from Capella (Chandra)

Three-stage

analysis

}
}

Two-stage

analysis

Figure 1.2: The big picture for the astrophysical problems with di↵erent complexities dis-
cussed in this thesis.

1.3 Astrophysical terminology

We have assumed that we can definitely count the observed photons emit-

ted at discrete energies and associated with each spectral line, which is not

possible in practice. If we have counts for each line of interest, we can learn

about it easily. Unfortunately, photon wavelengths are recorded with errors
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resulting in the di�culty in the learning process. Therefore, there are two

corrections needed for the telescopes.

Effective area When the X-ray beam reaches the telescope mirror, the

light is partially reflected at the surface and the rest is absorbed. The e↵ective

area determines the expected number of detected photons (i.e., how much

light) from a source of constant intensity. However, e↵ective area is strongly

dependent on wavelength due to the reflectance variation of telescope mirror.

The Chandra X-Ray Observatory is equipped with two gratings/detectors

which split and di↵ract/refract the X-ray beam into di↵erent directions de-

pending on the wavelength. Thus, enabling us to distribute photon counts

from the observed wavelength to the true wavelength region by substituting

spatial resolution for spectral resolution. In addition, the e↵ective area of

the telescope depends on the observation date since they have degraded over

time (approx 20 years). For the same object of interest, the e↵ective area

varies significantly from the beginning to the end. Thus, observation identifi-

cation need to be specified. In summary, the e↵ective area depends on many

factors including the wavelength of the beam, the grating, and the moment

when the observation was taken place. Because of those dependencies, in

order to estimate the spectral or the relative intensity of the lines of recorded

wavelength with e↵ective area, corrections are required (Chen et al. 2019).

The line response function As we cannot achieve perfect focus on the

telescope with X-rays, the beam of X-ray spreads out when it goes through

the grating/detector. Wavelength is therefore recorded with error. In this

case, the line response function (LRF) needs to be taken into account to

avoid an inaccurate setup of physics. Under each grating and dispersed

order combination, LRF collects photons from nearby channels to obtain the

intensity of wavelength. In probability, it is the probability density function

or probability mass function of a conditional distribution of the recorded

wavelength, w, given the true wavelength, !, for grating g and dispersed

order o, as denoted by Rgo(w|!). In this thesis, the line response function for

the HRC-S+LETGS grating combination can be approximated as (Schwartz
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2014, Chandra 2019, Chen et al. 2019)

Rgo(w|!) =
�(⌫+1

2 )

�
p
⌫⇡�(⌫2 )


1 +

(w � !)2

⌫�2

�� ⌫+1
2

, (1.1)

which is of the form a generalized t-distribution with degrees of freedom

⌫ ⌘ 4, location parameter !, and scale parameter �, and the latter two

could be di↵erent for di↵erent lines of interest.

1.4 Contributions and outline

The contribution of this thesis to statistics and astrophysics can be sum-

marized as follows. Statistically, we have proposed a principled multistage

analysis, which is applicable to the problems under the setting where the

output from one or several preliminary analyses is required for a following

primary analysis. The statistical and systematic uncertainties of estimated

quantities, especially high dimensional quantities, can be carried forward into

subsequent analyses easily. Astrophysically, this robust principled method is

able to account for atomic uncertainty in the spectral analysis

We aim to combine measures of uncertainty due to atomic data with statis-

tical uncertainty in spectral data and explore the interaction of both uncer-

tainties in a spectral analysis in order to derive meaningful uncertainties on

the solar and stellar coronal plasma parameters like electron density and tem-

perature. A critical component of this analysis is understanding how uncer-

tainties in the underlying atomic physics in a preliminary analysis propagate

to uncertainties in the inferred plasma parameters in a primary analysis. We

apply the model-generated atomic data uncertainties in the emissivities of

di↵erent ions, based on lab measurements and di↵erent calculation schemes,

to the estimation of plasma parameters, based on the observed spectral lines

of di↵erent ions.

We implement both the pragmatic and the fully Bayesian approaches to in-

terpret the spectral observations in the context of emissivity realizations of

atomic data. The former generally increases the uncertainties on the inferred
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parameters compared with models that incorporate only statistical uncertain-

ties and is a simplified model providing conservative parameter estimations.

In contrast, the latter, as a more complete model, reduces the uncertain-

ties on the inferred parameters. To incorporate uncertainties, we summarize

sample of uncertainties by treating them equally likely or using a principal

component analysis, a Gaussian distribution approximation, a t distribution

approximation, and kernel density estimations. A general two-stage analysis,

generic Bayesian statistical methods including the pragmatic and the fully

Bayesian methods, and the e�cient statistical computation algorithms are

discussed.

With simulation studies and real data analyses conducted on di↵erent ions,

FeXIII and FeXVII, we demonstrate that the fully Bayesian method can pro-

vide precise and accurate parameter estimations than the pragmatic Bayesian

method and prove the feasibility of two-stage analysis, while the pragmatic

Bayesian method, as a simplified but well-established model, is easy to be

implemented and provides conservative parameter estimations with bias and

large error bars. The pragmatic Bayesian method is still worth exploring

because, ordinarily, when the emissivities are passed to the statisticians who

have limited knowledge on the atomic physics, the model might be set up in-

correctly leading to certain amount of bias and large error bars. We also work

on a more complicated spectral model of OVII considering one more param-

eter and its corresponding source of uncertainties, and generalize our analysis

into three stages. This principled multistage analysis has the potential to be

applied on complicated models with a variety of sources of uncertainties. The

pragmatic Bayesian method is preferred by the astrophysicists because the

physical properties of the solar and stellar coronae, e.g., plasma parameters,

might not take a single value but follows a distribution so that conservative

estimations with larger error bars are helpful for downstream research. The

fully Bayesian method is preferred by the statisticians because the parameter

estimations are precise and accurate.

In Chapter 2, basic Bayesian inference and computation techniques are re-

viewed. In Chapter 3, we discuss a general two-stage analysis, the detailed

generic Bayesian statistical methods and computation algorithms, and the
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Acronym Description

BMA Bayesian Model Averaging
DEM Di↵erential emission measures
EIS EUV Imaging Spectrometer

EUV or UV Extreme-ultraviolet or ultraviolet
FWHM Full width at half maximum
HMC Hamiltonian Monte Carlo
KDE kernel density estimation
LRF Line response function
MAP Maximum a posteriori
MC Monte Carlo

MCMC Markov chain Monte Carlo
MH Metropolis-Hastings
MSE mean square errors
MVN Multivariate normal
NUTS No-U-Turn Sampler
PCA Principal Component Analysis
RMSE Root mean square error
TQR Trapezoidal quadrature rule

Table 1.1: Glossary of Acronyms used in the text.

quantification methods for uncertainties of estimated quantities. Applica-

tions of a two-stage analysis via case studies in FeXIII and FeXVII are

described in Chapter 4 and Chapter 5 respectively. A more complicated

three-stage analysis, where more sources of uncertainties are considered, and

its application on FeXVII and OVII are described in Chapter 6. In the end,

a general three-stage analysis and the potential of a multistage analysis are

discussed in Chapter 7. A glossary of the terms and acronyms that we use

is given in Table 1.1.
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2
Bayesian Inference and Statistical

Computation

To account for atomic uncertainties and all other source of uncertainties in

a principled multistage analysis, we adopt Bayesian methods throughout the

thesis. Basic Bayesian inference and computation techniques are reviewed in

this chapter.

2.1 Bayesian inference

We take a Bayesian approach in our statistical analysis because it enables us

to build in the complex hierarchical dependencies engendered by uncertain-

ties of estimated quantities, like atomic uncertainties. Such an approach of-

fers a probability-based formalism for combining information from our prior

knowledge and the current data. This requires both a prior distribution,

which quantifies the uncertainty in the values of the unknown model param-

eters before the data is observed, and a likelihood function, which describes

the distribution of the data given the model parameters. The likelihood func-

tion allows us to assess the viability of a parameter value given the observed
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data under a proposed statistical model. The likelihood function is com-

bined with the prior distribution to yield the posterior distribution, which

quantifies the uncertainty in the values of the unknown model parameters

taking account of the observed data. If we let X and  represent generic

data and unknown model parameters, respectively, Bayes’ theorem provides

the posterior distribution as

p( |X) =
L( |X) p( )

p(X)
, (2.1)

where L( |X) is the likelihood of X given  (sometimes written as p(X| ))

and p( ) the prior distribution of  . The term p(X) is a normalizing con-

stant necessary to make p( |X) a proper probability distribution, however, it

might be di�cult but unnecessary to compute. (The term p(X) is sometimes

referred to as the ‘evidence’ in the astrophysics literature.) The posterior dis-

tribution, which combines information in the data with our prior knowledge,

is our primary statistical tool for deriving parameter estimates and the cor-

responding uncertainties. Specifically, in the multistage analysis, the prior

distribution in the primary analysis is replaced with the posterior distribution

from the preliminary analysis.

2.2 MCMC Bayesian computation

When a direct sampling is di�cult or computationally ine�cient, Markov

chain Monte Carlo (MCMC) is a popular numerical method to use. It in-

volves, iteratively, proposing samples from a proposal distribution and filter-

ing the samples so that the distribution of these samples matches the tar-

get posterior distribution which is often complicated or in high dimensions.

When updating iteratively, a Markov chain is formed where the conditional

distribution of the new sample given the full history of the samples depends

only on the most recent sample. This conditional distribution preserves the

target posterior distribution. It should be designed to be easy to sample and

to ensure the convergence of the sample to the target posterior distribution.

When sampling long enough, the distribution of the current samples is close
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enough to the target posterior distribution.

In this section, we review some basic MCMC algorithms to generate a sam-

ple from the posterior distributions under the models discussed in this thesis,

including the Metropolis-Hastings and the Metropolis algorithms (Metropo-

lis et al. 1953, Hastings 1970), the adaptive Metropolis algorithm (Haario

et al. 2001, Roberts & Rosenthal 2009), Gibbs Sampler (Geman & Geman

1984), and Hamiltonian Monte Carlo (Duane et al. 1987, Neal et al. 2011,

Gelman et al. 2014). We always start these algorithms with random starting

values and keep sampling draws until they converge to the target posterior

distribution. The draws sampled from these algorithms at early iterations

may not necessarily be an appropriate representation of the target posterior

distribution, which therefore are always discarded as the burn-in. Conver-

gence diagnostics is also necessary by running multiple chains with random

starting values until the chains after burn-in have mixed well and the distri-

butions of the samples between and within chains are identical. Moreover,

the computation e�ciency can typically be improved by combining di↵erent

algorithms when dealing with more complex models.

2.2.1 The Metropolis-Hastings and the Metropolis algorithms

The Metropolis-Hastings (MH) algorithm (e.g., Metropolis et al. 1953, Hast-

ings 1970) is a general term for a family of Markov chain simulation methods

that are typically useful for sampling from Bayesian posterior distributions.

Let p( |X) be the probability density function of a d-dimensional target

posterior distribution, using the notations in Section 2.1. A proposed  ⇤ is

sampled from a proposal distribution q( ⇤
| 

(t)) at iteration t+1. Calculating

the acceptance ratio,

⇢ =
p( ⇤

|X) q( (t)
| 

⇤)

p( (t)|X) q( ⇤| (t))
,

we accept the proposed value and set  (t+1) =  
⇤ with probability min(⇢, 1).

Otherwise, we reject the proposed value and set  (t+1) =  
(t).

The Metropolis algorithm is a special case of the MH algorithm when symme-

try property is attached to the proposal distribution, i.e., q( ⇤
| ) = q( | ⇤)
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for all  ⇤ and  . Then the acceptance ratio simplifies to, at iteration t+ 1,

⇢ =
p( ⇤

|X)

p( (t)|X)
.

Thus the Metropolis algorithm save a little time in calculating the acceptance

ratio ⇢ but otherwise have no advantages over the MH algorithm.

The choice of the proposal distribution is important for achieving rapid con-

vergence in the MH algorithm. Finding an optimal proposal for a particular

target distribution is both crucial and challenging. We focus on a symmetric

random-walk Metropolis algorithm (RWM), where the proposal at iteration

t + 1 is given by  
⇤ =  

(t) + e
(t+1), where {e

(t)
} is independent and iden-

tically distributed (i.i.d.) from proposal increment distribution N (0, �2
Id)

with scaling parameter � > 0. Too small of a value for � will slow down

the convergence of the chain, whereas too large of a value for � will result

in a higher chance of rejections for the new proposal. To prevent both the

extreme cases, numerical studies have been made in identifying appropriate

proposal scalings � to optimise the resulting MCMC algorithm (see e.g., Gel-

man et al. 1996, Roberts et al. 1997, Roberts & Rosenthal 2001). Assuming

that each component can be sampled separately from its one-dimensional

distribution and the proposal increment distributions are of i.i.d normal, the

optimal acceptance rate is approximately 0.234 when d > 2 and approxi-

mately 0.440 when d = 1. The corresponding optimal proposal scalings � is

typically selected manually from a fine grid on the values of possible scalings,

which is often successful but generally time-consuming.

2.2.2 Adaptive Metropolis

Determining the optimal proposal scalings in the MH algorithm is often done

manually and can be problematic in high dimensions. An alternative ap-

proach is adaptive MCMC, which can automatically tune the optimal pro-

posal scalings and learn the better parameter estimation on the fly, resulting

in e�cient convergence. Specifically, the choice of the proposal distribution

depends on the entire history to improve convergence. In this setting, as
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the conditional distribution of the new sample given the full history of the

samples not only depends on the most recent draw, the sequence of sample

from adaptive MCMC algorithms is not forming a Markov chain anymore.

Assuming the Diminishing Adaption condition, i.e., two successive transition

kernels are similar, and the Boundary Convergence condition, i.e., ergodicity

of transition kernels, Roberts & Rosenthal (2007) proved the asymptotic

convergence and the weak law of large numbers to guarantee the convergence

in the adaptive proposal distribution to the target distribution.

We consider an important use of adaptive MCMC, the adaptive Metropolis

algorithm of Haario et al. (2001) and Roberts & Rosenthal (2009). We use

the same d-dimensional target posterior distribution p( |X). A Metropolis

algorithm is performed with a multivariate normal (MVN) distribution as

proposal distribution at iteration `  L
0, whereas at iteration ` > L

0, a

mixture of two MVN distributions is used, where L
0(� 2d) is the initial

number of runs. Specifically, at iteration `, we sample  ⇤ = ( ⇤

1, · · · , 
⇤

d)

from a proposal distribution

q( ⇤
|  

(`�1)) =

8
>>><

>>>:

MVN ( ⇤
|  

(`�1)
,
0.12

d ⌃0), if `  L
0
,

(1� �) · MVN ( ⇤
|  

(`�1)
,
2.382

d ⌃(`))+

� · MVN ( ⇤
|  

(`�1)
,
0.12

d ⌃0), if ` > L
0
,

(2.2)

with ` > L
0

⌃(`) =

8
>>>>>>>>><

>>>>>>>>>:

0

BBB@

var({ (·)
1 }

`�1
1 ) · · · cov({ (·)

1 }
`�1
1 , { 

(·)
d }

`�1
1 )

...
. . .

...

cov({ (·)
d }

`�1
1 , { 

(·)
1 }

`�1
1 ) · · · var({ (·)

d }
`�1
1 )

1

CCCA
,

if ` is a multiple of L,

⌃(`�1)
, otherwise,

(2.3)

where, if ` is a multiple of L, ⌃(`) is equal to the current empirical estimate of

the variance-covariance matrix based on the previous runs,  (1)
, · · · , 

(`�1),

so far. ⌃(`) is used to estimate the optimal ⌃ of the target distribution and
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is updated at every L draws to prevent unnecessary computing. � is a small

positive constant (we take � = 0.05). ⌃0 is prior variance matrix of the

unknown model parameters.

We initially use a Metropolis algorithm with a fixed MVN proposal dis-

tribution for the first L
0 iterations when the empirical covariance ⌃(`) is

not yet well-defined. A mixture proposal distribution is used in the fol-

lowing adaptation once the empirical covariance is well-defined. Accord-

ing to Roberts et al. (1997) and Roberts & Rosenthal (2001), it is approxi-

mately optimal to have a proposal distribution MVN ( ⇤
|  

(`�1)
,
2.382

d ⌃(`))

in a particular high-dimensional setting. The mixture with a fixed MVN,

MVN( ⇤
|  

(`�1)
,
0.12

d ⌃0), in proposal is a safety mechanism to avoid the

adaptive Metropolis algorithm getting stuck at singular or other problematic

values of ⌃(`) (Roberts & Rosenthal 2009). Though it may require a large

number of samples before the adaptation starts to improve the algorithm

significantly, the adaptive Metropolis will eventually find a good algorithm

in a large dimension which could never be done manually.

2.2.3 Gibbs Sampler

Another alternative approach to sampling from a high dimensional distri-

bution is Gibbs Sampler (Geman & Geman 1984) where the conditional

posterior distributions of the parameters are in good format. Instead of sam-

pling directly from the posterior distribution itself, we iteratively generate

posterior samples from the conditional posterior distribution of one of the

random variables at a time or of one subset of random variables at a time

given the current values of all the remaining random variables. We use the

same d-dimensional target posterior distribution p( |X). Let  = ( 1, 2)

where  1 and  2 can be either a single random variable or a subset of  with

length d1 and d2 respectively, and d = d1 + d2. A general two-step Gibbs

sampler proceeds as, at iteration `+ 1,

Step 1: Sample  (`+1)
1 ⇠ p( 1 |  

(`)
2 ),

Step 2: Sample  (`+1)
2 ⇠ p( 2 |  

(`+1)
1 ).
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The same mechanism is applicable to multistep Gibbs sampler where each

subset of random variables is updated conditional on the current values of

all the other variables, which equal the iteration `+1 values for the variables

already updated and the iteration ` values for the others. Those draws

sampled from the conditional distributions have the same distribution as if

they were sampled from the target joint posterior distribution. Moreover,

introducing auxiliary variables or reparameterizations can often simplify or

accelerate the computations of the Gibbs sampler.

The Gibbs sampler is also a special case of the MH algorithm. To update

 2, we factor the target density p( 1, 2) = p( 1)p( 2 |  1) and choose

p( 2 |  1) as a proposal distribution. The new proposal is ( 1, 
⇤

2). The

acceptance ratio becomes

⇢ =
p( 1, 

⇤

2)p( 2 |  1)

p( 1, 2)p( ⇤

2 |  1)
=

p( 1)p( ⇤

2 |  1)p( 2 |  1)

p( 1)p( 2 |  1)p( ⇤

2 |  1)
= 1, (2.4)

indicating the proposal is always accepted. The same rule works when up-

dating  1.

2.2.4 Hamiltonian Monte Carlo

Another e�cient approach to sampling from a complicated and high dimen-

sional distribution is Hamiltonian Monte Carlo (HMC) that introduces aux-

iliary momentum variables, ⇠, to enable the transitions to move e�ciently

through the parameter space and to transform the problem of sampling from

a target density distribution p( ), typically a Bayesian posterior p( |X), into

the problem of simulating Hamiltonian dynamics via the first-order gradient

of the density function (Duane et al. 1987, Neal et al. 2011, Gelman et al.

2014).

The auxiliary momentum variables, ⇠, typically follow a multivariate normal

distribution that is independent of the model parameters,  ,

⇠ ⇠MVN (0,⌃),
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where the variance-covariance matrix ⌃ is used to scale the target distribu-

tion.

The Hamiltonian function in HMC is defined as

H(⇠, ) = � log p(⇠)� log p( )

= K(⇠) + V ( ),

where K(⇠) = � log p(⇠) = 1
2⇠

T⌃�1
⇠ is called the kinetic energy and V ( ) =

� log p( ) is called the potential energy, typically the negative log target

posterior distribution on  .

The evolvement of the auxiliary momentum variables and the model param-

eters, (⇠, ), over time t is via Hamilton’s equations,

d 

dt
=

dH

d⇠
=

dK

d⇠
= ⌃�1

⇠,

d⇠

dt
= �

dH

d 
= �

dV

d 
.

The Leapfrog Method, a numerical integration algorithm, is used, at each

iteration, to approximate the solution to the above Hamiltonian system of

di↵erential equations by discretizing time into T discrete steps of some small

stepsize, ✏. At each step, the Leapfrog algorithm alternates a half-step update

of the momentum, a full-step update of the model parameters using the new

values for the momentum, and another half-step update of the momentum

using the new values for the model parameters. This can be summarized as

follows,

⇠  ⇠ �
✏

2

@V

@ 
,

   + ✏⌃�1
⇠,

⇠  ⇠ �
✏

2

@V

@ 
.

Repeating the above three steps for the T steps, the last state, denoted by

(⇠⇤, ⇤), is treated as a new proposed state at the current iteration. Ap-
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plying a Metropolis algorithm and calculating the acceptance ratio, the new

proposed state is accepted with probability

min(exp(H(⇠, )�H(⇠⇤, ⇤)), 1),

otherwise, the previous state is kept.

In summary, starting with specifying an initial set of model parameter values,

the detailed HMC algorithm proceeds for iteration ` = 2, . . . , L with

Step 1: Sample a new momentum ⇠0 ⇠MVN (0,⌃).

Step 2: Update the momentum and the model parameters using the Leapfrog

algorithm with T discrete sub-steps and stepsize ✏, and label the

value at the T th sub-step (last sub-step) as a new proposed state

(⇠⇤, ⇤).

Step 3: A Metropolis accept-reject step. Set

 
(`) =

8
>>><

>>>:

 
⇤
, with probability

min(exp(H(⇠(`�1)
, 

(`�1))�H(⇠⇤, ⇤)), 1),

 
(`�1)

, otherwise.

Practically there are three parameters need to be tuned to improve sampling

e�ciency for HMC, number of steps T , stepsize ✏, and covariance matrix

⌃, while these tuning processes are extremely di�cult, time consuming, and

even problematic (Neal et al. 2011, Gelman et al. 2014). If T is too small,

the trace of the trajectory will be too short and the algorithm will devolve

to an unwanted random walk behaviour with large statistical errors. If T

is too large, the algorithm will do unnecessary work. Ho↵man & Gelman

(2014) presented the No-U-Turn Sampler (NUTS), an extension of HMC,

that provides an automatic selection on the number of Leapfrog steps at each

iteration to generate e�cient transitions traversing the posterior. Rather

than fixing a value for the number of steps T , in NUTS, the trajectory at

each iteration moves both forwards and backwards preserving the detailed

balance until a U-turn appears. Mathematically, the trajectory is terminated
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when the angle between the momentum at the final step and the distance

traveled by the model parameters across all the steps since the start of the

current iteration is more than 90 degrees, i.e., a negative value of their dot

product is obtained. This criterion essentially gets the trajectory move as

far as possible at that iteration without doing unnecessary work. Standard

HMC uses a fixed step size and number of steps, while NUTS figures out

the step size ✏ and the number of steps T during the warm-up stage. NUTS

is self-tuning and computationally e�cient but has trouble in jumping from

the centre to the tails if the distribution is heavy or light tailed.
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3
Model Uncertainties in Atomic Data

In this chapter we describe uncertainties in atomic data and the generic

methodology for combining uncertainties of estimated quantities into pri-

mary data analysis. We illustrate the concept of a two-stage analysis, and

review generic Bayesian statistical methods including standard method, mul-

tiple imputation, the pragmatic and the fully Bayesian methods. There are

two ways deployed to incorporate uncertainties in atomic data into our highly

structured statistical model. A discrete analysis where the atomic realiza-

tions are considered individually and a continuous analysis where PCA is

used to fully summarize the atomic uncertainties via a multivariate Gaussian

distribution. E�cient statistical computation algorithms are also discussed.

3.1 Uncertainties in atomic data

Systematic di↵erences in atomic data compilations have real universal con-

sequences and a↵ect the underlying spectral models (Mernier et al. 2020).

According to Yu et al. (2018), the collisional excitation and spontaneous

decay rates are two important atomic rates that a↵ect the intensity of a

spectral line. They have modified the standard CHIANTI routines (Freeland
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& Handy 1998) to produce realizations of emissivities based on the uncer-

tainties in the collisional excitation and spontaneous decay rates in order to

incorporate the atomic data uncertainties.

Here is an example of generating realizations of the FeXIII emissivities. Each

rate is randomly sampled from a normal distribution within the estimated

uncertainty. We then used the standard CHIANTI routine to calculate the

emissivities for the spectral lines. There are a total of 1000 realizations of

the FeXIII emissivities generated for each line, as shown in Figure 3.1. The

figure noticeably demonstrates how the spectral lines vary their emissivities

as a function of the density.
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Figure 3.1: Emissivities of the seven FeXIII lines considered in Chapter 4. The emissivities
are computed assuming a temperature of 1.8 MK, the temperature of formation for FeXIII.
The grey lines represent the 1000 realizations of the CHIANTI atomic data. The red curve is
the default value from CHIANTI v.8. As discussed in Chapter 4, the blue curve is identified
as being most likely match to the observations (#471) and the green curve the second most
probable (#368).

In summary, by attaching reasonable uncertainties to the atomic data we

are able to produce realizations of the emissivities that incorporate this un-

certainty. We can then use the ensemble of emissivities to characterize the

uncertainties of the atomic data to infer physical parameters like plasma den-

sities in a spectral analysis. Our methodology for combining an ensemble of

emissivities with observed data to account for uncertainties in atomic data

is discussed in detail in the following sections and chapters.
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3.2 Two-stage analysis and generic statistical methods

Our ultimate aim is to account for the statistical and systematic uncertainties

of estimated quantities and to carry them into a subsequent analysis. Specif-

ically, the aim is to account for the e↵ect of uncertainties in the atomic data

and propagate them to the analysis of solar and stellar observations to the

determination of plasma parameters. This can generally be summarized as a

two-stage analysis, as described in Section 1.2. In the preliminary analysis,

atomic physicists are learning about the emissivity curves, which quantify

the expected intensities of spectral lines change as a function of the plasma

parameters, and are using the CHIANTI routine to calculate the emissivities

(see, e.g., Del Zanna & Storey 2012, Del Zanna et al. 2015, Yu et al. 2018).

Statistically, this ends up with a Monte Carlo (MC) sample of the emissiv-

ities. In the primary analysis, we take those emissivity curves obtained in

the preliminary analysis forward into the spectral analysis to learn about the

plasma parameters. In this section we are going to propose a general frame-

work for a two-stage analysis and compare four detailed generic methods for

principled statistical inference: the standard method, multiple imputation,

the pragmatic, and the fully Bayesian methods. The latter two Bayesian

methods are implemented in a novel way in this thesis. Case studies on spe-

cific ions with di↵erent model complexities are used as running examples in

this thesis, FeXIII in Chapter 4, FeXVII in Chapter 5, and FeXVII & OVII

in Chapter 6.

3.2.1 Two-stage analysis

To fix ideas, we focus attention on a general two-stage analysis problem.

In the preliminary stage, the dataset, X1, is modelled with respect to the

unknown parameters,  0 and  1. In the primary stage, the dataset, X2, is

modelled with respect to the unknown parameters,  1 and  2. Note that

 1 represents an unknown parameter or a set of unknown parameters that

is common between the two models in a two-stage analysis. The output

information, typically estimates or posterior distributions, for  1 in the pre-

liminary stage is required for and will be carried forward into the primary
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stage. In short, denoting the data and unknown parameter information by

”data | parameter” in each stage, a two-stage analysis can be summarized by

Preliminary stage: X1 |  0, 1, (3.1)

Primary stage: X2 |  1, 2. (3.2)

As a general framework, in principle, either of the two datasets could be

unavailable to di↵erent groups of researchers and the parameter estimation is

based on the other dataset. We aim to fit the parameter,  2, via the analysis

of the observed dataset, X2, while still accounting for the parameter,  1,

which can be quantified/estimated in the preliminary analysis. Practically

we are focusing on the parameter estimation with respect to the dataset X2,

given the unavailability of the dataset X1, in a two-stage analysis.

3.2.2 Standard method

Whereas our primary goal is to consider methods for joint inference of  1 and

 2, for completeness, we compare such methods with a simplified standard

method by treating  1 as fixed and known, which is commonly used by the

astrophysicists and statisticians. In a Bayesian analysis (e.g., see Van Dyk

et al. 2001), the standard method involves estimating  2 via its posterior

distribution given data X2 and a nominal estimate of  1. In the context

of a two-stage analysis, we first fix  1 to the value that is estimated in the

preliminary analysis. Conditioning on that, we fit the parameter,  2, in the

primary analysis. It is a common astronomical data analysis strategy that

can lead to erroneous interpretation of the data. Assuming that  1 =  ̂1 and

 ̂1 is the best-fit estimator of p( 1 | X1) from the preliminary analysis, where

p( 1 | X1) is obtained by integrating p( 0, 1 | X1) over  0,  2 is estimated

using its posterior distribution

p( 2 | X2,  ̂1). (3.3)

The best-fit values of  2 can be obtained via maximum a posteriori (MAP)

estimate by assuming X2 |  1, 2 follows a Gaussian distribution or via the
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estimate that minimizes the �2 statistic (by comparing the expected X2 with

the observed X2). Because this approach assumes that  1 =  ̂1, it does not

account for the uncertainties in  1. It can lead to misleading estimates of

 2 and can significantly underestimate the error bars associated with these

estimates. Nevertheless, because this is the standard approach in practice,

we treat it as a baseline in our numerical comparisons.

3.2.3 Multiple imputation

Multiple imputation is a well-established simulation based approach that is

designed to handle incomplete data (Rubin 1987). MC replications of the

incomplete data, called the imputations, are used to impute the statistical

uncertainty in the missing values of the incomplete data. The application of

this method depends heavily on the accessibility of the imputations. Sup-

pose we have a MC sample of the parameter  1. The sample of  1 itself is

not missing data, however, it plays exactly the role of the imputations and

represents the statistical uncertainty of  1. Therefore, we are able to apply

multiple imputation method.

Given a sample of  1 from p( 1 | X1), multiple imputation can be applied

straightforwardly. Suppose we have M sets of independent estimates of  1

from p( 1 | X1), denoted by  
(m)
1 for m = 1, . . . ,M and called the multi-

ple imputation sample. We apply the standard method, described in Sec-

tion 3.2.2, M times, and  ̂1 in Eq (3.3) is replaced with each of the M

imputation samples of  1. This generates M sets of MAP estimates of  2

and the corresponding estimated variance-covariance matrices, denoted by

 ̂2
(m)

and Var( ̂2
(m)

), respectively, for m = 1, . . . ,M . Suppose that each

 ̂2
(m)

follows a multivariate normal distribution with mean  2. The multiple

imputation combining rules (e.g., Rubin 1987, Harel & Zhou 2005), as a set of

simple moment calculations, can then be used for combining these estimates

and their variance-covariance matrices and calculating the final fitted values

and error bars based on the normal assumption above.
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The overall estimate of  2 is simply the average of the individual fitted values,

 ̂2 =
1

M

MX

m=1

 ̂2
(m)

. (3.4)

There are two sources of uncertainty, the within-imputation variance that

would appear even if  1 was known with certainty and the between-imputation

variance coming from uncertainty in  1 itself, to be calculated and combined

into the estimated total variance. Each of the M standard analyses is ap-

plied assuming  1 was known and each Var( ̂2
(m)

), therefore, is an estimated

statistical uncertainty. The estimated within-imputation variance is simply

the average of these individual estimates of the statistical uncertainty,

V =
1

M

MX

m=1

Var( ̂2
(m)

). (3.5)

On the other hand, the between-imputation variance is estimated by thinking

of how changing  1 in each of the M standard analyses a↵ects the fitted pa-

rameter  2. Thus, the estimated between-imputation variance is the variance

of the fitted values,

B =
1

M � 1

MX

m=1

( ̂2
(m)
�  ̂2)( ̂2

(m)
�  ̂2)

>
. (3.6)

Combining the above two sources of variance, we obtain the estimated total

variance,

T = V + (1 +
1

M
)B, (3.7)

where the 1
M term considers the case when the number of imputations, M , is

small. If M is smaller than the dimension of  2, B is very noisy. T is there-

fore very unstable and more complicated assumptions need to be added, e.g.,

Li et al. (1991) assume that the between- and within-imputation variances

are proportional to each other. Here, we focus attention on univariate es-

timates and error bars which rely on one element of  ̂2 at a time and the

corresponding diagonal entry of T .
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The multiple imputation method is designed to give approximate error bars

on each element of  2 that include the e↵ects of the imputed quantity,  1

here. However, if the Gaussian assumption is inappropriate, even wrong, or a

full posterior distribution on  2 is expected, more detailed Bayesian methods

need to be considered in the following subsections.

3.2.4 Pragmatic Bayesian method

We have discussed the standard analysis assumes that  1 is fixed in Eq (3.3)

and multiple imputation assumes that a sample of  1 is obtained from p( 1 |

X1). Following that,  2 is estimated conditional on a fixed or a sample of  1.

When the uncertainty in  1 need to be quantified, we can not condition on

a known value or a sample of  1. For example, in the practical problem, the

atomic uncertainty in emissivity need to be considered, we can not condition

on a known value of emissivity. To eliminate this assumption, we treat  1 as

unknown, rather than conditioning on a fixed value. We adopt a Bayesian

framework in our statistical analysis because it enables us to build in the

complex hierarchical dependencies engendered by  1.

We expect the information for  2 comes primarily from X2 rather than X1, at

least given  1, because X1 typically represents the large-scale dataset which

we do not have access to. Mathematically, this assumption can be written

as

p( 2 | X1, X2, 1) = p( 2 | X2, 1). (3.8)

For example, we do not have access to the large-scale dataset used by atomic

physicists to generate emissivities. Practically, the universal emissivities and

atomic physics data, typically what  1 and X1 represent, would not influ-

ence the electron temperature and density of the solar and stellar coronae

represented by  2. It is also sensible that researchers in di↵erent stages have

di↵erent level of access to datasets in any particular example. Therefore, no

access toX1 is a necessary and reasonable assumption to be made throughout

this thesis.
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Moreover, we pragmatically assume the primary source of information for

parameter  1 is not the dataset X2 but the dataset X1. Mathematically, this

assumption can be written as

p( 1 | X1, X2) = p( 1 | X1). (3.9)

Now we call the analyses under the independence assumptions in Eq (3.8)

and Eq (3.9) the pragmatic Bayesian method (Lee et al. 2011). Therefore,

when treating  1 as unknown, the appropriate objective function used for

probabilistic estimation and calculation of error bars under the pragmatic

Bayesian method is the joint posterior distribution of all the parameters,  1

and  2, given all the datasets, X1 and X2,

ppB( 1, 2 | X1, X2) = p( 2 | X1, X2, 1) p( 1 | X1, X2)

= p( 2 | X2, 1) p( 1 | X1). (3.10)

The subscript pB indicates that this is the pragmatic Bayesian posterior dis-

tribution under the pragmatic assumptions in Eq (3.8) and Eq (3.9). The

latter assumption indicates that the dataset X2 and the parameter  1 are

independent, that is, the dataset X2 provide no information for the uncer-

tainty in  1 in the primary stage. Under the pragmatic Bayesian model in

Eq (3.10), inference for  2 is based on its marginal posterior distribution

ppB( 2 | X1, X2) =

Z
p( 2 | X2, 1) p( 1 | X1) d 1. (3.11)

The pragmatic Bayesian method accounts for the uncertainty of  1 in a

conservative manner. The assumption that p( 1 | X1, X2) = p( 1 | X1)

ignores information in the dataset, X2, that may reduce the uncertainty in  1

and hence in  2. Whether or not including dataset X2 is an assumption that

is questionable. We now consider methods that allow X2 to be informative

for  1.
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3.2.5 Fully Bayesian method

In contrast to the pragmatic Bayesian method, the fully Bayesian method, as

described by Xu et al. (2014), incorporates the potential information in the

dataset, X2, to learn about  1. The joint posterior distribution of  1 and  2

given X1 and X2 under the fully Bayesian method can be written as

pfB( 1, 2 | X1, X2) = p( 2 | X1,X2, 1) p( 1 | X1, X2), (3.12)

where we use subscript fB to emphasize that this is the fully Bayeaian joint

posterior. The marginal posterior distribution of  2 under the fully Bayesian

method is given by

pfB( 2 | X1, X2) =

Z
p( 2 | X1,X2, 1) p( 1 | X1, X2) d 1. (3.13)

The fully Bayesian method is a more principled approach from a statistical

perspective following the principles of Bayesian analysis, while the pragmatic

method makes simplifying assumptions that tend to overestimate the final

uncertainty on the fitted parameters (see Xu et al. 2014). If a certain subset

of  1 samples are plausible before seeing the data X2 but inconsistent with

the data X2 once it is observed, this subset should not play an important

role in the primary analysis. This method allows the data X2 to inform our

choice of possible  1. By investigating the pragmatic and the fully Bayesian

methods, we can conclude the sensitivity of our results to the assumption

that whether or not including X2 as a source of information for  1 samples.

To focus attention on the primary analysis we suppress the conditioning on

X1 for the rest of this thesis.

3.3 Quantifying the atomic uncertainties into the primary anal-

ysis

As described in Section 3.2, in the preliminary analysis, we must be able to

summarize p( 1 | X1), which is denoted simply as p( 1) now, and to carry
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forward it into the primary analysis.

In the practical example, the objective is to quantify atomic uncertainties on

emissivities, denoted by ✏ and playing the role of  1 in Section 3.2, in gen-

eral sense and to propose well-defined and general methods to incorporate

the information on emissivities obtained from the preliminary analysis into

the primary analysis in a robust principled manner. We propose a Bayesian

framework, where knowledge of emissivities is quantified through a prior

probability distribution. In this way, information quantified from the pre-

liminary analysis, typically quantified by the astrophysicists in practice, can

be incorporated into a coherent statistical analysis. Operationally, this in-

volves fitting a bespoke statistical model that does not assume emissivities as

known and fixed quantities, but rather incorporates its uncertainty through

a prior distribution.

From a general MC Bayesian perspective, suppose we obtain an ensemble of

emissivity sample, provided by the atomic physicists, as part of the prelimi-

nary analysis, denoted by

M = {✏
(m)

,m = 1, . . . ,M}.

The ensemble can be either sampled from p(✏ | X1) or simulated with certain

astrophysical strategy as described in Section 3.1. Below we formulate the

priors in two ways, a discrete uniform distribution and a Gaussian distribu-

tion via principal component analysis (PCA) for incorporating this uncer-

tainty into the primary analysis. Statistically, we treat them as two di↵erent

prior distributions. The real di↵erence between the two, in physics, is that

the PCA approach provides a continuous distribution that e↵ectively ‘fills’

the gaps from the emissivity samples. In Chapter 4, we describe how we go

from a discrete sparse sampling to a continuous distribution and how this

actually works on particular problems. Using the prior on  1(= ✏), we ul-

timately aim to obtain estimations of the plasma parameters, denoted by ✓

and playing the role of  2 in Section 3.2.
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3.3.1 A discrete uniform distribution

A discrete uniform prior distribution for the ensemble, M, is straightforward,

where we assume the M samples are a priori equally likely. Equivalently, we

could treat the emissivity index, m, as unknown parameter and assume it

has a discrete uniform distribution,

p(✏(m)) = p(m) =
1

M
for each m = 1, . . . ,M. (3.14)

This requires large storage and is computational expensive when M is large

and the concern is magnified when we consider those ✏ with more complicated

structure in astrophysical model. See more discussions on specific case studies

in Section 4.5.5 and Section 4.5.7.

The marginal posterior distribution of ✓ under the pragmatic and the fully

Bayesian models can then be rewritten from Eq (3.11) and Eq (3.13) as,

ppB(✓ | X2) =
MX

m=1

p(✓ | X2,m) p(m), (3.15)

pfB(✓ | X2) =
MX

m=1

p(✓ | X2,m) p(m | X2), (3.16)

respectively, where p(m | X2) is the posterior probability of each of ✏(m) in

M. Recall that we are suppressing the conditioning on X1. We consider each

of these emissivity curves ✏(m) to represent a di↵erent model p(✓ | X2,m) and

the posterior probability of each ✏(m) to represent weights for each individual

model. The resulting marginal for the parameter ✓ under the fully Bayesian

method, Eq (3.16), is a model averaging posterior. This is consistent with

the so-called Bayesian Model Averaging (BMA) (see Roberts 1965). It is an

average over all the conditional posterior distributions of ✓ weighted by each

posterior probability of ✏. Therefore, it allows for a direct combination of

conditional posterior distributions (models) to obtain combined parameter

estimates. Similarly, under the pragmatic Bayesian method, the marginal

posterior, Eq (3.15), is an average over all the conditional posterior distribu-

tions of ✓ weighted by each prior probability of ✏. Therefore, using a discrete
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uniform prior distribution for the ensemble of emissivities can be viewed as

equivalent to applying BMA with di↵erent weighting schemes. However, the

BMA typically do not apply to the continuous model. We will work out a

continuous one below.

3.3.2 A continuous distribution via principal component anal-

ysis

PCA is a well established linear technique for dimensionality reduction and

data compression of a multivariate dataset whilst preserving as much of the

relevant information as possible (Jolli↵e 2002, Anderson 2003, Bishop 2006).

Mathematically, PCA is defined as an orthogonal linear transformation that

transforms a number of correlated variables into a few uncorrelated variables,

called principal components (PCs), while retaining as much variability of the

data as possible. The first PC defines the linear function of the original vari-

ables with the greatest variance of any projections of the data coming to lie on

the first coordinate. Each succeeding component defines the linear function

orthogonal to all of the previous PCs with the greatest variance on the corre-

sponding coordinate. The aim of applying PCA is to describe and maintain

as much variability of the data as possible. In practice, PCA is implemented

on centred data, i.e., mean zero, by subtracting o↵ the mean of the data

before the PCA and adding it back after the analysis. The calculation of the

orthogonal linear transformation is achieved by a singular value decomposi-

tion of a centred data matrix. A set of orthogonal and ordered eigenvectors

corresponding to the PCs is produced, along with their eigenvalues indicating

the proportion of the total variance explained by each eigenvector. Selecting

the first few PCs and retaining most of the statistical properties in all of

the original variables, PCA finds a subset of orthogonal eigenvectors, i.e., a

subset of PCs, and their corresponding eigenvalues to e↵ectively represent a

specified percentage of the variability of a large dataset.

The ensemble of emissivities must be large enough to fully represent the

atomic uncertainty in high-dimensional emissivities. There might be gaps

among the sample if the given emissivity ensemble is too sparse (Yu et al.
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2018). To address those problems and to quantify atomic uncertainty, in

this article, we aim to use PCA to e�ciently summarize and compress the

ensemble of complex ✏ samples, M, into a succinct and applicable form (Lee

et al. 2011, Xu et al. 2014). The singular value decomposition is applied to

a centred and scaled matrix with rows equal to the ✏(m)
�✏̄

�✏
with arithmetic

mean ✏̄ = 1
M

PM
m=1 ✏

(m) and standard deviation �✏. We calculate the eigen-

values (�2
1 , . . . , �

2
Q), ordered as �1 � �2 � . . . ,� �Q, and the corresponding

eigenvectors / principal components, (v1, . . . , vQ), where Q is the number of

the original variables. The proportion of the total variance of M explained

by the qth PC, i.e., vq, is

pq =
�
2
qPQ

j=1 �
2
j

. (3.17)

Practically, a smaller number of PCs, J ⌧ Q, that su�ciently accounts for a

certain proportion, e.g., 95% or 99%, of the total variance, could be used in

the reconstruction. That is, very few PCs might be required to generate a new

✏ sample to high accuracy indicating the achievement of a great compression

on the given ensemble of emissivities.

Assuming there is a sample from a multivariate standard normal distribution

and with the PCA summary of M in hand, we are able to formulate and

generate replicates of ✏ mimicking M, based on the first J PCs as

✏
rep(r) = ✏̄+

JX

j=1

rj �j vj (3.18)

where r = (r1, . . . , rJ) are assumed to be independent standard normal ran-

dom variables, i.e.,

r ⇠MVN (0, IJ). (3.19)

The remainingQ�J components are ignored in this representation indicating

the achievement of data compression. With this approximation over the

first J principle components, though we will be losing certain variability and

missing certain structure of the given ensemble, it is much better than having

the gaps in the given emissivity ensemble. However, if principle components

are enough, it would not make significant influence. Using Eq (3.18) and
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Eq (3.19), we can generate as many MC replicates from M as possible using

only ✏̄ and (�1v1, . . . , �JvJ). Details for the examples on di↵erent ion case

studies are described in Section 4.3.2, Section 5.3, and Section 6.3.

3.3.3 Priors comparison

Using discrete uniform prior, we can identify which of the emissivity curves

are more consistent with the observed spectral data. Because each of the

emissivity curves in the ensemble is based on particular atomic physical as-

sumptions, the atomic physics, in principle, can trace back to the assumptions

associated with the most likely curves from our analysis. That is, the indi-

vidual deviations used for each level and for each transition can be identified

for the most likely curves. In contrast to the discrete uniform distribution,

if each of the emissivity curves in the given ensemble has underlying atomic

physics connected with it, using a Gaussian approximation via PCA will lose

all of those connections. However, a Gaussian approximation via PCA can

e↵ectively fill in the gaps between the discrete emissivities and work on the

problem of sparse sampling of the atomic data space. It requires less stor-

age because PCA can provide a concise statistical compression when there

are complex correlations in the emissivity ensemble. It can also generate

emissivity samples on the fly.

3.4 Statistical algorithms

We aim to propose well-defined and general methods to incorporate the in-

formation, e.g., on emissivities ✏, obtained from the preliminary analysis into

the primary analysis in a robust principled manner. We describe two spe-

cific algorithms, two-step Monte Carlo (MC) sampler in Section 3.4.1 and

Hamiltonian Monte Carlo (HMC) in Section 3.4.2, for sampling from the

posterior distributions under the fully Bayesian method. The former one

can also be applied under the pragmatic Bayesian method. The reason we

have only one algorithm for the pragmatic Bayesian is because the model is

simple and the algorithm works well, therefore, no further algorithm needs
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to be tested. While for the fully Bayesian method, two-step MC sampler is

very computational expensive and then HMC is considered as well.

In two-step MC sampler, an iterative Markov chain Monte Carlo (MCMC)

sampler allows us to incorporate the uncertainty in ✏ directly into the fitting

routine by updating ✏ and ✓ under certain acceptance and rejection rules,

step by step, at each iteration. In this case, we can update ✏ based either

solely on the information provided from the preliminary analysis (i.e., the

pragmatic Bayesian method), or together with the dataset being analyzed in

the primary analysis (i.e., the fully Bayesian method). Alternatively, using

HMC also allows us to incorporate the uncertainty in ✏ directly into the

fitting routine by updating ✏ and ✓ at the same time under the NUTS rule

at each iteration under the fully Bayesian model.

3.4.1 Two-step Monte Carlo sampler for the pragmatic and

the fully Bayesian methods

In the fully Bayesian analysis, our aim is to obtain a MC sample of (✓, ✏) from

the fully Bayesian joint posterior in Eq (3.12) and we iteratively update ✏

and ✓ in two separate sub-steps. We first sample ✏ according to the emissivity

uncertainty, then update ✓ conditioning on the newly sampled ✏. When up-

dating ✓ in the second sub-step, MCMC algorithms like MH or Adaptive MH

need to be applied for several inner iterations to get proper draws achieving

convergence. Suppose ✏(`) and ✓(`) are the values of the parameters at itera-

tion `. The two-step MC sampler under the fully Bayesian model consists of

the following two sub-steps:

✏
(`) is sampled from p(✏ | X2) and (3.20)

✓
(`) is iteratively sampled from p(✓ | X2, ✏

(`)). (3.21)

Under the conditional independence assumption of Section 3.2.4, we can

simplify the above sampler by replacing p(✏ | X2) with p(✏) in the first sub-

step and the two-step MC sampler under the pragmatic Bayesian model is
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as follow:

✏
(`) is sampled from p(✏) and (3.22)

✓
(`) is iteratively sampled from p(✓ | X2, ✏

(`)) (3.23)

This independence assumption prevents us from estimating the posterior dis-

tribution p(✏ | X2) and simplifies the structure of the algorithm significantly.

The two-step MC sampler, as a powerful method, can be generalized to a

multi-step MC sampler, which is able to deal with any level of complexity

and explore interesting regions in high-dimensional parameter space. It ef-

fectively separates the complex problem of model fitting in the presence of

the uncertainties in ✏ into two simpler problems: (1) the quantification of

the uncertainties in emissivity independent of or conditional on the current

data X2 and (2) fitting a spectral model with a known emissivity. Either a

Metropolis algorithm, a Metropolis-Hastings algorithm, a Gaussian approx-

imation, or an adaptive Metropolis algorithm, discussed in Section 2.2, can

be used to sample ✓(`) in each individual step (see Xu et al. 2014).

3.4.2 HMC for the fully Bayesian method

Another alternative method is to use the Stan⇤ software package (Carpenter

et al. 2016) to obtain MC sample of (✓, ✏) via the HMC algorithm under the

NUTS rule, discussed in Section 2.2.4, by sampling directly from its joint

posterior distribution, rewritten from Eq (3.13),

p(✓, ✏ | X2) = p(X2 | ✓, ✏) p(✓) p(✏), (3.24)

assuming that the prior distributions for ✓ and ✏ are independent. However,

we must analytically marginalize over any discrete parameters, since Stan

cannot accommodate discrete parameters.

⇤
Stan is a probabilistic modeling language developed by Andrew Gelman and collabo-

rators. It interfaces with the most popular data analysis languages like R, Python, etc.,

and is available at mc-stan.org.
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4
Two-stage analysis with FeXIII

An application of a two-stage analysis via a case study in FeXIII is described

in this chapter. The physicists deploy a simple, but realistic, model to de-

scribe the uncertainties in some of the atomic parameters for FeXIII, and

use it to generate di↵erent realizations of the plasma emissivities represent-

ing the atomic uncertainties in the preliminary stage. We then focus on the

primary stage by applying this ensemble of atomic data into the analysis

of the density-sensitive FeXIII spectral lines observed in solar active region

using a Bayesian framework. We have implemented the pragmatic Bayesian

method that considers the atomic data uncertainties as fully specified and un-

correctable and the fully Bayesian method that allows for the observed data

to update the atomic data uncertainties. The former generally increases the

uncertainties on the inferred parameters compared with models that incor-

porate only statistical uncertainties. The latter reduces the uncertainties on

the inferred parameters. To incorporate uncertainties in atomic data into our

highly structured statistical model, a discrete analysis where the atomic re-

alizations are considered individually is deployed first suggesting a couple of

di↵erent realizations of emissivities are more likely than the default CHIANTI

calculation and identifying areas of possible systematic problems with either
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the atomic physics or the observed intensities. Following that, a continuous

analysis with PCA is used to fully summarize the atomic uncertainties via a

multivariate Gaussian distribution, to provide a concise statistical compres-

sion, and to mitigate the gaps among those sparse atomic realizations. The

work related to discrete analysis is a review of Incorporating Uncertainties

in Atomic Data Into the Analysis of Solar and Stellar Observations: A Case

Study in FeXIII, published by Yu et al. (2018).

4.1 Data and notation

We have randomly selected K = 1000 pixels from the Hinode Spacecraft EIS

observations of a solar active region shown in Figure 1.1 for analysis. Suppose

that in each of K pixels we observe the intensities of each of H spectral lines

with wavelengths ⇤ = {�1, . . . ,�H}. Let Ik� be the observed intensity of the

line with wavelength � 2 ⇤ in pixel k 2 {1, . . . , K}, �k� its known standard

deviation, Dk = (Ik�1 , . . . , Ik�H ), and D = {D1, . . . , DK}, playing the role of

X2 in the general notation in Section 3.2.

We also have a collection of M = 1000 realizations of the plasma emissivities,

denoted by M,

M = {✏
(m)
� (nk,Tk),� 2 ⇤,m = 1, . . . ,M},

where nk and Tk are the electron density and temperature for pixel k and m

indexes the emissivity realization (i.e., emissivity curve, ✏(m)
� (nk,Tk)), with

m=1 corresponding to the default CHIANTI emissivities. The M di↵erent

realizations of the plasma emissivity curves, as shown in Figure 3.1, are sim-

ulated from a model that accounts for the uncertainty in the atomic physics

calculation as described in Section 3.1.

The expected intensity of the line with wavelength � in pixel k can be ex-

pressed as ✏�(nk,Tk)n2
kdk, where dk is the path length through the solar atmo-

sphere for pixel k (see, for example, Mariska 1992). Let ✓k = (log nk, log dk)

be the plasma parameters in pixel k, and ⇥ = (✓1, . . . , ✓K). Note that log

refers to log10 throughout this thesis unless otherwise stated.

42



4.2 Statistical Model

The first step in specifying our statistical model is to construct the likelihood

function. We model the intensities Ik� given ✏, nk, and dk as a normal (i.e.

Gaussian) distribution,

Ik� | ✏, nk, dk
indep
⇠ N

�
✏�(nk,Tk)n

2
kdk, �

2
k�

�
, (4.1)

for � 2 ⇤, where N (µ, �2) is a normal distribution with mean µ and variance

�
2. We suppress the conditioning on the �k� throughout for notational sim-

plicity. Thus the likelihood function of Dk given emissivity, ✏, and plasma

parameters, ✓k, is

L(✏, ✓k | Dk) = p(Dk | ✏, ✓k)

=
HY

h=1

N
�
Ik�h

| ✏�h
(nk,Tk)n

2
kdk, �

2
k�h

�
, (4.2)

since the observation independence assumption among lines of wavelengths,

where N (x | µ, �
2) is the density of a normal distribution with mean µ and

variance �2 evaluated at x.

Next, we specify the joint prior distribution on the unknown model parame-

ters. We specify a continuous uniform distribution for log nk,

p(log nk) =
1

5
for 7  log nk  12. (4.3)

For ✏, as mentioned in Section 3.3, we have two di↵erent priors, a discrete

uniform distribution and a Gaussian distribution via PCA, and details are

to be discussed in Section 4.3.

For log dk, although there is a preference on non-informative prior, a uniform

prior, p(log dk) / 1, yields an improper posterior distribution because the

likelihood converges to a positive constant as log dk goes to �1. Therefore,
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we specify a Cauchy distribution for p(log dk),

log dk ⇠ Cauchy(center = 9, scale = 5), (4.4)

which is a broad, fat-tailed distribution covering all conceivable values for the

path length that we expect based on all sets of FeXIII intensities. Such a

broad prior is required because the dynamic range in the loop lengths is very

large (e.g., see Berger et al. 1999, Fletcher & De Pontieu 1999). There is also

a preference for loops of size 109cm because of the coronal scale height. The

Cauchy distribution is deemed to be the best prior for this scenario, and is

much superior to either a uniform distribution prior (too uninformative) or a

Normal distribution prior (too informative). The Cauchy distribution prior

also allows for a greater flexibility in the estimate of log nk than a Normal

distribution prior.

We assume the parameters are independent a priori so that the joint prior

distribution is

p(✏, ✓k) = p(✏) p(✓k) = p(✏) p(log nk) p(log dk). (4.5)

Here ✓ is indexed by k, but ✏ is not. This reflects the fact that, although

✓k vary among the pixels, we expect the true emissivity to be an underlying

physical quantity that is the same for all pixels.

We consider two ways to fit the plasma parameters, ⇥, given the observed

or simulated intensities, D, while accounting for atomic uncertainty, M.

First we can analyze each single pixel separately in a sequence of pixel-by-

pixel analyses. Although this may yield di↵erent estimates of ✏, i.e., the

more preferred emissivity curve among the pixels, it allows us to see if the

intensities of each pixel give consistent information as to the best emissivity

curve(s). Given the likelihood function in Eq (4.2) and the prior distribution

in Eq (4.5), the joint posterior distribution for ✏ and ✓k under the separate

pixel-by-pixel analyses is

p(✏, ✓k|Dk) =
L(✏, ✓k | Dk) p(✏, ✓k)

p(Dk)
, (4.6)
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where p(Dk) =
R R

L(✏, ✓k | Dk) p(✏, ✓k) d✏ d✓k.

Alternatively, we can simultaneously analyze the intensities from multiple

pixels to arrive at an overall estimate of the most likely emissivity curve.

When we consider all the K-pixel intensities together, the likelihood function

of ✏ and ⇥ given D, and the prior distribution of ✏ and ⇥ are, respectively,

L(✏,⇥ | D) =
KY

k=1

L(✏, ✓k | Dk) (4.7)

and

p(✏,⇥) = p(✏)
KY

k=1

p(✓k). (4.8)

Thus, the joint posterior distribution of m and ⇥ under the simultaneous

analysis can be expressed as

p(✏,⇥ | D) =
L(✏,⇥ | D)p(✏,⇥)

p(D)
, (4.9)

where p(D) =
R R

L(✏,⇥ | D)p(✏,⇥) d✏ d⇥.

We consider both the separate pixel-by-pixel and the simultaneous analyses,

and, for each, develop both the pragmatic and the fully Bayesian approaches

in the following sections. Before we move on to that, we look at the two prior

distributions for the ensemble of emissivities first.

4.3 The two prior distributions on emissivities

We discuss two di↵erent prior distributions for the ensemble of emissivities:

a discrete uniform distribution and a Gaussian distribution via PCA.

4.3.1 A discrete uniform distribution

We specify a discrete uniform distribution for the ensemble of emissivities,

M. The prior distribution on it can be expressed exactly as in Eq (3.14).

This choice of prior on m stipulates that the 1000 realizations of emissivity
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curves in M are all a priori equally likely to be the true emissivity. As

the realizations were generated by attaching reasonable uncertainties to the

atomic data as described in Section 3.1, the atomic data uncertainties are

contained in p(m) and are thus captured by the corresponding posterior

distribution. Therefore, the 1000 realizations of emissivity curves can also

be considered as a sample of 1000 draws from an implicit prior distribution.

Note that we focus on methods that treat the emissivity index m as an un-

known parameter, whose prior is specified above, whose posterior we estimate

to determine the most likely emissivity realizations among those in M, and

whose uncertainties a↵ect both the fit and error bars of ✓k.

4.3.2 A Gaussian distribution via principal component analysis

We specify a Gaussian prior distribution via PCA, as discussed in Sec-

tion 3.3.2, to compress the given ensemble of emissivities, M.

With the PCA representation of M in hand, we can easily reconstruct emis-

sivity replicates based on the first J(⌧ Q) principal components via Eq (3.18)

and Eq (3.19) to su�ciently account for a certain proportion of the total vari-

ance. A large amount of compression has been achieved because very few

components are needed to compute the emissivity curve to high precision.

For example, in the case of the given ensemble of emissivity realisations, the

first 12 principal components (out of 182) can account for 95.3% of the total

variance, and the first 16 principal components for 99.6%, as in Figure 4.1.

Performance of the first few principal components is shown in Figure 4.2

where each principal component is orthogonal to others. After applying the

PCA transformation, we are able to obtain a lower dimensional subspace

where the emissivity samples are most spread along the new feature axes.

Note that this approximation achieves a better reconstruction in the square

root scale of the given emissivity ensemble, which is used throughout this

chapter.

The complicated structure of the emissivity curves, indicating the atomic

uncertainty, is illustrated in the top two panels of Figure 4.3 using the given
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Figure 4.1: Cumulative proportion of variance explained by the first few principal compo-
nents from PCA on FeXIII emissivity curves, as in red line. The x-axis represents the num-
ber of first few principal components used and the vertical dotted grey lines correspond to
the first 12 and 16 principal components. The y-axis represents the cumulative proportion
of the variance explained and the horizontal dashed blue and green lines correspond to 95%

and 99% respectively.
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Figure 4.2: Performance of the first few major principal components from PCA on FeXIII
emissivity curves. The 1st, 2nd, 3rd, 4th, 5th, 8th. 12th, 16th principal components ver-
sus density and lines of wavelength are plotted as coloured curves. The seven horizontally-
arranged sub-panels separated by vertical dotted grey lines correspond to the seven FeXIII
lines of interest. Within each sub-panel, the density log n is increasing.
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ensemble of 1000 emissivity realisations. A random selection of six of the
p

✏(m) from M is compared with the average over all those emissivity reali-

sations, ¯p
✏, the full range, the middle 95%, and the middle 68.3% of M in

square root space, indicating the ensemble of emissivity curves in M form a

complex tangle that appears to defy any systematic pattern. The complexity

of the uncertainty of M is evident. The third panel of Figure 4.3 illustrates

the use of PCA compression on the emissivity realisations. We generated

1000 replicate emissivity curves, the exact same amount of emissivity curve

as in the original ensemble, using Eq (3.18) and Eq (3.19) with J = 16. In

this case, using J = 16 captures 99.6% of the total variation in M, as com-

puted with Eq (3.17). The full range, the middle 95%, and the middle 68.3%

intervals of these replicates are superimposed on the corresponding intervals

for the original emissivity realisations in square root scale. The correspon-

dence between the original emissivity realisations and the PCA replicates is

quite good, especially for the 68.3% intervals. Although the PCA representa-

tion cannot be perfect (e.g., it does not fully represent uncertainty overall or

in certain regions) it is much better than not accounting for uncertainty at all

and is able to mitigate the gaps among those sparse emissivity realizations.

4.4 General outlook on methods comparison

The ensemble set of emissivity realisations, M, is provided by the atomic

physicists and represents uncertainties in atomic data. It gives a summary

for the preliminary analysis in a two-stage analysis as mentioned in Sec-

tion 1.2 and Section 3.1. We aim to incorporate uncertainties in atomic

data straightforward in Section 4.5, or to embed the PCA model for uncer-

tainty in atomic data in Section 4.6, into the primary analysis via a Bayesian

procedure. It simultaneously fits the model parameters and accounts for

atomic uncertainty. We compare the results from di↵erent statistical meth-

ods, the standard, the pragmatic and the fully Bayesian methods, mentioned

in Section 3.2.2, Section 3.2.4, Section 3.2.5, respectively. Those methods are

applied to both a single-pixel (i.e., the separate pixel-by-pixel analysis) and

multiple pixels (i.e., the simultaneous analysis).
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Figure 4.3: FeXIII emissivity curves and the PCA summary. In the first panel, the light,
dark, and darker grey areas cover the full range, the middle 95%and 68.3% of all 1000 emis-
sivity curves in square root scale. ¯

p
✏ is plotted as a solid black curve. Six randomly selected

curves are plotted as coloured dashed curves. Other panels are constructed in the same man-
ner, but using

p

✏(m) � ¯
p
✏, to magnify the structure in M. Summarizing the emissivity sam-

ples via PCA, the dashed, dot-dash, and dotted lines, in the third panel, respectively outline
intervals containing the full range, the middle 95% and 68.3% of 1000 PCA generated emis-
sivity curves. In the last panel, six randomly selected PCA generated curves are plotted as
coloured dashed curves. The seven horizontally-arranged sub-panels correspond to the seven
FeXIII lines of interest. Within each sub-panel, the density log n is increasing.
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4.5 Discrete prior on emissivity

In this part, we implement the standard, the pragmatic and the fully Bayesian

methods applied to both a single-pixel and multiple pixels when we have a

discrete uniform prior distribution on the ensemble of emissivities, given in

Eq (3.14). This work has been published in Yu et al. (2018). Specifically,

Section 4.5.1 develops the pragmatic and the fully Bayesian approaches to

the pixel-by-pixel analyses and Section 4.5.2 describes the algorithms used

to deploy these approaches. The simultaneous analysis and its algorithm are

discussed in Section 4.5.3. Applications of these models and algorithms to

simulated and observed intensities are discussed in Section 4.5.4 and Sec-

tion 4.5.5 respectively.

4.5.1 Standard, pragmatic and fully Bayesian methods for sep-

arate pixel-by-pixel analysis

Given the 1000 equally likely emissivity realizations, we incorporate them

into the standard, the pragmatic and the fully Bayesian methods discussed

in Section 3.2. Treating the emissivity index m as an unknown parameter

with its prior distribution in Eq (3.14), the prior independence assumption

becomes

p(m, ✓k) = p(m) p(✓k)

= p(m) p(log nk) p(log dk).
(4.10)

The likelihood function of Dk given emissivity index, m, and plasma param-

eter, ✓k, is

L(✓k,m | Dk) =
HY

h=1

N

⇣
Ik�h

| ✏
(m)
�h

(nk,Tk)n
2
kdk, �

2
k�h

⌘
. (4.11)

Given the likelihood function in Eq (4.11) and the prior distribution in

Eq (4.10), the joint posterior distribution for m and ✓k under the separate
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pixel-by-pixel analyses is

p(m, ✓k|Dk) =
L(m, ✓k | Dk) p(m, ✓k)

p(Dk)
, (4.12)

where p(Dk) =
PM

m=1

R
L(m, ✓k | Dk) p(m, ✓k) d✓k.

Then the marginal posterior distribution p(✓k | Dk) can be obtained by

summing over m,

p(✓k | Dk) =
MX

m=1

p(m, ✓k | Dk). (4.13)

In this way, we are able to infer ✓k accounting for uncertainties of the atomic

data via the ensemble in M. Moreover, uncertainty can be quantified with

a list of the most likely emissivity realizations from M (or their indices, m)

along with their associated posterior probabilities.

Standard method

Assuming that the emissivity curves are completely and correctly specified,

✏ = ✏
(1), and ✏

(1) is the default emissivity curve, ✓k is estimated using its

conditional posterior distribution given Dk and ✏(1),

p(✓k | Dk,m = 1). (4.14)

The best-fit values of ✓ can be obtained by using �2 minimization or the MAP

estimation. As this approach assumes that ✏ = ✏
(1), it does not account for

atomic uncertainty. Both Figure 4.7 and Lee et al. (2011) illustrate that this

can mislead estimates of ✓k and can significantly underestimate the error bars

associated with these estimates.

Now, equipped with the ensemble set of CHIANTI emissivities correspond-

ing to randomly selected EIS pixels, we can consider the uncertainties in

the fitted plasma parameters in each case that result from both statistical

fluctuations in the observed intensities and the atomic data uncertainties

incorporated in the ensemble of CHIANTI emissivities.
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This thesis focuses on independent analyses for randomly selected pixels.

There is future potential to model spatial structure of the estimated phys-

ical quantities into the analyses. In this case, we have to consider a more

complicated model where nearby pixels have similar density and similar tem-

perature which requires Gaussian Process⇤ for the density and temperature

parameters. The model will get more complicated and is out of the scope of

this thesis.

Pragmatic Bayesian method

Rather than conditioning on a fixed value, we treat ✏(m), or more precisely, its

index m, as unknown. For the pragmatic Bayesian method, we assume that

the observed intensities are uninformative as to the most likely emissivities.

That is, we do not take into account the information in the intensities for

narrowing the uncertainty in the choice of emissivity realizations. Mathemat-

ically, this assumption can be written as p(m | Dk) = p(m), i.e., ✏(m) and Dk

are independent. Thus, the pragmatic Bayesian joint posterior distribution

of m and ✓k can be written from Eq (3.10) as

ppB(m, ✓k | Dk) = p(✓k | m,Dk) p(m). (4.15)

Under the pragmatic model in Eq (4.15), inference for ✓k is based on its

marginal posterior distribution, which can be rewritten from Eq (3.10) as,

ppB(✓k | Dk) =
MX

m=1

ppB(m, ✓k | Dk)

=
MX

m=1

p(✓k | Dk,m) p(m). (4.16)

The pragmatic Bayesian method accounts for atomic uncertainty in a conser-

vative manner. The assumption that p(m | Dk) = p(m) ignores information

in the intensities, Dk, that may reduce uncertainty of atomic data repre-

⇤
A Gaussian process is a stochastic process where every finite linear combination of

those random variables has a multivariate normal distribution.
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sented by m and hence of ✓k. We now consider methods that allow Dk to be

informative for m.

Fully Bayesian method

The fully Bayesian method incorporates the potential information in the data

(i.e., the intensities) to learn about ✏(m). The fully Bayesian joint posterior

distribution of m and ✓k can be rewritten from Eq (3.12) as

pfB(✓k,m | Dk) = p(✓k | m,Dk) p(m | Dk), (4.17)

and the marginal posterior distribution of ✓k is given by

pfB(✓k | Dk) =
MX

m=1

pfB(m, ✓k | Dk)

=
MX

m=1

p(✓k | Dk,m) p(m | Dk), (4.18)

where each pfB(✓k | Dk) is normalized so that
PM

m=1 p(m | Dk) = 1.

Using Bayes’ theorem and assuming each emissivity realization in M is

equally likely, as indicated by Eq (3.14), we can directly compute the prob-

ability of each emissivity realization, m, given the data separately,

p(m | Dk) =
p(Dk | m)

PM
m=1 p(Dk | m)

. (4.19)

This is the marginal posterior probability among those emissivity realizations

in M. Eq (4.19) holds because each of the m has the same prior probability

(see Eq (3.14)).

The Bayesian posterior distribution in Eq (4.19) allows the observed inten-

sities to be informative for the atomic physics, following the principles of

Bayesian analysis (Xu et al. 2014). It enables us to use the intensities to

determine which emissivity realizations are more or less likely and to average

over (posterior) uncertainty in emissivity realizations.
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4.5.2 Algorithms for the separate pixel-by-pixel analyses

Algorithms for pragmatic Bayesian in the separate pixel-by-

pixel analyses

To obtain a MC sample of (m, ✓k) from the pragmatic Bayesian posterior in

Eq (4.15), we first obtain a MC sample of the emissivity index, {m(1)
, . . . ,m

(L)
},

from its prior distribution, Eq (3.14). For each m
(`), with ` = 1, . . . , L, we

can then sample {✓[`,t]k , t = 1, . . . , T} from p(✓k | m(`)
, Dk) using the MH algo-

rithm discussed in Section 2.2.1. This requires that we specify the proposal

distribution q(✓⇤|✓(t)). To do so, we first compute the value of ✓k that max-

imizes log p(✓k | m
(`)
, Dk), i.e., the MAP estimates, ✓̂k, along with the 2⇥ 2

Hessian matrix evaluated at the mode ✓̂k, H(✓̂k), for each m
(`). We then use

t4

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘
as the MH proposal distribution, where t⌫ (x | µ,⌃)

is the density of a multivariate t distribution with ⌫ degrees of freedom, mode

µ, and scale matrix ⌃, evaluated at x. This type of MH sampler is known as

an independence sampler (Gilks et al. 1996). The use of Hessian matrix eval-

uated at the mode makes a proposal distribution that mimics the correlation

structure of the target distribution, i.e., the conditional posterior distribution

p(✓k | m(`)
, Dk). In other words, we are sampling from a correlated proposal

distribution that is already matching the target distribution. We run MH

for T iterations, the last of which is taken as the MC sample corresponding

to m
(`), i.e., ✓(`)k = ✓

[`,T ]
k .

Algorithms for fully Bayesian in the separate pixel-by-pixel

analyses

In the fully Bayesian separate pixel-by-pixel analyses, our aim is to obtain a

MC sample from the joint posterior distribution, Eq (4.17), and we propose

three basic strategies for doing this: (i) two-step MC with MH, (ii) two-

step MC with a Gaussian approximation, and (iii) HMC, as described below.

Specifically, the first strategy uses the MH algorithm while the second strat-

egy makes a Gaussian approximation to the conditional distribution of ✓k
given the sampled emissivity realization m. Comparing the three strategies,
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the two-step MC with MH is preferred because of the accuracy of estimates

with moderate computation time, while two-step MC with a Gaussian ap-

proximation may be faster (but less accurate) and HMC can be more accurate

(but slower) under certain conditions.

Implementation of two-step MC with MH for fully Bayesian in

the separate pixel-by-pixel analyses

In order to implement the fully Bayesian method and to obtain a MC sample

of ✓k via Eq (4.18), we first evaluate Eq (4.19) for each m where

p(Dk | m) =

Z
L(m, ✓k | Dk) p(✓k) d✓k (4.20)

is the Bayesian evidence conditional on a given emissivity. For each sampled

✓k, we need only evaluate the likelihood for m = 1, . . . ,M , and then renor-

malize the M likelihood values by this weighted sum, which can be achieved

via a two-step sampling as described in this section.

The two dimensional integral in Eq (4.20) can be evaluated numerically using

the grid generated from the trapezoidal quadrature rule (TQR), which is

suitable for finite domain quadrature†. The product-rule is also used in the

construction of multivariate grids, which leads to an evenly designed grid.

The two dimensional quadrature can then be expressed as

Z
L(m, ✓k | Dk) p(✓k) d✓k

=
X

i,j

wi,j L(m, log n(i)
k , log d(j)

k | Dk) p(log n
(i)
k , log d(j)

k ) (4.21)

where nodes (log n(i)
k , log d(j)

k ) and weights (wi,j) are defined by the chosen

quadrature rule‡. The integral range of the two parameters is (✓̂k � 3 ⇥

†
Package ‘mvQuad’ provides a collection of methods for (potentially) multivariate

quadrature in R, and is available at https://cran.r-project.org/web/packages/
mvQuad/.

‡
TQR and Product-Rule are used in the construction of multivariate grids, where

level = 5 is a subcommand in the grid creating commander, which represents accuracy
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sdevk, ✓̂k+3⇥sdevk) where sdevk is a vector of the square root of the diagonal

elements in variance-covariance matrix (�H(✓̂k))�1.

Having evaluated Eq (4.19) at each m, we can obtain a MC sample of the

emissivity index, {m
(1)
, . . . ,m

(L)
}. For each m

(`) we sample from p(✓k |

Dk,m
(`)) using an independence sampler exactly as described in the prag-

matic Bayesian case above. For each m
(`), we run the independence sampler

for T iterations to obtain the MC sample corresponding to m
(`), and set

✓
(`)
k = ✓

[`,T ]
k . For Pixel k, i.e. the kth set of intensities, the detailed two-step

MC with MH (SMH) proceeds for ` = 1, . . . , L with

Step 1: Sample m
(`)
⇠ p(m | Dk) via Eq (4.19).

Step 2: For t = 1, . . . , T � 1,

Step 2.1: Sample ✓[prop]k ⇠ t4

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘
and compute

⇢ =
p(✓[prop]k | Dk,m

(`)) t4
⇣
✓
[t]
k | ✓̂k, (�H(✓̂k))�1

⌘

p(✓[t]k | Dk,m
(`)) t4

⇣
✓
[prop]
k | ✓̂k, (�H(✓̂k))�1

⌘ . (4.22)

Step 2.2: Set

✓
[`,t+1]
k =

8
<

:
✓
[prop]
k , with probability min(⇢, 1),

✓
[t]
k , otherwise.

(4.23)

Step 3: Set ✓(`)k = ✓
[`,T ]
k .

For simplicity at each iteration, if the sampled emissivity index in Step 1 is

the same as the previous draw, we do not need to iterate MH to sample ✓k
in Step 2 since we already have a good proposal distribution for the same

target distribution. Moreover, if there does exist one dominant emissivity

curve, e.g., there exists m⇤ such that p(m⇤
| Dk) � 0.9999, we only need to

sample this m⇤ all the time.

level, typically number of evaluation points for the parameters in each dimension.
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Implementation of two-step MC with Gaussian approximation

for fully Bayesian in the separate pixel-by-pixel analyses

This is an alternative method to sample p(m, ✓k | Dk) based on Eq (4.18) and

Eq (4.19). Same as above, we can evaluate Eq (4.19) at each m and obtain a

MC sample of the emissivity index, {m(1)
, . . . ,m

(L)
}. For each m

(`), instead

of using exact MH algorithm, we can then sample from p(✓k | Dk,m
(`)) by

considering an approximate algorithm via Gaussian approximation.

We can conduct a Gaussian approximation to p(✓k | Dk,m
(`)) with mean

equal to the MAP estimates, ✓̂k, and variance-covariance matrix (�H(✓̂k))�1.

Specifically the Gaussian approximation distributionN

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘

has the same mode and curvature as the target conditional distribution

p(✓k | Dk,m
(`)). Thus the two-step MC with Gaussian approximation (SG)

proceeds for ` = 1, . . . , L with

Step 1: Sample m
(`)
⇠ p(m | Dk) via Eq (4.19).

Step 2: Sample ✓(`)k ⇠ N

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘
, where ✓̂k depends on m

(`).

Similar to two-step MC with MH above, if there is one dominant emissivity

curve, we only need to sample this dominant one all the time.

Implementation of Hamiltonian Monte Carlo for fully Bayesian

in the separate pixel-by-pixel analyses

Another alternative method to obtain a MC sample from the joint posterior

distribution in Eq (4.12) via the separate analyses is to start by obtaining a

sample from their marginal posterior distribution,

✓
(1)
k , . . . , ✓

(L)
k ⇠ p(✓k | Dk).

First, we rewrite

p(✓k | Dk) / L(✓k | Dk) p(✓k), (4.24)
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where

L(✓k | Dk) =
MX

m=1

L(m, ✓k | Dk) p(m | ✓k)

=
1

M

MX

m=1

L(m, ✓k | Dk)

=
1

M

MX

m=1

HY

h=1

N

⇣
Ik�h

| ✏
(m)
�h

(nk,Tk)n
2
kdk, �

2
k�h

⌘
,

(4.25)

since the prior independent assumption, p(m | ✓k) = p(m) = 1/M , and the

observation independent assumption among lines of wavelengths.

Evaluating p(✓k | Dk) in this way we can use the Stan package, as described

in Section 3.4.2, to obtain {✓
(1)
k , . . . , ✓

(L)
k } via HMC to sample directly from

its marginal posterior distribution, Eq (4.24). However, we must analytically

marginalize over m, via Eq (4.25), since it cannot accommodate discrete

parameters.

With these MC samples {✓
(1)
k , . . . , ✓

(L)
k } in hand, we can sample m from its

conditional posterior distribution,

p(m | ✓
(`)
k , Dk) =

p(m) L(m, ✓
(`)
k | Dk)PM

m̃=1 p(m̃) L(m̃, ✓
(`)
k | Dk)

=
L(m, ✓

(`)
k | Dk)PM

m̃=1 L(m̃, ✓
(`)
k | Dk)

,

(4.26)

for ` = 1, . . . , L.

Sampling multimodal posterior distributions with Stan

The samples obtained above show bimodal posterior distributions for pa-

rameters ✓k = (log nk, log dk) for a couple of pixel datasets. Specifically, the

two modes correspond to the two di↵erent emissivity curves. The resulting

relative size of the two modes does not match the actual posterior distribu-

tions indicating HMC algorithm has trouble in jumping between the modes.

This multiple-mode problem may be due to an insu�cient number of emis-
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sivity curves because our set of emissivities sample the full uncertainty range

sparsely. To solve this problem, we have experimented with adding a few

strategically chosen synthetic emissivity curves to the set M and the aug-

mented set of curves is denoted by M
aug, where M is a subset of Maug, i.e.,

M ⇢M
aug. These tend to connect the modes and allow HMC to jump be-

tween modes. We can then remove the samples associated with the synthetic

emissivity curves to get MC samples purely from the original target.

We run the algorithm described above with M replaced by M
aug. For each

sampled value of ✓(`)k , ` = 1, . . . , L, we compute p(m | ✓
(`)
k , Dk) for each

m 2 M
aug, with M replaced by M

aug in Eq (4.26), and sample a value

of m, say m
(`), from it. Once we have these sample values of m, m(`), for

` = 1, . . . , L, we can then extract the samples of ✓k that correspond to the

non-synthetic emissivity curves to get MC samples purely from the original

target, i.e., consider the conditional posterior distribution p(m | ✓
(`)
k , Dk) for

each m 2M.

This creative method of adding synthetic emissivity curves in HMC can be

generalised to all pixel datasets. If all the multiple-mode pixels have two

modes and these two modes depend on the two same emissivity curves, the

same synthetic emissivity curves can be added into the original ones and the

above procedure can be repeated to all pixel datasets.

4.5.3 Model and algorithms for simultaneous analysis

When we consider all the K-pixel intensities together in a simultaneous anal-

ysis using the fully Bayesian method, the likelihood function ofm and⇥ given

D, and the prior distribution of m and ⇥ are, respectively,

L(m,⇥ | D) =
KY

k=1

L(m, ✓k | Dk) (4.27)

and

p(m,⇥) = p(m)
KY

k=1

p(✓k). (4.28)
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Thus, the joint posterior distribution of m and ⇥ can be expressed as

p(m,⇥ | D) =
L(m,⇥ | D)p(m,⇥)

p(D)
, (4.29)

where p(D) =
PM

m=1

R
L(m,⇥ | D)p(m,⇥) d⇥. Similarly, treating m as an

unknown parameter, we express the left hand side of Eq (4.29) as

p(m,⇥ | D) = p(⇥ | D,m) p(m | D), (4.30)

and we conduct statistical inference by obtaining a MC sample from this

joint posterior distribution.

First we can use all the data simultaneously to obtain the marginal posterior

probability of each emissivity realization m,

p(m | D) =

QK
k=1 p(Dk | m)

PM
m=1

QK
k=1 p(Dk | m)

. (4.31)

and sample m(`), for ` = 1, . . . , L, with weights given by the marginal poste-

rior probabilities in Eq (4.31) so that those favoured by the data are sampled

more frequently. The computation of p(Dk | m) for each k and m is discussed

in Section 4.5.2.

For each sampled m, we sample ✓ from its conditional posterior distribution

p(⇥ | D,m) / L(m,⇥ | D) p(⇥)

=
KY

k=1

L(m, ✓k | Dk) p(✓k)

=
KY

k=1

HY

h=1

N

⇣
Ik�h

| ✏
(m)
�h

(nk,Tk)n
2
kdk, �

2
k�h

⌘
⇥ p(log nk) p(log dk).

(4.32)

as these K-pixel datasets were randomly selected from the observations indi-

cated in Section 1.1.1, so that we can safely assume conditional independence

among them.
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Similarly, an MH sampler is used to obtain a correlated MC sample, {⇥[t]
, t =

1, . . . , T}, from p(⇥ | m
(`)
,D). A t4

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘
proposal distribu-

tion is used for each pixel independently and separately to make the com-

putation more e�cient. With those proposal distributions, we run the MH

for T iterations over all the K-pixel intensities and obtain the MC sampler

corresponding to m
(`), ⇥(`) = ⇥[`,T ]. The detailed two-step MC with MH via

simultaneous analysis (SMHsimul
) proceeds for ` = 1, . . . , L with

Step 1: Sample m
(`)
⇠ p(m | D) via Eq (4.31).

Step 2: Proceed for t = 1, . . . , T ,

Step 2.1: For each pixel k = 1, . . . , K,

sample ✓[prop]k ⇠ t4

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘

and set ⇥[prop] = (✓[prop]1 , . . . , ✓
[prop]
K ).

Step 2.2: Compute

⇢ =
QK

k=1 p(✓
[prop]
k | Dk,m

(`)) ·
QK

k=1 t4

⇣
✓
[t]
k | ✓̂k, (�H(✓̂k))�1

⌘

QK
k=1 p(✓

[t]
k | Dk,m

(`)) ·
QK

k=1 t4

⇣
✓
[prop]
k | ✓̂k, (�H(✓̂k))�1

⌘ .

(4.33)

Step 2.3: Set

⇥[`,t+1] =

8
<

:
⇥[prop]

, with probability min(⇢, 1),

⇥[t]
, otherwise.

(4.34)

Step 3: Set ⇥(`) = ⇥[`,T ].

Similar to the separate analyses, for simplicity at each iteration, if the sam-

pled emissivity index in Step 1 is not updated, we do not need to iterate

MH to sample each ✓k in Step 2. If there does exist one dominant emissivity

curve, we only need to sample the dominant all the time.
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4.5.4 Application to simulated intensities

Here we illustrate both the separate pixel-by-pixel and the simultaneous anal-

yses, mentioned in Section 4.5.1 and Section 4.5.3, with a simulated case. The

K = 1000 simulated sets of intensities for each of H = 7 spectral lines are

generated from known density and path lengths and from the m = 1 default

CHIANTI emissivity, i.e., ✏(1), as in Section 3.1 and Yu et al. (2018). This will

allow us, statistically, to test the ability to recover physical parameters from

the FeXIII intensities and, physically, to illustrate how the variations in the

atomic data led to the variations in the inferred densities and path lengths.

It allows for the comparison of the inferred values with the true values to

compare the separate pixel-by-pixel analyses with the simultaneous analysis,

making sure the posterior distribution is giving a reasonable estimate of the

parameters.

We run the two-step MC with MH in both the separate pixel-by-pixel analy-

ses and the simultaneous analysis described in Section 4.5.2 and Section 4.5.3.

TQR and Product Rule are used in computing multivariate quadrature in

Eq (4.20) and we obtain a MC sample of emissivity index via Eq (4.19) or

Eq (4.31). For both analyses, 30 MH samplers, which is determined by con-

structing autocorrelation plots in this setting (Xu et al. 2014), are drawn for

each sampled emissivity realization m
(`), and the last MH sampler is taken as

a MC sampler. There are 8000 MC samplers drawn in each simulation. We

run the two-step MC with Gaussian approximation in the separate pixel-by-

pixel analyses. Same as two-step MC with MH, TQR and Product Rule are

used to obtain a MC sample of emissivity index, a Gaussian approximation

is conducted to p(✓k | Dk,m
(`)) for each sampled m

(`) and each pixel Dk, and

8000 MC samplers drawn for each pixel. We also run HMC in the separate

pixel-by-pixel analyses where 5 chains are running, 4000 iterations each, and

the first half of the iterations of each chain are discarded as burn-in.

The comparison of the relative posterior probability p(m | Dk) for each emis-

sivity index and for each pixel, for all three algorithms in separate pixel-

by-pixel analyses, is shown in the top panel of Figure 4.4. The emissivity

realization with index 1 occupies almost all of the probability. Similarly, in
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the simultaneous analysis, the posterior probability of the emissivity realiza-

tion with index 1 is nearly to one. Both analyses recover the fact that all

of the simulated sets of intensities are computed from the default CHIANTI

atomic data (the emissivity realization with index 1) instead of the perturbed

atomic data (the emissivity realizations with other indices) as described in

Yu et al. (2018).

The results in Figure 4.5 compare the fitted values and error bars using two-

step MC with MH to the true value of both parameters log n and log d via

both the separate pixel-by-pixel and the simultaneous analyses. Compared

with the separate pixel-by-pixel analyses, it shows that the error bars are

smaller around the true values when we use the simultaneous analysis than

using one pixel dataset at a time. The results in the plots illustrate that, as

more data are used in the analysis by simultaneously analyzing those pixels,

incorporating the uncertainty in the atomic physics calculations results in

more accurate fitted values.

Comparing the results from the separate pixel-by-pixel and the simultaneous

analyses using their mean square errors (MSEs), a measure of how well the

fitted values explain the given set of observations, Table 4.1 shows simulta-

neous analysis achieves smaller MSE values and indicates the more data we

have, the smaller MSE is achieved, i.e., simultaneous analysis gives a better

explanation of the given set of observations (i.e., intensities). Consistently,

the three algorithms in separate pixel-by-pixel analyses achieves almost the

same MSE, but all larger than that of from the simultaneous analysis.

Algorithm
MSE

log n log d

Pixel-by-pixel
SMH 1.345⇥10�5 4.936⇥10�5

SG 1.184⇥10�5 4.443⇥10�5

H 4.931⇥10�5 1.936⇥10�4

Joint SMHjoint 6.748⇥10�7 2.241⇥10�6

Table 4.1: MSE between the fitted values and the true values for both parameters
(log n, log d) via both separate pixel-by-pixel and simultaneous analyses in simulated data
set.
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Figure 4.4: Selecting the optimal emissivity curves with separate pixel-by-pixel fully
Bayesian analysis. The x-axis and the y-axis represent the index of the pixels and the in-
dex of the emissivity curves, respectively. For each pixel, the relative posterior probability
is plotted along a vertical column for the emissivity indices, where index 1 represents the
default CHIANTI emissivities. The size of the dots represents the relative values of the pos-
terior probability (p(m | Dk), for emissivity index m and pixel data set Dk) assigned to each
emissivity index for a given pixel. The analyses carried out for the simulated data set (top;
generated using default m = 1, and showing only p(m | Dk) > 0.06) and for a real data set
(bottom; showing only p(m | Dk) > 0.1) are shown.
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Figure 4.5: Comparison of best-fit values and actual input for the simulated dataset. The
comparisons are shown for both log n (left column) and log d (right column). Calculations
are performed using the fully Bayesian two-step MC with MH for each pixel dataset sepa-
rately (top row) and for all the pixel datasets simultaneously (bottom row). The red dots
represent the di↵erence between the best-fit value and the actual input and the horizontal
dashed lines represent the line of equality. The grey dots represent a vertical error of ±1

standard deviation for the fitted values that incorporates atomic data uncertainty. Notice
that the uncertainties are reduced when all the K-pixel datasets are used simultaneously.
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4.5.5 Application to observed intensities

Here we demonstrate the e↵ects of the di↵erent types of analyses by apply-

ing them to a real dataset, the EIS full-CCD observations of an active region

used as an example (Yu et al. 2018). This dataset comprises sets of mea-

sured intensities of H = 7 spectral lines of Fe XIII in K = 1000 distinct,

independent pixels.

Two-step MC with MH (SMH) and two-step MC with Gaussian

approximation (SG) algorithm

Same as what is done in the simulated case, TQR and Product-Rule are used

to obtain a MC sample of emissivity index first. A MH sampler is used to

obtain a correlated MC sample from p(✓k | Dk,m
(`)) for each sampled m

(`)

and each pixel Dk in SMH . We have 30 MH samplers drawn for each sampled

emissivity curve m
(`) and the last MH sampler is taken as a MC sampler.

Equivalently, a Gaussian approximation is conducted to p(✓k | Dk,m
(`)) for

each sampled m
(`) and each pixel Dk in SG. There are 8000 MC samplers

drawn for each pixel in each algorithm.

HMC with Stan (H)

A few strategically chosen synthetic emissivity atomic data curve replicates

are added, as described in Section 4.5.2. There are 5 chains running, 4000

iterations each, and the first 2000 iterations of each chain are discarded as

burn-in.

In the realistic case, once we run HMC with Stan as described in Section 4.5.2,

bimodal posterior distributions are observed for several pixels. The two

modes correspond to two di↵erent emissivity curves with index 471 and 368,

i.e., Emis471 and Emis368. Moreover, the relative size of the two modes does

not match the actual posterior distribution as shown in the left column of

Figure 4.6. Therefore, a few strategically chosen synthetic emissivity curves
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are added to the original set and the augmented set is

M
aug
\M

c = {w1 ⇤ Emis471 + w2 ⇤ Emis368}

where (w1, w2) = (0.75, 0.25), (0.50, 0.50), and (0.25, 0.75). The HMC with

Stan is run once more with M replaced by M
aug, as described in Sec-

tion 4.5.2. Samples of ✓(`)k , ` = 1, . . . , L, are obtained as shown in the

middle column of Figure 4.6. For each sampled value of ✓(`)k , we compute

p(m | ✓
(`)
k , Dk) for each m 2 M

aug, via Eq (4.26), and sample a corre-

sponding m
(`) from it. Considering the conditional posterior distribution

p(m | ✓
(`)
k , Dk) for each m 2 M, we can then extract the samples ✓(`)k that

correspond to the non-synthetic emissivity curves to get MC samples purely

from the original target as shown in the right column of Figure 4.6. The

actual conditional posterior distributions are also computed by direct evalu-

ation on a fine grid of the parameters for comparison to the corresponding

MC samples.

The results of posterior samples are shown in Figure 4.7 for the pixel #217.

The joint posterior probability density distribution p(✓k | Dk) computed us-

ing the pragmatic and the fully Bayesian methods are shown as contour plots,

and marginalized 1-D posterior densities p(log nk | Dk) and p(log dk | Dk)

are shown as curves along the corresponding axes. The estimates of log nk

and log dk computed via the standard analysis, i.e., the �2 minimization of

Equation (4.14), are marked with straight lines. Notice that the pragmatic

Bayesian method inflates the error bars relative to the standard method as

it accounts for the atomic data uncertainties. The fully Bayesian method

shrinks the error bars relative to the pragmatic Bayesian method and shifts

the best estimate since it selects a subset of the full range of atomic uncertain-

ties that are consistent with the data. The standard method underestimates

the uncertainties in all cases, and is shifted relative to the fully Bayesian

estimate.

The comparison of the relative posterior probability p(m | Dk) for each emis-

sivity index and for each pixel, in separate pixel-by-pixel analyses, is shown

in the bottom panel of Figure 4.4. There are two dominant emissivity re-
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Figure 4.7: Comparisons of the inferred density log ne and path length log ds using di↵er-
ent methods for pixel #217. The results from the di↵erent methods used are colour coded,
with blue representing the standard method, red the pragmatic Bayesian method, and green
the fully Bayesian method. The contour plots (with levels at 0.01⇥, 0.1⇥, and 0.5⇥ the
maximum) show where the majority of the mass of the joint probability distributions of
(log nk, log dk) fall, and their marginalized distributions along each axis are shown to the top
and to the left of the corresponding axis. The results from the standard analysis is shown
along with the histograms as straight lines (solid for the best-fit and dotted denoting the
±1� errors on the best-fit obtained from the default CHIANTI emissivity functions), extend-
ing into the contour plot region. The best-fit value from standard analysis is also marked
on the contour plot with a ’+’ sign, with the arms of the symbol corresponding to the sizes
of the error bars. The standard deviations of the marginalized posterior densities, as well as
the 90% equal-tail bounds for both the pragmatic and the fully Bayesian cases are listed in
the legend. As expected, the density and path length are highly correlated. The standard
method underestimates the uncertainties, the pragmatic Bayesian method inflates them due
to atomic data uncertainties. The fully Bayesian method strikes a balance between atomic
data uncertainties and how well the data are fit, shrinking the error bars relative to the prag-
matic Bayesian and shifting the estimates. The full set of plots for all 1000 pixels considered
here are available as a supplementary figure.
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alizations which have a combined posterior probability of over 0.99 using

the two-step MC and HMC. An example of the posterior probability of the

two dominant emissivity realizations given Pixel 593 is shown in Table 4.2.

Similarly, in the simultaneous analysis, the posterior probability of the emis-

sivity curve with index 471 is exactly one. It indicates that the emissivity

realizations reveal consistent feature of the solar atmosphere.

m SMH or SG H SMHsimul

471 0.894 0.860 1.000
368 0.105 0.138 0.000

others < 0.001 < 0.000 0.000

Table 4.2: The posterior probability of the two dominant emissivity realizations given Pixel
593, p(m | D593), via both separate pixel-by-pixel and simultaneous analyses.

The computational time is considered in terms of (i) the elapsed time and

(ii) the sum of the user and system times, which is a closer measure to real

clock time. The computation time over all 1000 pixels with the two dif-

ferent measurements using SMH , SG, and H in the separate pixel-by-pixel

analyses and using SMHsimul
in the simultaneous analysis, is shown in Ta-

ble 4.3. The computation time for two-step MC samplers, SMH , SG, and

SMHsimul
consist of both the quadrature part and the sampling part. The

computation of the former part is exactly the same for both the separate

pixel-by-pixel and the simultaneous analyses with a computation time of 1.2

hours for both measurements. After comparison, HMC with Stan is the most

time-consuming algorithm among the three separate pixel-by-pixel analyses

algorithms. Moreover, though there are 2000 parameters in the simultane-

ous model, the computation time using the two-step MC with MH in the

simultaneous analyses is quite less than that of the separate pixel-by-pixel

analyses. The computation time of the separate pixel-by-pixel analyses using

the two-step MC with MH or Gaussian is significantly longer because MAP

need to be calculated and Hessian matrix need to be evaluated at MAP for

each pixel at each iteration and each inner iteration, which are time consum-

ing. However, though there are 2000 parameters in the simultaneous model,

the computation time using the two-step MC with MH in the simultaneous

analyses is quite less than that of the separate pixel-by-pixel analyses. That
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is because there is one dominant emissivity curve as in Table 4.2 and we

sample the dominant all the time so that the calculation of MAP and the

evaluation of Hessian at MAP for each pixel only need to be done for one

time, as described in Section 4.5.3.

Alg.
Computation Time (hrs)

The elapsed time The sum of user and system time
SMH 14.5 41.0
SG 8.0 20.7
H 51.4 135.5

SMHsimul
6.0 6.0

Table 4.3: The computation time (in hours) over all 1000 pixels using the three algorithms,
SMH , SG, or H, in separate pixel-by-pixel analyses, with two di↵erent measures, the elapsed
time (left column) or the sum of user and system times (right column).

4.5.6 Comparison of algorithms and output data analysis

Using test statistics

To obtain a MC sample of the parameters, log nk and log dk, via the separate

pixel-by-pixel analyses with joint posterior distribution in Eq (4.12), three

algorithms, SG, SMH , and H, are implemented for the fully Bayesian model

on each of the 1000 pixel observed datasets in Section 4.5.5.

Our aim is to find which algorithm provides a more accurate simulation to

the target posterior distribution and is the best to be used to make statistical

inference. From a statistical point of view, we assume the HMC, which might

give the best result, as the base line, and to see whether these two two-step

MC samplers provide better inference or not.

The first test statistic we consider is the z-statistic, which is the di↵erence

in posterior mean between the sample values from SG or SMH and from

H divided by the standard deviation of samples from H because HMC is

assumed to be the base line, indicating how far away that estimate is from

the mean in standard units, i.e.,
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z
i
score =

meanSi �meanH

sdH

, for i = G or MH. (4.35)

Figure 4.8 shows the histograms of z-scores for both parameters, log n and

log d, in two comparisons, SG to H and SMH to H, respectively considering

all the 1000 pixels. Looking at the worst case scenarios, the most extremes

we see from the comparison on the left-hand side is about 0.12 to 0.25 of

standard deviation o↵, which corresponds to Pixel 36, 87, 302, 453, 650, and

934. The comparison on the right-hand side indicates the most extremes are

about 0.15 of standard deviation o↵ occurring at Pixel 302 and 364. The

vertical lines correspond to the z-score values of these extracted pixels. This

suggests that we need to look at the full posterior distributions for those

extreme pixels and for the three algorithms more closely, which will be found

below to get some insights.

The second test statistic to compare is the ratio of standard deviations be-

tween SG or SMH and H, i.e.,

sdSi

sdH

, for i = G or MH, (4.36)

which essentially gives the relative size of confidence intervals that we com-

pute.

Figure 4.9 shows the histograms of the ratio of standard deviations for both

parameters, log n and log d, in two comparisons, SG to H and SMH to H,

respectively considering all the 1000 pixels. The most extremes we see from

the comparison on the left-hand side corresponds to Pixel 634 and 779. The

comparison on the right-hand side indicates the most extremes occurring at

Pixel 396, 418, 634, and 779. The vertical lines correspond to the ratio values

of these extracted pixels. An example of their posterior distributions for the

three algorithms can be found below.

Parallelization

To improve the e�ciency of the code, we parallelize the 1000 pixels into 20
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Figure 4.8: Selecting the extreme pixels via z-scores (unit di↵erence in posterior mean)
which are computed using the outputs of the three algorithms, SG, SMH , and H under fully
Bayesian method and separate pixel-by-pixel analyses. The histograms represent the z-scores
for both parameters, log n (top row) and log d (bottom row), in two comparisons (left: SG

to H, right: SMH to H) respectively considering all the 1000 pixels. The vertical lines cor-
respond to the values of pixel indices, top left: 650, 934, 302, 36, 453, 87, top right: 302, 364,
bottom left: 87, 453, 36, 302, 934, 650, bottom right: 364, 302, from left to right.
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Figure 4.9: Selecting the extreme pixels via the ratio of standard deviations which are com-
puted using the outputs of the three algorithms, SG, SMH , and H under fully Bayesian
method and separate pixel-by-pixel analyses. The histograms represent the ratio of stan-
dard deviations for both parameters, log n (top row) and log d (bottom row), in two com-
parisons (left: SG to H, right: SMH to H) respectively considering all the 1000 pixels.
The vertical lines correspond to the values of pixel indices, top left: 634, 779, top right:
634, 779, 396, 418, bottom left: 634, 779, bottom right: 634, 779, 418, 396, from left to right.
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or 10 completely separate processes when pre-processing emissivities (i.e.,

obtaining the posterior probability of each emissivity curve) or sampling ✓,

for all the three algorithms. The doParallel package is used to provide a

mechanism to execute foreach loops in parallel within each process, where a

multi-core backend is registered and a four worker cluster (of a 64-bit 2.5 GHz

CPU with 128 GB of RAM) is created and used. Specifically, in the source

builds, we set the number of processors to use for the build to the number

of cores on our machine we want to devote to the build, which is thirty-two.

We also set the maximum number of additional R processes allowed to be

run in parallel to the current R processes, which is thirty-two as well. For

H, each pixel is run with multiple cores and four pixels are run at the same

time. For SG or SMH , we run each pixel with a di↵erent core and thirty-two

multi-core backends are used in parallel.

The posterior values of the parameters for the three algo-

rithms and for the extracted pixels

By comparing the three algorithms using the two test statistics mentioned

above, several extreme pixels are picked out from each comparison.

Figure 4.10 show the histograms of the posterior values of the parameters

log n and log d conditional on all 1000 emissivity curves and the certain ex-

tracted pixel datasets respectively. The results of the three sampling algo-

rithms are compared: SG algorithm, SMH algorithm, andH algorithm. Three

more synthetic emissivity curves are conditioned when using H as described

in Section 4.5.2.

For Pixel 364 (the left panel of Figure 4.10), which are extracted from the

right column of Figure 4.8, having used the synthetic emissivity curves, it is

still not good at jumping between the modes for H algorithm in this bimodal

case.

For Pixel 396 (the middle panel of Figure 4.10), it is the histograms of H

algorithm that does not quite get into the tail that makes the standard

deviation from H algorithm relatively small and filters this pixel out from

the right column of Figure 4.9.

75



Similarly, for Pixel 650 (the right panel of Figure 4.10), which are extracted

from the left column of Figure 4.8, the SG algorithm is not good at recovering

the actual posterior with a noticeable discrepancy in the mode.

4.5.7 Discussion and conclusions

We have presented the first comprehensive treatment of atomic physics un-

certainties in the analysis of solar spectra. To make this analysis tractable,

we have considered the relatively simple problem of inferring the electron

density and path length from a set of observed FeXIII intensities and a

simple model for the emission (see Equation (4.1)). For this work we have

used observed FeXIII intensities from the EIS spectrometer on the Hinode

satellite. If we consider only the uncertainties due to counting statistics, we

obtain very small error bars on the electron density and path length, suggest-

ing that the parameters are very precisely determined by the observations.

We have shown that the e↵ect of atomic uncertainties on estimates of coronal

properties can be substantial, and that a pathway exists to reduce this uncer-

tainty by finding subspaces that are preferred by the data, i.e., the emissivity

realizations that are supported by the observed intensities.

We have used a Bayesian framework to interpret the observed intensities in

the context of the di↵erent realizations of the atomic data. A pragmatic

Bayesian approach, where each realization of set of emissivities is considered

to be equally likely, yields larger uncertainties in the electron density and

path length than the uncertainty implied by counting statistics alone. A

fully Bayesian approach, where we allow the observed intensities to update

the uncertainty in the emissivity curves, reduces the uncertainties in the

plasma parameters, but also suggests that certain di↵erent realizations of

the atomic data are more likely than the default CHIANTI calculation. This

indicates some combination of systematic errors in the atomic physics and

the observed intensities.

We also have considered two basic strategies for obtaining a MC sample from

the joint posterior distribution, HMC and two-step MC sampler. By com-

paring the histograms of the posterior values, there is definitely an issue with
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the Gaussian assumption (two-step MC with Gaussian approximation) where

the MC samplers are not matching very well with the actual posterior and

it is more conservative. HMC algorithm looks appropriate but occasionally

does not estimate the relative size of the mode correctly, though after adding

synthetic emissivity curves. For all 1000 pixels, the MC samplers generated

from two-step MC with MH match the density line of actual posterior very

well and this algorithm takes moderate computation time. Therefore, more

accurate and significantly faster, two-step MC with MH would be the best to

use to make statistical inference. An improved version of two-step MC with

MH will be used in more complexed case studies in the following chapters.

In our experiment, there are H = 7 spectral lines with corresponding wave-

lengths being considered, whereas two of them are not close to others in

wavelength, 196.525 and 209.916 vs 200.021-203.826 Å, and we call them

extreme wavelengths. We have experimented with one of the two-mode-case

pixels (Pixel 593), where the two extreme wavelengths are removed one at a

time from the analysis and the three algorithms mentioned in Section 4.5.2

are repeated. Whether we consider the two extreme wavelengths or not,

the resulting MC samplers have a good match to their actual posterior dis-

tributions; however, the shape of the actual posterior distribution di↵ers

dramatically when including wavelength 196.525Å compared to when it is

excluded from the analysis. Because including the extreme wavelengths does

not impact the ability of the MC samplers to recover the actual posterior

distributions, we use the seven-wavelength dataset in all the experiments.

To keep the analysis simple, in this section, we have assumed that the ob-

served emission can be described by a simple model with a single density,

temperature, and path length. Despite its simplicity, this model reproduces

the observed intensities remarkably well. However, it cannot overcome any

limitations in the model used to interpret the observations from an astro-

physics point of view. It would be necessary to consider more complex emis-

sion measure distributions if we seek to interpret the plasma parameters

derived from the observations.
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4.6 Gaussian prior on emissivity

Referring back to Section 4.5, the real issues of occurring these multiple

modes might be we do not have enough diverse set of emissivity curves. In

this section, a more realistic and immediate way, PCA, that contains sta-

tistical compression of the ensemble of emissivity realizations as described

in Section 3.3.2 is implemented, and we aim to incorporate it into the two-

step MC Gibbs samplers and the HMC algorithm. Once the PCA generated

emissivity is incorporated into the models, more parameters need to be con-

sidered. Therefore, a simultaneous analysis, considering multiple datasets

jointly, will also be discussed.

Doing with discrete prior on emissivities as in Eq (3.14), we can point to

the atomic physicists which of the emissivity curves is relevant. As each of

the curves has associated with relative assumptions, it can be traced back to

the individual deviations that we used for each level and for each iteration

in the atomic physics. Although doing with continuous prior via PCA will

lose the connection with the underlying atomic physics, it can fill the gaps

between the discrete emissivities and we can work around the problem of

sparse sampling of the atomic data space.

In this part, we have a Gaussian prior distribution via PCA on the ensemble

of emissivities and aim to embed the PCA model for uncertainty in atomic

data into a Bayesian procedure that simultaneously fits the model parameters

and accounts for atomic uncertainty. With the PCA representation obtained

via a Gaussian prior distribution in Section 4.3.2, we can generate a new

MC emissivity replicate from M on the fly. In this subsection, we describe

specific algorithms that incorporate atomic uncertainty into the three data

analysis routines, the standard, the pragmatic and the fully Bayesian analy-

ses. However, the incorporation of the PCA generated emissivity curves will

result in an increase in the number of model parameters. To avoid overfitting

the data, we consider two ways to fit all the plasma parameters, ⇥, given all

the observed or simulated intensities, D, while accounting for atomic uncer-

tainty, ✏. First we can analyze a single dataset from each pixel separately in

a sequence of pixel-by-pixel analyses and develop both the pragmatic and the
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fully Bayesian methods (see Section 4.6.1). Although this may yield di↵erent

estimates of ✏, it allows us to see if the intensities of each pixel give consistent

information as to the best emissivity curve(s). Here we totally have H + 2

model parameters versus 7 data points and the model is overfitted if H � 5.

Alternatively, we can simultaneously analyze the intensities from multiple

datasets, e.g., K multiple pixels, to arrive at an overall estimate of the most

likely emissivity curve, where there are H+2K model parameters versus 7K

data points, and develop both the pragmatic and the fully Bayesian methods

(see Section 4.6.2).

4.6.1 Incorporating the PCA generated emissivities into a sin-

gle pixel

Models and algorithms

Here we incorporate the PCA generated emissivity curve into the models and

algorithms in the separate pixel-by-pixel analyses discussed in Section 4.5.1

and Section 4.5.2. Rewriting Eq (3.18), here we have ✏(r) = r ·G+ b with G

a constant matrix and b a constant vector. Equivalently, the prior indepen-

dence assumption becomes p(✓k, r) = p(✓k) p(r) and the r follows a standard

multivariate normal distribution from Section 3.3.2.

The likelihood function of Dk given emissivity, r, and plasma parameter, ✓k,

is

L(✓k, r | Dk) =
HY

h=1

N
�
Ik�h

| ✏�h
(r; nk,Tk)n

2
kdk, �

2
k�ı

�
. (4.37)

Pragmatic Bayesian model and two-step MC sampler algorithm

For the pragmatic Bayesian method, as described in Section 3.2.4, we assume

that the observed intensities, Dk, are uninformative as to the PCA generated

emissivities. That is, we do not take into account the information in the

intensities of a single pixel for narrowing the uncertainty in the choice of

emissivity realizations. Mathematically, this assumption can be written p(r |

Dk) = p(r), i.e., r and Dk are independent. Thus, the pragmatic Bayesian
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joint posterior distribution of r and ✓k in the separate pixel-by-pixel analyses

is

p(r, ✓k | Dk) = p(✓k | Dk, r) p(r | Dk) = p(✓k | Dk, r) p(r), (4.38)

The pragmatic Bayesian method accounts for atomic uncertainty in a con-

servative manner. The assumption that p(r | Dk) = p(r) ignores information

in the intensities, Dk, that may reduce uncertainty of atomic data repre-

sented by r and hence of ✓k. We next consider methods that allow Dk to be

informative for r.

To obtain a Monte Carlo (MC) sample of (r, ✓k) from the pragmatic joint

Bayesian posterior distribution in Eq (4.38), at iteration `, we first obtain a

MC sample of r(`), from its prior distribution in Eq (3.19). Conditional on

r
(`), we can then sample ✓(`)k from p(✓k | Dk, r

(`)) using the MH algorithm,

exactly same as what is done in Section 4.5.2.

Fully Bayesian model and HMC algorithm The fully Bayesian joint

posterior distribution for r and ✓k conditional on a single pixel (#k) dataset,

i.e., under the separate pixel-by-pixel analyses, is

p(✓k, r | Dk) =
L(✓k, r | Dk) p(✓k) p(r)

p(Dk)
, (4.39)

where normalization constant p(Dk) =
R R

L(✓k, r | Dk) p(✓k) p(r) d✓kdr.

Evaluating p(✓k, r | Dk) in this way, we can use the Stan software package

(Carpenter et al. 2016) again on a higher dimension posterior to obtain the

MC sample,{(✓(1)k , r
(1)), . . . , (✓(L)k , r

(L))}, via HMC by sampling directly from

their posterior distribution, Eq (4.39).

Application to simulated intensities

Data simulation We simulate the intensity replicates for each pixel k and

for each � 2 ⇤ from a normal distribution

Ik� | ✏, nk, dk
indep
⇠ N

�
✏�(nk,Tk)n

2
kdk, �

2
k�

�
, (4.40)
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with the most possible emissivity curve in the ensemble M, ✏(471), and the

parameters, ✓k = (log nk, log dk) = (9.4, 9.3) for each k, which is the posterior

mean for Pix #1 obtained in Section 4.5.

Application and output summary The results of comparing the in-

ferred density log nk and path length log dk from all the five methods, stan-

dard, the pragmatic and the fully Bayesian methods using discrete uniform

prior or Gaussian prior via PCA, discussed so far on a single pixel (#1)

are shown in Figure 4.11. The joint posterior probability density distribu-

tion p(✓k | Dk) computed using the pragmatic and the fully Bayesian meth-

ods using discrete uniform prior or Gaussian prior via PCA are shown as

contour plots, and marginalized 1-D posterior densities p(log nk | Dk) and

p(log dk | Dk) are shown as curves along the corresponding axes. The esti-

mates of log nk and log dk computed via the standard analysis, i.e., the MAP

minimization or the �2 minimization, are marked with straight lines. As

expected, the density and path length are highly correlated. Notice that, for

those using discrete uniform prior, the pragmatic Bayesian method inflates

the error bars relative to the standard method as it accounts for the atomic

data uncertainties. The fully Bayesian method shrinks the error bars relative

to the pragmatic Bayesian method and shifts the best estimates towards the

true values since it selects a subset of the full range of atomic uncertainties

that are consistent with the data. The standard method underestimates the

uncertainties in all cases, and is shifted away from the true values relative

to the fully Bayesian estimate. For those methods using Gaussian prior via

PCA, we use 7 PCs when fitting the model accounting for 78.89% of the

total variance. The fully Bayesian method using Gaussian prior via PCA in-

flates the error bars significantly relative to that using discrete uniform prior

though still shrinking the error bars slightly and shifting the best estimates

slightly towards the true values relative to the pragmatic Bayesian method

since it generates a subset of the whole range of atomic uncertainties that

are more consistent with the simulated data. However, there is not much

di↵erence between the pragmatic and the fully Bayesian method when PCA

is embedded where the latter one is supposed to select those atomic uncer-

tainties that are consistent with the data, while the former one does not. The
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reason is the datasets do not provide enough information to the selection of

atomic uncertainties. Next, we are going to consider multiple pixels to make

sure there is enough information provided by the intensities.

Figure 4.12 compares the prior distribution of emissivities (i.e., the given

ensemble of emissivity realisations) with the two posterior distributions of

emissivities respectively, non-PCA original posterior with discrete uniform

prior in Eq (4.19) discussed in Section 4.5 and PCA posterior with Gaussian

prior in Eq (4.39) discussed in this section. The first panel of Figure 4.12

illustrates the incorporation of PCA compression on the emissivity realisa-

tions into the HMC algorithm, where a PCA MC sample of emissivity curve

is generated using Eq (3.18) with J = 7 at each iteration and the recon-

structed emissivity curves are able to capture the structure of the original

M nicely. The full range, the middle 95%, and the middle 68.3% intervals

of these PCA posterior samples of emissivity curves are superimposed on the

corresponding intervals for the given ensemble of emissivity realisations. In

the second panel, seven of the
p

✏(m) from M haveing top posterior proba-

bilities with discrete uniform prior in Eq (4.19) are compared with the full

range, the middle 95%, and the middle 68.3% intervals of M. In the third

panel, the same seven of the
p

✏(m) are compared with the full range, the

middle 95%, and the middle 68.3% intervals of these PCA posterior samples

of emissivity curves. Those highly likely emissivity curves tend to lie in high

probability density area and are well-captured when PCA is incorporated.

4.6.2 Models for incorporating the PCA generated emissivi-

ties into multiple pixels

Assuming that there are K pixel datasets and their prior distributions for r

and ✓k, k = 1, . . . , K, are independent, the joint posterior distribution for r

and ✓ = (✓1, . . . , ✓K) given K-pixel datasets, D = {D1, . . . , DK}, under the

simultaneous analysis is

p(r, ✓ | D) / L(r, ✓ | D) p(r) p(✓) /
KY

k=1

L(r, ✓k | Dk) p(✓k) · p(r), (4.41)
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Figure 4.11: Comparisons of the inferred density log nk and path length log dk using dif-
ferent methods for pixel #1. The results from di↵erent methods used are colour coded,
with blue representing the standard method, dotted red the pragmatic Bayesian method
using discrete uniform prior, dotted green the fully Bayesian method using discrete uniform
prior, solid red the pragmatic Bayesian method using Gaussian prior via PCA, and solid green
the fully Bayesian method using Gaussian prior via PCA. The contour plots (with levels at
0.01⇥, 0.05⇥, and 0.1⇥ the maximum) show where the majority of the mass of the joint
probability distributions of (log nk, log dk) fall, and their marginalized distributions along
each axis are shown to the top and to the right of the corresponding axis. The results from
the standard analysis is shown along with the histograms as straight lines (solid for the best-
fit and dotted denoting the ±1� errors on the best-fit obtained from the default CHIANTI
emissivity functions), extending into the contour plot region. The best-fit value from stan-
dard analysis is also marked on the contour plot with a ’+’ sign, with the arms of the sym-
bol corresponding to the sizes of the error bars. The true values of log nk and log dk used
to generate the simulated dataset is also marked on the contour plot with a square dot. As
expected, the density and path length are highly correlated. The standard method under-
estimates the uncertainties, the pragmatic Bayesian method using discrete uniform prior
inflates them due to atomic data uncertainties. The fully Bayesian method using discrete
uniform prior strikes a balance between atomic data uncertainties and how well the data are
fit, shrinking the error bars relative to pragmatic Bayesian using discrete uniform prior and
shifting the estimates. The fully Bayesian method using Gaussian prior via PCA mitigates
the gaps between the two modes and shifts the distribution.
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Figure 4.12: Comparison of the prior distribution and the posterior distribution for emis-
sivities. The top panel illustrates the incorporation of PCA compression on the emissivity
realisations into the HMC algorithm, where a PCA MC sample of emissivity curve is gener-
ated using Eq (3.18) with J = 7 at each iteration. The dashed, dot-dash, and dotted lines,
respectively, superimpose the full range, the middle 95%, and the middle 68.3% intervals of
these PCA posterior samples of emissivity curves on the corresponding intervals for the given
the ensemble of emissivity realisations, plotted in light, dark, and darker grey areas. Poste-
rior mean of the PCA generated emissivity curves is plotted as red star line and compared
with the average over all given emissivity realisations, ¯

p
✏, that is plotted as a solid black

line. Seven of the
p

✏(m) from M with the top posterior probabilities in Eq (4.19) is plotted
as coloured solid lines and compared with the full range, the middle 95%, and the middle
68.3% intervals of M (the middle panel), or compared with that of PCA generated posterior
samples of emissivity curves (the bottom panel), plotted in light, dark, and darker grey areas
respectively.
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where we have omitted the denominator since it is a normalizing constant

determined by the numerator. Under the model in Eq (4.41), inference for ✓

is based on its conditional posterior distribution

p(✓ | r,D) / L(r, ✓ | D) p(✓) /
KY

k=1

L(r, ✓k | Dk) p(✓k), (4.42)

and inference for r is based on its conditional posterior distribution

p(r | ✓, D) / L(r, ✓ | D) p(r) /
KY

k=1

L(r, ✓k | Dk) · p(r). (4.43)

Pragmatic Bayesian method For the pragmatic Bayesian method, sim-

ilar to the separate pixel-by-pixel analyses, we assume that the observed in-

tensities are uninformative as to the PCA generated emissivities. That is,

we do not take into account the information in the intensities for narrowing

the uncertainty in the choice of emissivity realizations. Mathematically, this

assumption can be written p(r | D) = p(r), i.e., r and D are independent.

Thus, the pragmatic Bayesian joint posterior distribution of r and ✓ is

p(r, ✓ | D) = p(✓ | D, r) p(r | D) = p(✓ | D, r) p(r), (4.44)

The pragmatic Bayesian method accounts for atomic uncertainty in a conser-

vative manner. The assumption that p(r | D) = p(r) ignores information in

the intensities, D, that may reduce uncertainty of atomic data represented by

r and hence of ✓. We next consider methods that allow D to be informative

for r.

Fully Bayesian method In contrast to the pragmatic Bayesian method,

the fully Bayesian method, as described by Xu et al. (2014), incorporates the

potential information in the data (i.e., the intensities) to learn about r and

the corresponding emissivity. The fully Bayesian joint posterior distribution

of r and ✓ is given in Eq (4.41) and the conditional posterior distributions of ✓

and r is given in Eq (4.42) and Eq (4.43) respectively. The Bayesian posterior
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distribution in Eq (4.43) allows the observed intensities to be informative for

the atomic physics, following the principles of Bayesian analysis. It enables us

to use the intensities to determine the more likely PCA generated emissivities.

4.6.3 Algorithms for incorporating the PCA generated emis-

sivities into multiple pixels

Here instead of considering all the pixels together and dealing with super

high-dimensional problem, we consider multiple pixels by starting from a

relative low dimension. We apply the same algorithms, as what is done to

a single pixel in Section 4.6.1, with multiple pixels to incorporate the PCA

generated emissivity curve into the pragmatic and the fully Bayesian models.

Algorithms for the pragmatic Bayesian with multiple datasets

Under the pragmatic Bayesian model, we aim to construct MC sampler to

account for emissivity uncertainties under the assumption that the observed

intensities carry little information as to the PCA generated emissivity curve

using the two-step MC sampler. At iteration `, we iteratively update r
(`)

and ✓(`) by sampling them from Eq (3.19) and Eq (4.42). Sampling of r(`) is

essentially random from the entire space. For each sampled r
(`), updating ✓(`)

is exactly same as what is done in the non-PCA model in Section 4.5.3. The

Metropolis Hastings (MH) algorithm is used to sample ✓(`) from p(✓|r(`), D).

For each sampled r
(`), we use t4

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘
proposal distribution,

where ✓̂k is the maximum a posteriori (MAP) estimates for log p(✓k | r(`), Dk)

along with the 2 ⇥ 2 Hessian matrix evaluated at the mode ✓̂k, H(✓̂k). It is

used for each pixel independently and separately to make the computation

more e�cient. With this proposal distribution, we run the MH for T itera-

tions over the K-pixel intensities and obtain the MC sampler corresponding

to r
(`), ✓(`) = ✓

[`,T ]. The detailed two-step MC Sampler with MH under the

pragmatic Bayesian model via simultaneous analysis proceeds for iteration

` = 1, . . . , L with

Step 1: Sample r
(`)
⇠ N (0, I), set ✏(`) = ✏̄+

PJ
j=1 r

(`)
j �j vj.
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Step 2: Proceed for inner interation t = 1, . . . , T � 1, and for each pixel

k = 1, . . . , K, sample ✓[prop]k ⇠ t4

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘
, compute

⇢ =
p(✓[prop]k | Dk, r

(`)) t4
⇣
✓
[t]
k | ✓̂k, (�H(✓̂k))�1

⌘

p(✓[t]k | Dk, r
(`)) t4

⇣
✓
[prop]
k | ✓̂k, (�H(✓̂k))�1

⌘ , (4.45)

set

✓
[`,t+1]
k =

8
<

:
✓
[prop]
k , with probability min(⇢, 1),

✓
[t]
k , otherwise.

(4.46)

Then set ✓(`) = ✓
[`,T ].

Algorithms for the fully Bayesian with multiple datasets

Two-step Gibbs sampler Under the fully Bayesian model, we aim to

construct MC sampler to account for emissivity uncertainties allowing the

observed intensities to be informative for the PCA generated emissivity curve

using the two-step Gibbs sampler. We iteratively update r(`) and ✓(`) by sam-

pling them from Eq (4.43) and Eq (4.42). With this conditional distribution,

sampling of r(`) does not depend on the multivariate integral, used in non-

PCA case (i.e., the discrete prior case), in Section 4.5.2 anymore. The MH

algorithm could be used to update r
(`) as long as accepting reasonably and

the symmetric property of the standard normal density makes the computa-

tion more e�cient. For each sampled r
(`), updating ✓(`) is exactly same as

what is done under the pragmatic Bayesian model above.

The two-step MC Gibbs Sampler with MH under the fully Bayesian model

via simultaneous analysis proceeds for iteration ` = 1, . . . , L with

Step 1: Sample r
[prop]

⇠ N (0, I), set ✏[prop] = ✏̄+
PJ

j=1 r
[prop]
j �j vj,

compute

⇢r =
p(r[prop] | D, ✓

(`�1))

p(r(`�1) | D, ✓(`�1))
, (4.47)
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and set

r
(`) =

8
<

:
r
[prop]

, with probability min(⇢r, 1),

r
(`�1)

, otherwise.
(4.48)

Step 2: Proceed for inner interation t = 1, . . . , T � 1, and for each pixel

k = 1, . . . , K, sample ✓[prop]k ⇠ t4

⇣
✓k | ✓̂k, (�H(✓̂k))�1

⌘
, compute

⇢✓ =
p(✓[prop]k | Dk, r

(`)) t4
⇣
✓
[t]
k | ✓̂k, (�H(✓̂k))�1

⌘

p(✓[t]k | Dk, r
(`)) t4

⇣
✓
[prop]
k | ✓̂k, (�H(✓̂k))�1

⌘ , (4.49)

and set

✓
[`,t+1]
k =

8
<

:
✓
[prop]
k , with probability min(⇢✓, 1),

✓
[t]
k , otherwise.

(4.50)

Then set ✓(`) = ✓
[`,T ].

Hamiltonian Monte Carlo Under the fully Bayesian model, we incor-

porate the PCA generated emissivity curve into the HMC algorithm dis-

cussed in Section 3.4.2. With the prior independence assumption p(✓, r) =
QK

k=1 p(✓) p(r) and the r follows a standard multivariate normal distribution

from Section 3.3.2, the joint posterior distribution for r and ✓ conditional on

K pixel datasets is given in Eq (4.41). Evaluating p(✓, r | D) in this way, we

can use the Stan software package again on a higher dimension posterior to

obtain {(✓(1), r(1)), . . . , (✓(L), r(L))} via HMC by sampling directly from their

joint posterior distribution.

4.6.4 Application to simulation study on multiple pixels

To illustrate the advantage of the fully Bayesian method over the pragmatic

Bayesian method in the multiple-pixel case, we compare their performance

in a simulation study and give detailed results under the simulation setting.
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Data simulation Suppose the 471st emissivity in M has the PCA trans-

formation: ✏(471) = ✏̄ +
P182

j=1 r
(471)
j �j vj via Eq (3.18). We construct a new

emissivity by using only the first three PCs, ✏(471)⇤ = ✏̄ +
PJ

j=1 r
(471)
j �j vj

and J = 3. The first J = 3 PCs accounting for 42.23% of the total variance.

We will also only use the first J = 3 PCs when fitting both the pragmatic

and the fully Bayesian model in Section 4.6.2 so that we are simulating and

fitting under the same model. We simulate R = 200 intensity replicates for

each pixel k and for each � 2 ⇤ from a normal distribution

Ik� | ✏, nk, dk
indep
⇠ N

�
✏�(nk,Tk)n

2
kdk, �

2
k�

�
, (4.51)

with ✏ = ✏
(471)⇤ the new generated emissivity and the parameters, ✓k =

(log nk, log dk) = (9.4, 9.3) for k = 1, . . . , K, which is the posterior mean for

Pix #1 obtained in Section 4.5. Here we pick the first two pixels, #1 and #2,

and let K = 2. Note that each of the pixels is simulated with the same values

of the parameters, but di↵erent replicates have di↵erent simulated data.

Application and output summary We run the two-step MC sampler

for the pragmatic Bayesian model, and both the two-step MC Gibbs sam-

pler and the HMC algorithms for the fully Bayesian model, mentioned in

Section 4.6.3.

Using the two-step MC sampler in the pragmatic Bayesian model, T = 30

MH samplers, determined by constructing autocorrelation plots in this set-

ting (Xu et al. 2014), are drawn for the plasma parameters given each PCA

generated emissivity, and the last MH sampler is taken as an MC sampler.

There are 1000 MC samplers drawn in each simulation. Similarly, using the

two-step Gibbs sampler in the fully Bayesian model, T = 30 MH samplers

are drawn for the plasma parameters and for each PCA generated emissivity

from theirs marginal posterior distributions respectively, the last MH sam-

pler is taken as an MC sampler, and 1000 MC samplers are drawn in each

simulation. For using HMC in the fully Bayesian model, there are 4 chains

running, 4000 iterations each, and the first half of the iterations of each chain

are discarded as burn-in.
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Figure 4.13 shows the posterior means, the 68% and 95% intervals of the pos-

terior samples for each parameter conditional on the two simulated pixels,

#1 and #2, over the first 30 replicates under the pragmatic Bayesian model

(row 2), and under the fully Bayesian model using two-step MC Gibbs sam-

pler (row 3), and using the HMC (row 4). It also includes the MAP, the

68% and 95% intervals of the parameters using the standard method (row

1). All these results are also compared with the true values of those pa-

rameters, used to simulate the intensity replicates, marked as the vertical

lines. Although the error bars from the standard method are the smallest in

this simulation study, this method misses the true value of ✓ and the esti-

mate is biased. This is not unusual when the emissivity is misspecified. As

in this case, the data was generated under the emissivity curve ✏(471)⇤, i.e.,

one that is nonetheless plausible given the atomic uncertainty, instead of the

default emissivity curve ✏(1). The pragmatic Bayesian method accounts for

atomic uncertainty by iteratively and randomly generating emissivity curves

across the whole parameter space, resulting in bias and much larger error

bars, while a proper coverage that captures the true value of ✓ compared

to that of the standard method. The fully Bayesian method accounts for

atomic uncertainty by iteratively generating and selecting those emissivity

curves that are consistent with the simulated data. The resulting error bars

are only slightly larger than those produced with a fixed emissivity curve and

significantly smaller than that from the pragmatic Bayesian method. At the

same time, the fitted values for ✓ have shifted enough that the error bars

still capture the true value. This example clearly illustrates the benefits of

the fully Bayesian method: the estimates of the parameters get less biased,

have smaller error bars, and achieve a proper coverage of the true value of

the parameter.

Table 4.4 shows the frequency results over all of the 200 replicates. The

bias is dominant in the pragmatic Bayesian model, while the error becomes

dominant in the fully Bayesian model. For the pragmatic Bayesian model,

the posterior samples are biased, the 68% intervals are significantly under

coverage, the 95% intervals are significantly over coverage. For the fully

Bayesian model using both algorithms, the estimates of the parameter get
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Figure 4.13: The posterior means, the 68% and 95% intervals of the posterior samples for
each parameter in the simulation study with J = 3 principal components and K = 2 pixels
over the first 30 replicates under the pragmatic Bayesian model (row 2), and under the fully
Bayesian model using two-step MC Gibbs sampler (row 3), and using the HMC (row 4). The
MAP, the 68% and 95% intervals of the parameters using the standard method (row 1).
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less biased and the 68% intervals are a little bit over coverage. Moreover,

the smaller bias and root mean square error (RMSE, the square root of the

mean square error, thus, the average distance of the observed data from the

fitted value) are obtained, the coverage is getting close to the true coverage,

and the smaller coverage length.

The doParallel package is used to execute for each loops in parallel within

each process and 32 processors are used. The computation times, measured

by the sum of user and system times, of implementing two-step MC sam-

pler in the pragmatic Bayesian model and implementing two-step MC Gibbs

sampler and HMC in the fully Bayesian model are 8.0, 31.4, and 5.7 minutes

respectively. Comparing the two algorithms for the fully Bayesian model,

the latter is significantly faster.

For the two algorithms under the fully Bayesian model, using HMC is signif-

icantly faster but the tuning step in it is complex and time consuming. On

the other hand, using two-step Gibbs sampler is itself time consuming, but

the tuning step is very simple.

Bias RMSE
Coverage
of 68%
interval

Coverage
of 95%
interval

Average length
of 95%
interval

prag
Bayes

log n1 0.0366 0.0376 0.225 1 0.1187
log n2 0.0345 0.0350 0.155 1 0.1114
log d1 �0.0780 0.0817 0.205 1 0.2556
log d2 �0.0752 0.0763 0.115 1 0.2405

fully
Bayes
Gibbs

log n1 0.0023 0.0121 0.68 0.95 0.0483
log n2 0.0019 0.0096 0.73 0.97 0.0405
log d1 �0.0053 0.0260 0.67 0.94 0.1026
log d2 �0.0045 0.0207 0.72 0.975 0.0869

fully
Bayes
HMC

log n1 0.0024 0.0120 0.675 0.95 0.0481
log n2 0.0019 0.0096 0.72 0.975 0.0404
log d1 �0.0054 0.0259 0.65 0.945 0.1023
log d2 �0.0046 0.0207 0.72 0.965 0.0867

Table 4.4: Summary of the bias, RMSE, and the coverage levels of the posterior estimates
for each parameter in the simulation study with J = 3 principal components and K = 2

pixels over all 200 replicates, under the pragmatic Bayesian model (row 1), and under the
fully Bayesian model using two-step MC Gibbs sampler (row 2), and using the HMC (row 3).
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4.6.5 Conclusions and discussion

We use PCA to summarize the complex structure of the atomic data, e.g.,

emissivity ensemble, via a lower dimensional Gaussian approximation. This

continuous method can fill in the gaps between the discrete emissivities, work

on the problem of sparse sampling of the atomic data space, and require less

storage. We are able to embed the PCA model for atomic data uncertainty,

a high dimensional quantity, into a Bayesian procedure that simultaneously

fits the model parameters and accounts for atomic uncertainty in the primary

stage of a two-stage analysis. We demonstrate the advantage of incorporating

the PCA model into a fully Bayesian method. Compared to incorporating

the PCA model into a pragmatic Bayesian method, it gives estimates with

smaller bias and narrower error bars. We are going to apply this method to

more complicated case studies in the following two chapters.
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5
Two-stage analysis with FeXVII

Another application of a two-stage analysis via a case study in FeXVII is

described in this chapter. FeXVII is a popular line system for temperature

measurements where its density sensitivity is pretty much ignorable. There-

fore, the models and algorithms used for FeXIII analysis in Chapter 4 are

also applicable to FeXVII working on the temperature information instead of

the density information. Similarly, we focus on the primary stage by apply-

ing the ensemble of atomic data to analyze the temperature-sensitive FeXVII

spectral lines observed in a stellar active region with the Chandra X-ray Ob-

servatory using a Bayesian framework. As we have proved that the Gaussian

approximation via PCA model for atomic data uncertainty is good at dealing

with sparse sampling and mitigating gaps of sparse samples in Section 4.6,

we use PCA to e�ciently represent the ensemble of sparse FeXVII emissiv-

ity realizations. Both the pragmatic Bayesian method where the observed

data is not informative to the choice of the atomic uncertainties and the fully

Bayesian method where the observed data is allowed to update the atomic

uncertainties are implemented. The ultimate aim is to estimate the plasma

parameters, e.g. temperature and volume, in the spectral analysis while in-

corporating atomic uncertainties. A summarization of those estimations will
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also be used as a prior knowledge for a further stage in the next chapter.

Therefore, the whole analysis on FeXVII in this chapter will be treated as

a preliminary analysis and the estimation information will then be carried

forward into a further primary analysis in a three-stage analysis.

5.1 Data and the astrophysical model

Instead of observing the FeXIII intensities from a solar active region with an

EIS observation on Hinode Spacecraft in Chapter 4, the FeXVII and OVII

photon counts, to be discussed in this chapter and next chapter, are observed

from Capella with the Chandra X-ray Observatory. The photon counts are

observed directly from the observatory while the intensities are pre-processed

data. Therefore, we introduce a Poisson likelihood function for the observed

photon count data (Arnaud et al. 2011) compared to a Gaussian likelihood

for the observed intensity data.

In this section we discuss the general expressions for notations and equations

applicable to di↵erent ions, FeXVII discussed in this chapter and OVII in

Chapter 6. In Section 5.1.1 we introduce the spectral data and the general

statistical distributions that photon counts are modelled as. In Section 5.1.2,

details of a general spectral model and the corresponding physical parts are

discussed. Upper subscripts Fe and O are used to represent FeXVII and

OVII respectively, from Section 5.2 onwards until the end of this thesis.

5.1.1 Spectral data and its distribution

Suppose we have observed the source counts, contaminated with the back-

ground in an exposure, and also have observed the pure background counts

in another exposure from each channel of the detector. Each channel is as-

sociated with one of the H spectral lines corresponding to the set of recorded

wavelengths W = {wh, h = 1, . . . , H}. Let Y (w) and Z(w) be the observed

photon counts from the source and the background exposure in channel

w 2W , and D = {(Y (w), Z(w)),w 2W}.
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We also have a collection ofM realizations of the plasma emissivities, denoted

by M = {✏
(m)(!; log n, log T),! 2 ⌦,m = 1, . . . ,M}, where ⌦ = {!l, l =

1, · · · , L} is the set of true wavelengths, i.e., lines of interest. Note that each

of the true wavelength ! has its own range of recorded wavelength w.

Let ✓ = (✓S, ✓B) be the plasma parameters, where ✓S and ✓B are sets of

parameters from the source and the background exposures respectively.

To fix ideas, we specify a general spectral analysis problem applicable to

many di↵erent ions, e.g., FeXVII and OVII, in this subsection. According to

Arnaud et al. (2011), the observed source and background photon counts, Y

and Z in channel w 2W , given ✓S and (or) ✓B, are modelled as independent

Poisson distributions, respectively,

Y (w) | ✓S, ✓B
indep
⇠ Poisson

�
s(w; ✓S) + (w) + b(w)

�
, (5.1)

Z(w) | ✓B
indep
⇠ Poisson

�
⌘ · b(w)

�
, (5.2)

where Poisson(�) is a Poisson distribution with parameter �, s(w; ✓S) is the

expected source counts in channel w, (w) is the expected source continuum

counts in channel w, b(w) is the expected background counts in channel w,

✓B = {b(w),w 2W}, and ⌘ is the area to exposure time ratio of source and

background (given as a constant). To simplify the problem and to prevent

overfitting, we have assumed 1) the shape of the expected continuum counts

is fixed, i.e., (w) is known in advance for each channel w; 2) the expected

background count is the same for every channel, i.e., b(w) = ✓B for any

w. The expected photon count is physically equal to the intensity, which is

equivalent to the sum of the source counts, the background counts, and the

continuum counts. Di↵erent from the simplified model discussed in Chapter 4

and Yu et al. (2018), where we have ignored the background counts, the

continuum counts, and the temperature dependency of the emissivities, we

are now considering a more general spectral model that contains almost all

the physical parts. Detailed formulas for the physical parts are discussed in

Section 5.1.2.

In astrophysics, we are always counting photons and there is always a Poisson

model. In Chapter 4 and Yu et al. (2018), for simplicity, we have approxi-
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mated the Poisson model with a Gaussian approximation because a Poisson

tends to be a Gaussian as its mean becomes su�ciently large, e.g., when

there are a large amount of photon counts observed, via the central limit

theorem (Le Cam 1986). In this Chapter, we address the above general spec-

tral model with both an observed and a simulated sets of photon counts, a

more general dataset than that of Chapter 4, and consider the pragmatic and

the fully Bayesian models under the same kind of simplified assumptions.

5.1.2 The astrophysical spectral model

Suppose the expected source counts s in channel w from a model with a set

of parameters ✓S in a given observation I that has grating g 2 {HEG,MEG,

LEG}, order o = ±1, and over all the true wavelengths ! (Chandra 2019,

Chen et al. 2019),

sIgo(w; ✓S) =
LX

l=1

Rgo(w|!l) · (AIgo(!l) · f(!l; ✓S)) · TI (5.3)

where Rgo(w|!) is the line response function, AIgo(!) is the e↵ective area at

wavelength !, f(!; ✓S) is the photon flux at telescope at wavelength !, and

TI is observation duration.

If the photon counts for each line of interest are observed directly, it can

be learned about straightforwardly. However, as we only observe photon

counts over channels, there are two corrections, line response function and

e↵ective area, need to be applied to the instruments and the gratings on the

telescope, as discussed in Section 1.3. The line response function used in

this chapter and Chapter 6 is expressed in Eq (1.1). The e↵ective area is

given as a function of wavelength which interpolates linearly on a given set

of wavelength grid.

Because of the temperature dependence, we have to consider DEMs as dis-

cussed in Section 1.1. The DEM is usually expressed as

g(n,T( #»↵)) = n2(T)
dV (T)

d log T
, (5.4)
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where #»↵ includes some shape factors that determine the shape of the DEM,

V is the temperature volume, and dV (T)
d log T is the temperature volume di↵er-

entiation performed over a reasonable temperature interval. Note that the

volume emission measure is used instead of the path length emission mea-

sure in the previous chapter. Specifically, we consider the delta volume in

this article,
dV (T)

d log T
⌘ ↵0 · �(log T� ↵1). (5.5)

The flux at source is the product of the emissivity ✏ and the DEM, and it

can be written from Eq (5.4) and Eq (5.5) as, at true wavelength !,

fs(!; ✓S) =

Z
✏(!; n,T, r) g(n,T( #»↵)) d log T

=

Z
✏(!; n,T, r) n2 dV (T)

d log T
d log T

= ✏(!; log n,↵1, r) · n2
· ↵0 ,

(5.6)

where ✓S = (log n, log↵0 = log V,↵1 = log T, r), and the log scale is used to

stretch out the values and exaggerate the di↵erence.

Therefore, convolving the flux with the e↵ective area and the line response

function and considering all other factors for uncertainties (Dere et al. 1997,

Kashyap & Drake 1998) including ion abundance (Z), ionization fraction

(i), the ratio of nH and ne (nH
ne
), distance factor (d), and energy-to-photon

conversion factor (hc! ), the expected source counts in channel w, in a given

observation I that has grating g, order o, and over all the true wavelengths

!, can be expanded from Eq (5.3) and Eq (5.6) into

sIgo(w; ✓S) =
LX

l=1

Rgo(w|!l) ·
�
AIgo(!l)TI

�
·

✏(!l; log n,↵1, r)

n
·
!l

hc
· Z

Fe
· i

Fe(↵1) ·
nH

ne
(↵1) ·

↵0 · n2

4⇡d2
.

(5.7)

Specifically, we substitute O for Fe to Z and i in the OVII analysis. The

emissivities, ✏s, for the FeXVII lines are independent of the density log n,
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while those for the OVII lines are dependent on both the density log n and

the temperature log T = ↵1.

Incorporating the observation duration into the e↵ective area and summing

over all observations for which we have the same set of grating and order

{g, o}, we have

Ago(!) =
X

I|go

AIgo(!)TI (5.8)

and

sgo(w; ✓S) =
X

I|go

sIgo(w; ✓S). (5.9)

Therefore, the expected source counts in channel w, grating g, order o, and

over all the true wavelengths ! is

sgo(w; ✓S) =
LX

l=1

Rgo(w|!l) · Ago(!l)·

✏(!l; log n,↵1, r)

n
·
!l

hc
· Z

Fe
· i

Fe(↵1) ·
nH

ne
(↵1) ·

↵0 · n2

4⇡d2

(5.10)

=
LX

l=1

✓
Rgo(w|!l) · Ago(!l) · ✏(!l; log n,↵1, r) · i

Fe(↵1)·

nH

ne
(↵1) ·

!l

hc

◆
· Z

Fe
·
1

n
· n2

· ↵0 ·
1

4⇡d2
. (5.11)

Moreover, the expected continuum counts  in channel w, grating g, and

order o, is expressed as

go(w) =
KX

k=1

�(w � !k) ·
�X

I|go

AIgo(!k)TI

�
· c(!k,↵1) ·

1

1023
· n2

· ↵0 ·
1

4⇡d2

= Ago(w) · c(w,↵1) ·
1

1023
· n2

· ↵0 ·
1

4⇡d2
(5.12)

where

�(w � !k) =

8
<

:
1, if w = !k

0, otherwise,
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c is the given set of continuum counts, {!k} is a superset and spans the same

range as {wk}, and 4⇡d2 = 2.07e+ 40. There is just an extra factor of 1e23

attached to the continuum counts for numerical purposes, which accounts

for the di↵erence from the distance modulus. Adding the continuum to the

model could lead to a better model where the expected counts would match

the observed counts better and generate more accurate estimations of the

model parameters.

Thus, the expected source and continuum counts in channel w, grating g, and

order o, is

�SC(w, ✓S) = sg(w, ✓S) + g(w)

=

⇢ LX

l=1

⇣
Rgo(w|!l) · Ago(!l) · ✏(!l; log n,↵1, r) ·

Z
Fe

n
· i

Fe(↵1)·

nH

ne
(↵1) ·

!l

hc

⌘
· Ago(w) · c(w,↵1) ·

1

1023

�
· n2

· ↵0 ·
1

4⇡d2
.

(5.13)

Specifically, log n is fixed as a known value in the FeXVII spectral analy-

sis, since the FeXVII lines are not sensitive to it, with corresponding ✓S =

(log↵0 = log V,↵1 = log T, r) in this chapter, while it is treated as an un-

known parameter in the OVII spectral analysis with corresponding ✓S =

(log n, log↵0 = log V,↵1 = log T, r) in Chapter 6.

5.2 FeXVII Statistical model

Here we specify the detailed Bayesian model for the FeXVII spectral analysis

in this primary stage.

We model the source and the background counts given the source and (or) the

background parameters as independent Poisson distributions respectively, for
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each w 2W
Fe,

Y
Fe(w) | rFe

, log↵0,↵1, ✓
Fe
B

indep
⇠ Poisson

�
s
Fe(w; rFe

, log↵0,↵1)+


Fe(w) + ✓

Fe
B

�
, (5.14)

Z
Fe(w) | ✓Fe

B
indep
⇠ Poisson

�
⌘ · ✓

Fe
B

�
. (5.15)

Thus, the likelihood function of Y Fe and Z
Fe given r

Fe, log↵0, ↵1, and ✓Fe
B

is

L(rFe
, log↵0,↵1, ✓

Fe
B | Y

Fe
, Z

Fe)

= p(Y Fe
, Z

Fe
| r

Fe
, log↵0,↵1, ✓

Fe
B )

= p(Y Fe
| r

Fe
, log↵0,↵1, ✓

Fe
B ) · p(ZFe

| ✓
Fe
B )

=
Y

w2WFe

p(Y Fe(w) | rFe
, log↵0,↵1, ✓

Fe
B ) · p(ZFe(w) | ✓Fe

B ) (5.16)

Next, we specify the joint prior distribution on the unknown model param-

eters. We put continuous uniform distributions for log10 ↵0 and ↵1 respec-

tively, a multivariate standard normal distribution for r
Fe, and a Gamma

distribution for ✓Fe
B ,

p(log10 ↵0) =
1

4
for 30  log10 ↵0  34, (5.17)

p(↵1) =
1

2.1
for 5.8  ↵1  7.9, (5.18)

r
Fe
⇠ MVN(0, I), (5.19)

✓
Fe
B ⇠ Gamma(shape = a1, rate = a2), (5.20)

where a1 = 0.5 and a2 = 2. A Gamma distribution for ✓Fe
B is a conjugate

prior for a Poisson likelihood. It covers all conceivable background ranges

encountered in the dataset.

Those parameters are a priori independent so that the joint prior distribution

is

p(rFe
, log↵0,↵1, ✓

Fe
B ) = p(rFe) p(log↵0) p(↵1) p(✓

Fe
B ). (5.21)
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Given the likelihood function and the prior distribution defined in Eq (5.16)

and Eq (5.21), the complete joint posterior distribution of rFe, log↵0, ↵1,

and ✓Fe
B given Y

Fe and Z
Fe in the FeXVII spectral analysis is

p(rFe
, log↵0,↵1, ✓

Fe
B | Y

Fe
, Z

Fe)

/ p(Y Fe
| r

Fe
, log↵0,↵1, ✓

Fe
B ) · p(ZFe

| ✓
Fe
B )·

p(rFe)p(log↵0)p(↵1) p(✓
Fe
B ). (5.22)

The marginal posterior distribution p(log↵0,↵1 | Y
Fe
, Z

Fe) can be obtained

by integrating out rFe and ✓Fe
B ,

p(log↵0,↵1 | Y
Fe
, Z

Fe) =

Z Z
p(rFe

, log↵0,↵1, ✓
Fe
B | Y

Fe
, Z

Fe)drFe
d✓

Fe
B .

(5.23)

Implicitly, the observed source counts, Y Fe = {Y
Fe(w)}, are made up of the

counts from the source exposure due to the source only, Y Fe
S = {Y

Fe
S (w)},

and the counts due to the background only, Y Fe
B = {Y

Fe
B (w)}, i.e., Y Fe(w) =

Y
Fe
S (w) + Y

Fe
B (w), for any w 2 W

Fe. Though it is impossible to observe

Y
Fe
S and Y

Fe
B explicitly, we treat them as missing data. The method of data

augmentation is applied to simplify our statistical analysis and to make the

Bayesian inference computationally e�cient (van Dyk 2003). We assume

Y
Fe
S (w) and Y

Fe
B (w) follow independent Poisson distributions with intensity

s
Fe(w; rFe

, log↵0,↵1) + 
Fe(w) and ✓Fe

B for each w 2W
Fe,

Y
Fe
S (w) | rFe

, log↵0,↵1
indep
⇠ Poisson

�
s
Fe(w; rFe

, log↵0,↵1) + 
Fe(w)

�
,

Y
Fe
B (w) | ✓Fe

B
indep
⇠ Poisson

�
✓
Fe
B

�
.

It is easy to estimate the missing data and the model parameters under the

above reformulated models. In particular, if the model parameters are known,

the conditional distribution of Y Fe
B (w) given Y

Fe(w) for any w 2 W
Fe can
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be computed using the Bayes’ Theorem,

p(Y Fe
B (w) | Y Fe(w), rFe

, log↵0,↵1, ✓
Fe
B )

=
p(Y Fe(w) | Y Fe

B (w), rFe
, log↵0,↵1, ✓

Fe
B ) · p(Y Fe

B (w) | ✓Fe
B )

p(Y Fe(w) | rFe, log↵0,↵1, ✓
Fe
B )

=

✓
Y

Fe(w)

Y
Fe
B (w)

◆
·

⇣
✓
Fe
B

sFe(w; rFe, log↵0,↵1) + Fe(w) + ✓
Fe
B

⌘Y Fe
B (w)

⇥

⇣
s
Fe(w; rFe

, log↵0,↵1) + 
Fe(w)

sFe(w; rFe, log↵0,↵1) + Fe(w) + ✓
Fe
B

⌘Y Fe(w)�Y Fe
B (w)

.

That is in the form of the probability mass function of a binomial distribution,

p(Y Fe
B (w) | Y Fe(w), rFe

, log↵0,↵1, ✓
Fe
B )

indep
⇠ Binomial

�
Y

Fe(w),
✓
Fe
B

sFe(w; rFe, log↵0,↵1) + Fe(w) + ✓
Fe
B

�
, (5.24)

where X ⇠ Binomial(n, p) indicates that X follows a binomial distribution

with n independent experiments each with probability p. Therefore, given

Y
Fe(w), Y Fe

B (w) follows a binomial distribution for any w 2W
Fe.

Moreover, if ✓Fe
B follows a Gamma prior as in Eq (5.20), the marginal posterior

of ✓Fe
B given Y

Fe
B and Z

Fe can also be computed using the Bayes’ Theorem,

p(✓Fe
B | Z

Fe
, Y

Fe
B ) /

HY

h=1

�
p(ZFe(wh) | ✓

Fe
B ) · p(Y Fe

B (wh) | ✓
Fe
B )

�
p(✓Fe

B )

/ e
�✓Fe

B

�
H(⌘+1)+a2

�
✓
Fe
B

�PH
h=1 Z

Fe(w)+
PH

h=1 Y
Fe
B (w)+a1�1

�
,

That is in the form of the probability density function of a Gamma distribu-

tion,

✓
Fe
B | Z

Fe
, Y

Fe
B ⇠ Gamma(

HX

h=1

Z
Fe(w) +

HX

h=1

Y
Fe
B (w) + a1, H(⌘ + 1) + a2).

(5.25)

Therefore, given Y
Fe
B and Z

Fe, ✓Fe
B follows a Gamma distribution.
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Pragmatic Bayesian method

For the pragmatic Bayesian method in Section 3.2, we assume that the ob-

served counts are uninformative as to the most likely emissivities. That is,

we do not take into account the information in the counts for narrowing

the uncertainty in the choice of emissivity realizations. Mathematically, this

assumption can be written as,

p(rFe
| Y

Fe
, Z

Fe) = p(rFe) (5.26)

i.e., r
Fe and D

Fe = {Y
Fe
, Z

Fe
} are independent. Thus, the pragmatic

Bayesian joint posterior distribution of rFe and all other parameters Y Fe
B , ✓

Fe
B ,

log↵0,↵1 given Y
Fe and Z

Fe can be written as

p(Y Fe
B , ✓

Fe
B , log↵0,↵1, r

Fe
| Y

Fe
, Z

Fe)

= p(Y Fe
B , ✓

Fe
B , log↵0,↵1 | r

Fe
, Y

Fe
, Z

Fe) p(rFe
| Y

Fe
, Z

Fe) (5.27)

= p(Y Fe
B , ✓

Fe
B , log↵0,↵1 | r

Fe
, Y

Fe
, Z

Fe) p(rFe). (5.28)

Inference for Y Fe
B is based on its conditional posterior distribution,

p(Y Fe
B | Y

Fe
, Z

Fe
, ✓

Fe
B , log↵0,↵1, r

Fe)

= p(Y Fe
| Y

Fe
B , ✓

Fe
B , log↵0,↵1, r

Fe) p(Y Fe
B | ✓

Fe
B )

= p(Y Fe
B | Y

Fe
, ✓

Fe
B , log↵0,↵1, r

Fe), (5.29)

following a binomial distribution as in Eq (5.24). Based on the assumption in

Eq (5.26), inference for ✓Fe
B , log↵0,↵1, and r

Fe is based on their conditional

posterior or prior distributions,

p(✓Fe
B , log↵0,↵1, r

Fe
| Y

Fe
, Z

Fe
, Y

Fe
B )

/ p(✓Fe
B | Z

Fe
, Y

Fe
B ) p(log↵0,↵1, r

Fe
| Y

Fe
S ) (5.30)

/ p(✓Fe
B | Z

Fe
, Y

Fe
B ) p(log↵0,↵1 | Y

Fe
S ) p(rFe), (5.31)

where ✓Fe
B given Z

Fe and Y
Fe
B follows a Gamma distribution as in Eq (5.25)

and Y
Fe
S = Y

Fe
� Y

Fe
B .
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The pragmatic Bayesian method accounts for atomic uncertainty in a con-

servative manner. The assumption in Eq (5.26) ignores information in the

counts, Y Fe and Z
Fe, that may reduce uncertainty of atomic data repre-

sented by r
Fe and hence of all other parameters. We now consider methods

that allow Y
Fe and Z

Fe to be informative for rFe.

Fully Bayesian method

The fully Bayesian method incorporates the potential information in the

counts to learn about emissivities. The fully Bayesian joint posterior distribu-

tion of Y Fe
B , ✓

Fe
B , log↵0,↵1, r

Fe given Y
Fe and Z

Fe is shown in Eq (5.27). In-

ference for Y Fe
B is based on its conditional posterior distribution in Eq (5.29),

following a binomial distribution as in Eq (5.24). Inference for ✓Fe
B , log↵0,↵1,

and r
Fe is based on their conditional posterior distributions in Eq (5.30). Al-

ternatively, the fully Bayesian joint posterior distribution of ✓Fe
B , log↵0,↵1, r

Fe

given Y
Fe and Z

Fe is shown in Eq (5.22), which is equal to integrating Y
Fe
B

out from Eq (5.27).

The fully Bayesian posterior distribution allows the observed counts to be

informative for the atomic physics, following the principles of Bayesian anal-

ysis. It enables us to use the counts to determine the more likely PCA

generated emissivities.

MC samples of those model parameters can be obtained from their complete

joint posterior distribution, Eq (5.22), via HMC algorithm directly, see Sec-

tion 5.4.2. Alternatively, an iterative strategy can be implemented on the

conditional distributions in Eq (5.29) and Eq (5.30) that, iteratively and

separately, updates the missing background data given the model parame-

ters and the model parameters given the sampled missing background data,

see Section 5.4.2. The MC posterior sample of log↵0 and ↵1 can be sum-

marized with an analytical distribution to approximate the above marginal

posterior distribution p(log↵0,↵1 | Y
Fe
, Z

Fe), see more in Section 5.7. The

approximated distribution obtained in this preliminary analysis on FeXVII

spectrum will be carried forward into the primary analysis on OVII spectrum

as the joint prior distribution of (log↵0,↵1), see more details in Chapter 6.
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5.3 Gaussian prior on FeXVII emissivities with PCA

A Gaussian prior distribution via PCA, as discussed in Section 3.3.2, is used

to compress the given ensemble of emissivities, MFe, for the fourteen FeXVII

lines.

Similar to what is done on FeXIII in Section 4.3.2, we can easily reconstruct

emissivity replicates based on the first J = 14 principal components (out

of Q = 308) via Eq (3.18) and Eq (3.19) capturing 97.65% (> 95%) of the

total variance, as computed with Eq (3.17). A large amount of compression

has been achieved because very few components are needed to compute the

emissivity curve to high precision. This approximation also achieves a better

reconstruction in the square root scale of the given emissivity ensemble, which

is used throughout this chapter.

The complicated structure of the FeXVII emissivities, indicating the atomic

uncertainty, is illustrated in the top two panels of Figure 5.1 using the given

ensemble of 1000 FeXVII emissivity realisations. A random selection of six of

the
p

✏(m) from M
Fe is compared with the average over all those emissivity

realisations, ¯p
✏, the full range, the middle 95%, and the middle 68.3% of

M
Fe in square root space, indicating the ensemble of emissivity curves in

M
Fe form a complex tangle that appears to defy any systematic pattern.

The complexity of the uncertainty of MFe is evident. The bottom panel of

Figure 5.1 illustrates the use of PCA compression on the FeXVII emissivity

realisations. We have generated 1000 replicate emissivity curves, the exactly

same amount of emissivity curve as in the original ensemble, using Eq (3.18)

and Eq (3.19) with J = 14. The full range, the middle 95%, and the middle

68.3% intervals of these replicates are superimposed on the corresponding

intervals for the original emissivity realisations in square root scale. The

correspondence between the original emissivity realisations and the PCA

replicates is quite good, especially for the 68.3% intervals.
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Figure 5.1: FeXVII emissivity samples and their summary using Gaussian approximation
via PCA. In the first panel, the light, dark, and darker grey areas cover the full range, the
middle 95% and 68.3% of all 1000 emissivity curves in square root space. ¯

p
✏ is plotted as a

solid black curve. Six randomly selected curves are plotted as coloured dashed curves. Other
panels are constructed in the same manner, but using

p

✏(m) � ¯
p
✏, to magnify the structure

in M
Fe. Summarizing the emissivity samples using PCA with J = 14, the dashed, dot-dash,

and dotted lines, in the third panel, respectively outline intervals containing the full range,
the middle 95%, and the middle 68.3% of 1000 PCA replicates of the emissivity curves.
The fourteen horizontally-arranged sub-panels correspond to the fourteen FeXVII lines of
interest. Within each sub-panel, the temperature log T is increasing.
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5.4 Algorithms for the FeXVII analysis

5.4.1 Algorithm for the pragmatic Bayesian

Under the assumption that the observed counts carry little information as

to the uncertainty of emissivities, we aim to construct MC samples of those

model parameters from the pragmatic Bayesian target posterior distribu-

tion in Eq (5.28) using a four-step Gibbs sampler. We iteratively update

{Y
Fe
B (w)}, ✓Fe

B , rFe, and (log↵0,↵1) by sampling them from the correspond-

ing conditional posterior distributions or prior distribution in Eq (5.29) and

Eq (5.31).

At iteration `, we first obtain an MC sample of {Y Fe
B (w)

(`)
} from its con-

ditional posterior distribution given the current states of all other param-

eters, p(Y Fe
B | Y

Fe
, ✓

Fe
B

(`�1)
, r

Fe(`�1)
, log↵0

(`�1)
,↵

(`�1)
1 ), which follows a bi-

nomial distribution as in Eq (5.24). Secondly, given {Y
Fe
B (w)

(`)
}, we can

sample ✓Fe
B

(`)
from p(✓Fe

B | Z
Fe
, Y

Fe
B

(`)
) following a Gamma distribution as in

Eq (5.25). Thirdly, under the pragmatic Bayesian assumption, sampling of

r
Fe(`) is essentially random from the entire space, i.e., from its prior distri-

bution in Eq (5.19). Fourthly, given Y
Fe
S

(`)
= Y

Fe
� Y

Fe
B

(`)
, we can sample

(log↵0
(`)
,↵

(`)
1 ) from p(log↵0,↵1 | Y

Fe
S

(`)
, r

Fe(`)
, log↵0

(`�1)
,↵

(`�1)
1 ) using the

adaptive Metropolis algorithm, as discussed in Section 2.2.2. This requires

us to specify a new proposal distribution on the fly,

q(log↵0,↵1 | log↵0
(`�1)

,↵
(`�1)
1 ) =

8
>>><

>>>:

MVN

⇣
(log↵0,↵1) | (log↵0

(`�1)
,↵

(`�1)
1 ), 0.1

2

d ⌃0

⌘
, if `  L

0
,

(1� �) · MVN

⇣
(log↵0,↵1) | (log↵0

(`�1)
,↵

(`�1)
1 ), 2.38

2

d ⌃(`)
⌘
+

� · MVN

⇣
(log↵0,↵1) | (log↵0

(`�1)
,↵

(`�1)
1 ), 0.1

2

d ⌃0

⌘
, if ` > L

0
,

(5.32)
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with ` > L
0

⌃(`) =

8
>>>>>><

>>>>>>:

0

@ var
�
{log↵0

(·)
}
`�1
1

�
cov

�
{log↵0

(·)
}
`�1
1 , {↵

(·)
1 }

`�1
1

�

cov
�
{↵

(·)
1 }

`�1
1 , {log↵0

(·)
}
`�1
1

�
var

�
{↵

(·)
1 }

`�1
1

�

1

A ,

if ` is a multiple of L,

⌃(`�1)
, otherwise,

(5.33)

and ⌃0 is a diagonal matrix with prior variances of log↵0 and ↵1 as diagonal

entries.

The detailed four-step MC sampler under the pragmatic Bayesian model

proceeds for iteration ` = 1, . . . , L with

Step 1: Sample Y
Fe
B (w)

(`)
| Y

Fe(w), log↵0
(`�1)

,↵
(`�1)
1 , ✓

Fe
B

(`�1)
, r

Fe(`�1)

⇠ Binomial
�
Y

Fe(w),
✓Fe
B

(`�1)

✓Fe
B

(`�1)
+�SC(w;log↵0

(`�1),↵
(`�1)
1 ,rFe(`�1))

�

for each w 2W .

Step 2: Sample ✓Fe
B

(`)
| Z

Fe
, Y

Fe
B

(`)

⇠ Gamma
�PM

j=1 Z
Fe(wj) +

PM
j=1 Y

Fe
B (wj)

(`)
+ a1,M(⌘ + 1) + a2

�
,

where ✓Fe
B ⇠ Gamma(a1, a2) a conjugate prior.

Step 3: Sample r
Fe(`)

⇠MVN (0, I).

Step 4: Sample (log↵0
[prop]

,↵
[prop]
1 ) from q(log↵0,↵1 | log↵0

(`�1)
,↵

(`�1)
1 ) in

Eq (5.32), compute

⇢ =
p(log↵0

[prop]
,↵

[prop]
1 | Y

Fe
S

(`)
)

p(log↵0
(`�1)

,↵
(`�1)
1 | Y

Fe
S

(`)
)
, (5.34)

and set

(log↵0
(`)
,↵

(`)
1 ) =

8
<

:
(log↵0

[prop]
,↵

[prop]
1 ), with probability min(⇢, 1),

(log↵0
(`�1)

,↵
(`�1)
1 ), otherwise,

(5.35)
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5.4.2 Algorithms for the fully Bayesian

Under the fully Bayesian model, our aim is to construct an MC sampler of

those model parameters from the fully Bayesian target posterior distribution

in Eq (5.22) or Eq (5.27) using two basic strategies: a four-step Gibbs sampler

and HMC.

Four-step Gibbs Sampler

We construct an MC sampler of those model parameters from the fully

Bayesian target posterior distribution in Eq (5.27) using a four-step Gibbs

sampler. We iteratively update {Y Fe
B (w)}, ✓Fe

B , rFe, and (log↵0,↵1) by sam-

pling them from the corresponding conditional posterior distributions or prior

distribution in Eq (5.29) and Eq (5.30).

At iteration `, the sampling process of {Y Fe
B (w)

(`)
} in Step 1, ✓Fe

B
(`)

in Step 2,

and (log↵0
(`)
,↵

(`)
1 ) in Step 4 is exactly same as what is done in Section 5.4.1.

Allowing the observed counts to be informative for the uncertainty of emissiv-

ities, in Step 3, we can sample rFe(`) from p(rFe
| Y

Fe
S

(`)
, r

Fe(`�1)
, log↵0

(`�1)
,

↵
(`�1)
1 ) using the adaptive Metropolis algorithm, as discussed in Section 2.2.2.

We need to specify a new proposal distribution on the fly,

q(rFe
| r

Fe(`�1)
) =

8
>>><

>>>:

MVN

⇣
r
Fe

| r
Fe(`�1)

,
0.12

d ⌃0

⌘
, if `  L

0
,

(1� �) · MVN

⇣
r
Fe

| r
Fe(`�1)

,
2.382

d ⌃(`)
⌘
+

� · MVN

⇣
r
Fe

| r
Fe(`�1)

,
0.12

d ⌃0

⌘
, if ` > L

0
,

(5.36)
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with ` > L
0

⌃(`) =

8
>>>>>>>>><

>>>>>>>>>:

0

BBB@

var
�
{r

Fe
1

(·)
}
`�1
1

�
· · · cov

�
{r

Fe
1

(·)
}
`�1
1 , {r

Fe
J

(·)
}
`�1
1

�

...
. . .

...

cov
�
{r

Fe
J

(·)
}
`�1
1 , {r

Fe
1

(·)
}
`�1
1

�
· · · var

�
r
Fe
J

(·)
}
`�1
1

�

1

CCCA
,

if ` is a multiple of L,

⌃(`�1)
, otherwise,

(5.37)

and ⌃0 is a diagonal matrix with prior variances of rFe as diagonal entries.

The detailed four-step Gibbs sampler under the fully Bayesian model pro-

ceeds for iteration ` = 1, . . . , L with

Step 1: Sample Y
Fe
B (w)

(`)
| Y

Fe(w), log↵0
(`�1)

,↵
(`�1)
1 , ✓

Fe
B

(`�1)
, r

Fe(`�1)

⇠ Binomial
�
Y

Fe(w),
✓Fe
B

(`�1)

✓Fe
B

(`�1)
+�SC(w;log↵0

(`�1),↵
(`�1)
1 ,rFe(`�1))

�

for each w 2W .

Step 2: Sample ✓Fe
B

(`)
| Z

Fe
, Y

Fe
B

(`)

⇠ Gamma
�PM

j=1 Z
Fe(wj) +

PM
j=1 Y

Fe
B (wj)

(`)
+ a1,M(⌘ + 1) + a2

�
,

where ✓Fe
B ⇠ Gamma(a1, a2) a conjugate prior.

Step 3: Sample r
Fe[prop] from q(rFe

| r
Fe(`�1)

) in Eq (5.36), compute

⇢1 =
p(rFe[prop]

| Y
Fe
S

(`)
)

p(rFe(`�1)) | Y Fe
S

(`)
)
, (5.38)

and set

r
Fe(`) =

8
<

:
r
Fe[prop]

, with probability min(⇢1, 1),

r
Fe(`�1)

, otherwise.
(5.39)

Step 4: Sample (log↵0
[prop]

,↵
[prop]
1 ) from q(log↵0,↵1 | log↵0

(`�1)
,↵

(`�1)
1 ) in

Eq (5.32), compute

⇢2 =
p(log↵0

[prop]
,↵

[prop]
1 | Y

Fe
S

(`)
)

p(log↵0
(`�1)

,↵
(`�1)
1 | Y

Fe
S

(`)
)
, (5.40)
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and set

(log↵0
(`)
,↵

(`)
1 ) =

8
<

:
(log↵0

[prop]
,↵

[prop]
1 ), with probability min(⇢2, 1),

(log↵0
(`�1)

,↵
(`�1)
1 ), otherwise.

(5.41)

Hamiltonian MC

We construct an MC sampler of those model parameters from the fully

Bayesian target posterior distribution in Eq (5.22) with the likelihood func-

tion in Eq (5.16) the prior independence assumption in Eq (5.21). We can

then obtain sample of those model parameters from this higher dimension

posterior via HMC by sampling directly from their joint posterior distribu-

tion.

5.5 Application to FeXVII simulation studies

We generate sets of the source and the background counts from reasonable

and known values of all the model parameters. The exact same models and

algorithms are applied to this simulated datasets as to the real observed

datasets in the next section. This, as a crucial approach, will allow us to

test the ability of our programming to recover physical parameters from the

FeXVII photon counts.

We assume values of log↵0 = 31.17, ↵1 = 6.75, ✓Fe
B = 11.11, and J = 7

principle components r
Fe = (6.15, 5.38,�4.45,�7.20, 8.49, 3.54, 0.81), cap-

turing 55% of the total variance of the emissivities for fourteen FeXVII lines

as computed with Eq (3.17), are used to construct a new emissivity via a

simple linear combination in Eq (3.18). Those values are obtained from an

initial try to explore the reasonable range of those parameters. In this set-

ting, we obtain the expected values of the Poisson parameter in Eq (5.14)

and Eq (5.15). We simulate 30 sets of source and background photon counts

for each channel from the Poisson distributions in Eq (5.14) and Eq (5.15).
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We use the Stan software package to obtain sample of those model param-

eters via HMC by sampling directly from their joint posterior distribution

in Eq (5.22) given each of the above simulated sets of photon counts. For

each simulated set of photon counts, there are 6000 iterations sampled with

random initials and the first 5000 iterations are discarded as burn-in.

The true values of the parameters can be recovered. The density plots in Fig-

ure 5.2 summarise the posterior samples of those model parameters across

di↵erent simulated datasets and indicate the shape of the posterior distribu-

tions of those model parameters are more like Gaussian. The density lines of

those posterior samples are able to cover the true values of the correspond-

ing parameters. The 68% credible intervals and the 95% credible intervals of

the posterior samples for each parameter over the 30 simulated datasets in

Figure 5.3 indicate a proper coverage as well. These credible intervals of the

posterior samples are proved to be confidence intervals because they have

certain coverage in this simulation study. The expected photon counts in the

source exposure, sFe(w; rFe
, log↵0,↵1)+Fe(w)+✓Fe

B , for each w 2W
Fe, can

be evaluated from the posterior means of samples for those model parameters

for each simulated dataset. The expected photon counts match the simulated

counts well, as in Figure 5.4, because of the ability of our programming to

recover the FeXVII parameter and the photon counts. Almost 95% of the

standardised residuals of the expected photon counts, in Figure 5.5, fall in

(�2, 2) without any dependency indicating the model can fit the data well.

5.6 Application to FeXVII observed counts

Here we demonstrate the e↵ects of the di↵erent types of models by applying

them to an observed dataset from grating MEG and positive order, denoted

by ’amp’, which comprises sets of observed counts from the source and the

background exposures in 1400 channels. We also have a collection of M =

1000 emissivity realisations for 14 spectral lines of FeXVII.
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Figure 5.2: Density plots for the posterior samples of the model parameters across di↵erent
simulated datasets in the FeXVII simulation study. They all are compared with the corre-
sponding true values of the parameters marked as red vertical lines.
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Figure 5.3: The posterior means (brown square dots), the 68% (dark brown horizontal
lines) and the 95% (light brown horizontal lines) credible intervals over each of the 30

FeXVII simulated datasets. They are compared with the true values of the corresponding
parameters, marked as red vertical lines.

116



0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Fe XVII
Sim 1

simulated
expected

0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Sim 2

0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Sim 3

0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Sim 4

0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Sim 5

0 20 40 60 80

0
40

00
80

00

index

co
un

ts
Sim 6

0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Sim 7

0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Sim 8

0 20 40 60 80

0
40

00
80

00

index

co
un

ts

Sim 9

Figure 5.4: The comparison of the expected photon counts, in brown, and the simulated
counts, in red, along the indices of the filtered wavelength for the first 9 replicates in the
primary FeXVII simulation study. No obvious di↵erence between the expected and the simu-
lated photon counts because our programming is able to recover the FeXVII parameter and
the photon counts.
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Figure 5.5: The standardised residuals of the expected source photon counts, along the
indices of the filtered wavelength, for the first 9 simulated datasets in the FeXVII simulation
study. The standardised residual is the ratio of the di↵erence between the simulated counts
and the expected counts to the square root of the expected counts since the counts follow
Poisson distributions.
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5.6.1 Preprocessing

Filtering the wavelength, we focus on the observed counts of a subset of

channels based on where the lines of interest are, typically the adjacent 9 or

10 channels on both sides of a line. Therefore, there could be gaps in W
Fe.

As a calibration problem, the model wavelength location, i.e., the recorded

wavelength, may be slightly displaced from the measured wavelength of the

data resulting in mismatches in the spectrum profile. By shifting the wave-

length of the model for the particular lines by a few channels, the expected

counts could match the observed counts better. By comparing the observed

counts with the expected counts at around 12.124 Å with corresponding

wavelength channel indices at around 20, we see the peak of the expected

data shifted by about two channels in the left panel of Figure 5.6. If those

channels, that correspond to 12.124 Å line, are shifted by two channels, the

shifted expected counts will match the observed counts well. We can refit

the model with this shifted dataset where only those channels that corre-

spond to 12.124 Å line are shifted. The right panel of Figure 5.6 indicates a

better match between the observed counts and the refitted expected counts.

We have obtained a better estimate of the flux. There is an o↵set between

the wavelength of the data and the wavelength of the model. Unfortunately,

as a calibration issue, this o↵set is not a constant shift. It is wavelength

dependent and is highly random all over the place and across the gratings,

evidenced in this preprocessing analysis. Therefore, shifting adjustment for

each of the wavelengths is necessary to match their location individually, to

make their profiles line up with the data, and to make sure the model is fitted

properly.

Some lines of interest might be contaminated and mixed with other lines

from di↵erent ions. For example, the 16.004 Å line of FeXVII is weak itself

and there is an OVII line mixed up with it (Del Zanna 2011). Incorporating

this line may a↵ect the accuracy of our results. Therefore, we will ignore any

such lines having contamination. As a result, there are in total only H = 100

sub-channels considered in this FeXVII analysis.

According to the right panel of Figure 5.6, there again are mismatches of line
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Figure 5.6: The shifting process of the FeXVII spectrum when shifting the wavelength of
the model. In the left panel, the observed counts, in solid green line, is compared with the
expected counts, in solid blue line. At around 12.124 Å with corresponding wavelength chan-
nel indices at around 20, we see the peak of the expected data shifted by about two chan-
nels. If those channels are shifted by two channels, the shifted expected counts, in dashed
blue line, match the observed counts well at around 12.124 Å. We then refit the model with
the shifted dataset where only those channels that correspond to 12.124 Å line are shifted.
The observed counts, in solid green line, is compared with the expected counts after shifting,
in solid blue line, in the right panel.

locations and line width, e.g., the expected counts do not reach the peak and

the trough of the observed counts for the last three lines with wavelength

channel indices > 80. Moreover, some of the wavelength we have in the data

are not exact. Though LRF is supposed to be constant, we might need to

make small adjustments to its width and move the centre a little bit left and

right for each of the lines to get spectrum profiles measurably broader or

narrower and get them line up with the data properly, from an instrumental

point of view. We adjust the locations and the width of LRF, which is in

the form of a t-distribution as in Eq (1.1), for each line. The residual sum

of squares (RSS) is the sum of the squares of the deviations of expected

data from actual data. As an optimality criterion in parameter selection, it

measures the variation of the photon counts which is not accounted for by

the fitted model. It also plays the role of a loss function in this analysis.

A small RSS indicates a tight fit of the model to the photon counts. The

best-fit width, i.e., the scale parameter �̂, is chosen from a fine grid for

each individual line by minimising the RSS. The best-fit centre, i.e., the

location parameter !̂, is chosen from another fine grid for each individual line

based on the corresponding best-fit width. A summary of the best-fit width

120



! (Å) �̂ !̂ (Å)

11.129 0.0090 11.131
11.250 0.0090 11.253
12.124 0.0105 12.122
12.264 0.0105 12.267
13.825 0.0120 13.827
13.890 0.0115 13.891
15.013 0.0090 15.013
15.262 0.0090 15.262
15.453 0.0135 15.454
16.336 0.0110 16.337
16.776 0.0085 16.777
17.051 0.0080 17.052
17.096 0.0075 17.097

Table 5.1: A summary of the best-fit width, �̂, and the adjusted centres, !̂, for the FeXVII
LRF.

and the adjusted centres is shown in Table 5.1 and is used throughout this

chapter. Moreover, the full width at half maximum (FWHM), a parameter

commonly used to describe the width of a ‘bump’ on a curve, is 2⇤

q
2

2
⌫+1 � 1⇤

p

⌫�̂2 falling in (0.017, 0.028) with the best-fit width values in Table 5.1.

They are consistent with the FWHM for amp dataset used in this section,

approximately 0.023, in Canizares et al. (2005).

Most of the above mismatches in the spectrum profiles come from the cal-

ibrations. Assuming the simple form of LRF for each individual line, the

estimations now seem to be unbiased and no trend. There could still be

other factors or more complicated LRF which have not gone into the analy-

sis, however, they would not a↵ect the accuracy of our results much.

5.6.2 Application to FeXVII observed photon counts

Based on the preprocessing work in Section 5.6.1, there are in total only

H = 100 sub-channels considered for L = 13 spectral lines in this FeXVII

analysis. We illustrate the algorithms for both the pragmatic and the fully
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Bayesian models mentioned in Section 5.4. Note that a simple case where the

continuum counts are ignored in the astrophysical model is tested initially

using the same data. However, extremely large standardised residuals are

obtained due to the fact that the model is less specified. Therefore, in this

application section, we focus on an improved model where the continuum

photon counts are specified.

Four-step MC Sampler for the pragmatic Bayesian

There are 2000000 MC iterations drawn when implementing the four-step

Gibbs Sampler for the pragmatic Bayesian where the first L0 = 1000 are used

to trigger the sampler and the following first half is discarded as burn-in. The

first 7 principle components are considered accounting for about 55% of the

total variability of the given emissivities. Specifically, in Step 4, the adaptive

Metropolis algorithm is used to sample (log↵0,↵1) from p(log↵0,↵1 | Y
Fe
S ).

The empirical estimate of the variance-covariance matrix is updated at every

L = 50 iterations to prevent unnecessary computing. A small � = 0.05 is

used in the mixture proposal distribution. The prior variance matrix of the

variables is ⌃0 = diag(var(log↵0), var(↵1)).

Four-step Gibbs Sampler for the fully Bayesian

There are 200000 MC iterations drawn when implementing the four-step

Gibbs Sampler for the fully Bayesian where the first L0 = 1000 are used to

trigger the sampler and the following first half is discarded as burn-in. The

first 7 principle components are considered as well. The adaptive Metropolis

algorithm is used to sample r
Fe from p(rFe

| Y
Fe
S ) in Step 3 and to sample

(log↵0,↵1) from p(log↵0,↵1 | Y
Fe
S ) in Step 4. The empirical estimate of

the variance-covariance matrices in both steps are updated at every L = 50

iterations to prevent unnecessary computing. A small � = 0.05 is used in

the mixture proposal distributions in both steps. The prior variance matrix

of the variables is ⌃0 = I7 in step 3 and ⌃0 = diag(var(log↵0), var(↵1)) in

step 4.
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HMC for the fully Bayesian

Using the same 7 principle components, we implement the Stan software

package to obtain sample of those model parameters via HMC by sampling

directly from their joint posterior distribution in Eq (5.22). There are 4

chains running, 6000 iterations sampled each, with random initials, and the

first 5000 iterations of each chain are discarded as burn-in.

Comparison of algorithms and output data analysis

Under the fully Bayesian model, there are two algorithms, the four-step Gibbs

Sampler and the HMC, used for obtaining the posterior samples of those

model parameters. There are good matches in density distributions of the

posterior samples for each individual parameter from the two algorithms,

the four-step Gibbs Sampler and the HMC, and also in their corresponding

quantiles, as indicated by the density plots and the quantile-quantile plots in

Figure 5.7. Therefore, both algorithms are giving reasonable samples. De-

manding less sample in achieving convergence and significantly faster, HMC

is able to provide a good representation of the posterior distribution and we

will therefore use it from now on.

Figure 5.8 compares the posterior samples of those model parameters in

FeXVII, (↵1, log↵0, ✓
Fe
B , r

Fe), under the pragmatic and the fully Bayesian

models. Notice that incorporating the uncertainties of emissivities under

the pragmatic Bayesian model introduces large error bars, while the fully

Bayesian model is shrinking the error bars relative to the pragmatic Bayesian

model. For the posterior samples of ↵1 and log↵0, there are gaps between the

fully Bayesian model and the pragmatic Bayesian model indicating that they

are sensitive to the choice of the emissivities and the data is more informative

about the emissivities than the prior knowledge. As we use a Gaussian

approximation to the prior distribution of emissivities, which has the support

in the whole space, the PCA decomposition of the emissivities can be broader

than the actual ensemble but with the same standard deviation. As the

posterior samples of some of the principal component variables under the
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Figure 5.7: Comparison of the posterior samples of those model parameters in FeXVII,
(↵1, log↵0, ✓Fe

B , rFe
), from both algorithms, the four-step Gibbs Sampler (blue) and the

HMC (green), under the fully Bayesian model via the the density plots and the quantile-
quantile plots. Identity lines are marked as red lines.
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fully Bayesian model (green lines in the bottom two rows of Figure 5.8 are

up to eight standard deviations away from the center of the prior distribution,

it is possible to see the best-fit atomic emissivities for the thirteen FeXVII

lines considered in this work, which are preferred by the data, are quite far

away from the default emissivity values from the CHIANTI, as in Figure 5.9.

The preferred atomic emissivities for 15.013 Å or 12.124 Å could be smaller

by about 30% or larger by about 100% than its default emissivity values,

while that for other lines are very close to their default values.
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Figure 5.8: Comparison of the posterior samples of those model parameters in FeXVII case
study, (↵1, log↵0, ✓Fe

B , rFe
), under the pragmatic (amber) and the fully (green) Bayesian

models.
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Figure 5.9: Emissivities of the thirteen FeXVII lines considered in this work. The grey lines
represent the 1000 realizations of the CHIANTI atomic data. The red curve is the default
value from the CHIANTI. The green curve is the best emissivities preferred by the data un-
der the fully Bayesian model.

The expected photon counts in the source exposure can be evaluated from

the posterior means of those model parameters sampled from HMC under the

fully Bayesian model. There is a good match when comparing the expected

photon counts with the observed photon counts in the source exposure along

the wavelength, as seen in the upper panel of Figure 5.10. The middle panel

is a zoom in version, which is constructed in the same way while removing

the gaps in the wavelength, to look at the detailed features of the spectrum

profiles for the lines of interest. The light blue dashed curve represents the

contribution of the continuum counts in the spectrum, which is about 51

counts per channel on average and there are more contribution of the con-

tinuum at shorter wavelength. Most of the standardised residuals of the

expected photon counts, in the lower panel of Figure 5.10, fall in 95% confi-

dence interval, (�2, 2), without any dependency indicating the fully Bayesian

model can fit the data very well. There are still complex atomic or calibration

factors having been ignored in this analysis, which lead to some relatively

large standardised residuals up to ±5.
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Figure 5.10: Comparison of the expected spectrum profiles under the fully Bayesian model
with the observed FeXVII spectrum profiles. The upper panel compares the expected photon
counts, marked as blue curve, with the observed photon counts, marked as green curve, in
the source exposure along the wavelength (Å). The lines of interest are marked as ’*’. The
middle panel is a zoom in version focusing on the areas covered by the lines of interest. It
is constructed in the same way while removing the gaps in the wavelength to compare the
spectrum profiles closely and x-axis is the indices of model wavelength. The wavelengths of
interest are marked on top of each line. The light blue curve represents the contribution of
the continuum counts in the spectrum. The standardized residuals, which is the ratio of the
di↵erence between the observed counts and the expected counts to the square root of the
expected counts since the counts follow Poisson distributions, are plotted along the indices
of model wavelength in the lower panel.
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5.7 Posterior summary

We have obtained the parameter estimations log↵0 = 31.158 ± 0.003 and

↵1 = 6.732± 0.005, via HMC under the fully Bayesian model in Section 5.6.

They can be summarized with a variety of analytical distributions, denoted

by p̂(log↵0,↵1 | Y
Fe
, Z

Fe), to approximate the above complex marginal pos-

terior distribution p(log↵0,↵1 | Y
Fe
, Z

Fe) in Eq (6.18). We have tested dif-

ferent analytical distributions including a multivariate Gaussian distribution,

a multivariate t-distribution, and kernel density estimation (KDE).

The contour plots, in Figure 5.11, show where the majority 68% and 95% of

the mass of the approximated joint probability distributions of (log ↵0,↵1)

fall, using di↵erent approximation distributions: KDE, a two dimensional

Gaussian distribution, and a multivariate t-distribution. They are compared

with the MC posterior sample of log↵0 and ↵1 obtained via HMC. The 68%

contours for the three di↵erent approximation distributions are generally

similar. While the 95% contour for the t-distribution approximation is much

wider than the other two indicating there are heavy tails in it. Figure 5.12

compares the HMC sample quantiles with the three di↵erent approximation

model quantiles for each parameter. Both lines for the KDE and the Gaussian

approximation fall very closely to the identity line indicating a high consis-

tency with the posterior samples. However, the tails for the t-distribution

approximation deviate from the identity line significantly indicating heavy

tails again. As a result, the t-distribution has a fatter tail and is designed

to be conservative. Though the KDE is as good as the Gaussian approxi-

mation, the evaluation over the KDE is quite complex and time consuming.

Therefore, we choose the Gaussian approximation to summarize the posterior

samples.

Ultimately, the approximated distribution, p̂(log↵0,↵1 | Y
Fe
, Z

Fe), obtained

in this preliminary analysis on FeXVII will be carried forward into the pri-

mary analysis on OVII model as the joint prior distribution of (log↵0,↵1).

There might be di↵erent systematic errors among di↵erent datasets. We do

not want to be constrained about how we carry information from one analysis

to another. Therefore, as a conservative manner, we will also use a multi-
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Figure 5.11: Comparison of the approximation distributions for FeXVII posterior sample
under the fully Bayesian model using HMC via contour plots. There are three approxima-
tion distributions for the joint probability distributions of (log↵0,↵1), with blue representing
KDE, amber a two dimensional Gaussian distribution, and green a multivariate t-distribution.
The solid contours contain the majority 68% of the mass of the approximated joint proba-
bility distributions and the dashed contours contain the 95% of them. They are compared
with the MC posterior sample of log↵0 and ↵1 obtained via HMC, grey dots for posterior
samples, red solid lines denoting the ±1�, and red dashed lines denoting the ±2� of the
posterior samples.
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Figure 5.12: Comparison of the approximation distributions for FeXVII posterior sample
under the fully Bayesian model using HMC via quantile-quantile plots. There are three ap-
proximation distributions for the joint probability distributions of (log↵0,↵1), with blue rep-
resenting KDE, amber a two dimensional Gaussian distribution, and green a multivariate
t-distribution. A red identity line is added as a benchmark.

variate t-distribution as one of the approximation distributions. More details

will be discussed in Chapter 6.

5.8 Conclusion and discussion

We have used a Bayesian framework to interpret the observed FeXVII pho-

ton counts in terms of a given ensemble of atomic data. A fully Bayesian

model, where we allow the observed photon counts to update the uncertainty

in the emissivities, reduces the uncertainties in the plasma parameters, com-

pared to that of from a pragmatic Bayesian model, where the uncertainty in

the emissivities are independent of the observed photon counts. Reasonable

temperature and volume values are obtained after careful preprocessing and

model fitting works in this preliminary stage. The approximated distribu-

tions of these two parameters, where the Gaussian approximation matches

the sample well and the t-distribution approximation is designed to be con-

servative, will be carried forward into the primary analysis on OVII in the

next chapter.
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There are still complex atomic or other systematic factors having been ig-

nored in this analysis leading to some relatively large standardised residuals.

We have adjusted the location parameters for each line in the preprocess-

ing step to reduce the standardised residuals and improve the model fitting.

We could implement this location adjustment analysis onto multiple datasets

and look at the ensemble of the adjustments. If we notice that the best-fit

location parameters for each line across multiple datasets were systematically

di↵erent from the true value, it may point to a problem in the atomic data

and in the listed wavelength lines. If they were distributed on either side as

positive or negative deviations, it may point to an instrumental calibration

issue.
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6
Three-stage analysis with FeXVII and

OVII

More complicated than the previous two chapters, we now focus on a three-

stage analysis and its application. The posterior distributions obtained in

the preliminary analyses in the first two stages are carried forward into the

primary analysis in the following stage. We consider, in the primary analysis,

both the pragmatic method where the observed data is not informative to

the choice of the atomic uncertainties and the fully Bayesian method where

the observed data is allowed to update the atomic uncertainties.

In contrast to those based on FeXIII line ratios in Chapter 4 where temper-

ature sensitivity is ignorable and on FeXVII line ratios in Chapter 5 where

density sensitivity is ignorable, both the temperature sensitivity and the

density sensitivity are not ignorable for OVII line systems in the soft X-ray

regime. Thus, besides atomic uncertainties, parameter uncertainties from

both density and temperature need to be considered as well. This situation

serves as a bridge from the problem considering only density or temperature

estimation to solving the full emissivity curve estimation problem. Based on

what we have done in Chapter 4, the basic statistical issue becomes that the
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number of parameters increases to include a temperature parameter, where

either a delta function or a pre-specified shape can be set up as its prior dis-

tribution as what is done in Chapter 5. Overall there are three places where

di↵erent uncertainties are to be incorporated: uncertainties of atomic data,

uncertainties for a subset of plasma parameters, and uncertainties for all

other plasma parameters. The emissivity ensemble obtained by the atomic

physicists represents the uncertainties of atomic data, which is playing the

role of one of the preliminary analyses. The analysis on the FeXVII spectral

lines in Chapter 5, as another preliminary analysis, provides uncertainties for

a subset of plasma parameters including a priori temperature information.

The former two sources of uncertainties are then taken forward into the final

primary analysis on OVII spectral lines to measure the density parameter.

The ultimate goal is to develop Bayesian methods to determine the thermal

structures of solar and stellar coronae using spectral line intensity or pho-

ton count measurements that cover a large temperature interval and have

su�cient density sensitivity to allow realistic density estimation.

6.1 Data and the astrophysical model

The He-like OVII is a popular line system for density measurements in the

X-ray regime, but unlike the FeXIII and the FeXVII lines, its curves have

both the density and the temperature dependencies. The OVII wavelength

range does not overlap FeXVII lines.

We use the same notations and equations for the data and the astrophysical

spectrum model of FeXVII analysis in Section 5.1.2 to the OVII analysis in

this Chapter with an upper subscript O. Moreover, we treat log n as a random

variable instead of a fixed constant as before. As both of the FeXVII and

the OVII datasets are observed from the same plasma, we could assume they

share the same temperature.
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6.2 OVII Statistical model

6.2.1 Combining FeXVII and OVII analyses to estimate plasma

parameters

We simplify the problem by abstracting the notations. Let ✓O = (rO, ✓OB , log n)

and ✓Fe = (rFe
, ✓

Fe
B ) be the parameters that only exist in the OVII and the

FeXVII analyses, and ✓
O,Fe = (log↵0,↵1) be the common parameters in

both of the OVII and the FeXVII analyses. The source and the background

parameters are mingled together for simplicity.

Besides the emissivity ensemble obtained by the atomic physicists via a

dataset Datomic, we preliminarily focus attention on FeXVII spectral analy-

sis, in Chapter 5, where the preliminary source of information for the tem-

perature (↵1 = log T) and volume (log↵0) is D
Fe. We then take forward

the temperature and volume information obtained, together with the atomic

uncertainties of OVII, into the primary analysis regarding D
O to get the

density information and to update the temperature information meanwhile.

These can be abstracted as a special three-stage analysis and can then be

summarized as below,

Stage 1 (preliminary): Datomic
| atomic part of ✓O, (6.1)

Stage 2 (preliminary): DFe
| ✓

Fe
, ✓

O,Fe
, (6.2)

Stage 3 (primary): D
O
| ✓

O
, ✓

O,Fe
. (6.3)

Similar to the two-stage analysis, we focus on the parameter estimation with

respect to both of the datasets, DFe and D
O, given the unavailability of the

dataset Datomic, in this three-stage analysis.

The photon counts of di↵erent ions are observed independently from the

telescope. Mathematically, it means the two datasets, D
O and D

Fe, are

conditionally independent given their own parameters. Thus, the likelihood

function of DO and D
Fe given ✓O, ✓Fe, and ✓O,Fe is

p(DO
,D

Fe
| ✓

O
, ✓

Fe
, ✓

O,Fe) = p(DO
| ✓

O
, ✓

O,Fe) · p(DFe
| ✓

Fe
, ✓

O,Fe), (6.4)
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where p(DO
| ✓

O
, ✓

O,Fe) and p(DFe
| ✓

Fe
, ✓

O,Fe) are the likelihood functions

of the OVII and the FeXVII spectral analyses, respectively, under Poisson

distributions coming from Eq (5.1) and Eq (5.2).

Next, we assume all parameters are a priori independent, so that the joint

priori distribution is

p(✓O, ✓Fe
, ✓

O,Fe) = p(✓O)p(✓Fe)p(✓O,Fe). (6.5)

Given the likelihood function in Eq (6.4) and the prior independence assump-

tion in Eq (6.5), the joint posterior distribution for all the parameters given

the whole datasets is

p(✓O, ✓Fe
, ✓

O,Fe
| D

O
,D

Fe)

=
p(DO

| ✓
O
, ✓

O,Fe) · p(DFe
| ✓

Fe
, ✓

O,Fe) · p(✓O)p(✓Fe)p(✓O,Fe)

p(DO | DFe) p(DFe)
. (6.6)

Regrouping the terms of Eq (6.6), the joint posterior distribution can be

rewritten as,

p(✓O, ✓Fe
, ✓

O,Fe
| D

O
,D

Fe) =
p(DO

| ✓
O
, ✓

O,Fe) · p(✓O)

p(DO | DFe)
· p(✓Fe

, ✓
O,Fe

| D
Fe),

(6.7)

where p(✓Fe
, ✓

O,Fe
| D

Fe) is the target posterior distribution of the FeXVII

spectral analysis in Stage 2 to infer (✓Fe
, ✓

O,Fe), which has already been

discussed in Chapter 5.

Moreover, there is a conditional independence that comes from the model,

where the information for ✓O comes from D
O rather than D

Fe. This can be
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expressed mathematically as

p(✓O | D
O
,D

Fe
, ✓

O,Fe
, ✓

Fe)

=
p(✓O,DFe

| D
O
, ✓

O,Fe
, ✓

Fe)

p(DFe | DO, ✓O,Fe, ✓Fe)

=
p(DFe

| ✓
O
,D

O
, ✓

O,Fe
, ✓

Fe) · p(✓O | D
O
, ✓

O,Fe
, ✓

Fe)

p(DFe | DO, ✓O,Fe, ✓Fe)

= p(✓O | D
O
, ✓

O,Fe
, ✓

Fe), (6.8)

i.e., ✓O and D
Fe are independent. The last equality in Eq (6.8) is due to the

fact that DFe does not depend on ✓O.

The inference for (✓O, ✓O,Fe) is based on its marginal posterior distribution

by integrating ✓Fe out from Eq (6.7),

p(✓O, ✓O,Fe
| D

O
,D

Fe) =
p(DO

| ✓
O
, ✓

O,Fe) · p(✓O)

p(DO | DFe)
· p(✓O,Fe

| D
Fe). (6.9)

Overall there are three sources of uncertainties, atomic uncertainty in OVII

emissivities and parameter uncertainty in FeXVII model in the two prelim-

inary analyses (Stage 1 and Stage 2), and parameter uncertainty in OVII

model in the primary analysis (Stage 3). We have fit the FeXVII spec-

tral model as one of the preliminary analyses and have obtained an ap-

proximated distribution, p̂(✓O,Fe
| D

Fe), for the marginal posterior distri-

bution p(✓O,Fe
| D

Fe) in Section 5.7. We can then carry forward this ap-

proximated marginal posterior distribution, together with the OVII emis-

sivity uncertainties, into the primary analysis which has target distribution

p(✓O, ✓O,Fe
| D

O
,D

Fe) in Eq (6.9) and ✓O is learned through the full datasets,

D
Fe and D

O, see more details in Section 6.2.2. That is, the approximated

marginal posterior distribution from the preliminary analysis for FeXVII

is used as a prior distribution in the primary analysis for OVII. Four-step

Gibbs Sampler and HMC algorithms are deployed to obtain sample of those

parameters, see Section 6.4.
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6.2.2 OVII statistical models in primary stage

Here we specify the detailed Bayesian model for the OVII spectral analysis

in the primary stage.

We model the source and the background counts given the source and (or) the

background parameters as independent Poisson distributions respectively, for

each w 2W
O,

Y
O(w) | log↵0,↵1, r

O
, ✓

O
B , log n

indep
⇠ Poisson

�
s
O(w; log↵0,↵1, r

O
, log n)+


O(w) + ✓

O
B

�
, (6.10)

Z
O(w) | ✓OB

indep
⇠ Poisson

�
⌘ · ✓

O
B

�
. (6.11)

Thus, the likelihood function of DO = {(Y O(w), ZO(w)),w 2 W
O
} given

log↵0, ↵1, rO, ✓OB , and log n is

p(DO
| ✓

O
, ✓

O,Fe)

= L(log↵0,↵1, r
O
, ✓

O
B , log n | Y

O
, Z

O)

= p(Y O
, Z

O
| log↵0,↵1, r

O
, ✓

O
B , log n)

= p(Y O
| log↵0,↵1, r

O
, ✓

O
B , log n) · p(Z

O
| ✓

O
B)

=
Y

w2WO

p(Y O(w) | log↵0,↵1, r
O
, ✓

O
B , log n) · p(Z

O(w) | ✓OB). (6.12)

Next, we specify the joint prior distribution on the unknown model param-

eters. A multivariate standard normal distribution is used as the prior dis-

tribution for r
O, a Gamma distribution for ✓OB , and a continuous uniform

distribution for log10 n,

r
O
⇠ MVN(0, I), (6.13)

✓
O
B ⇠ Gamma(shape = a1, rate = a2), (6.14)

p(log10 n) =
1

7
for 8  log10 n  13, (6.15)

where a1 = 0.5 and a2 = 2. A Gamma distribution for ✓OB is a conjugate

prior for a Poisson likelihood. It covers all conceivable background ranges
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encountered in the dataset.

The approximated Gaussian distribution and the approximated t-distribution

obtained in Section 5.7 are used as the prior distribution for (log10 ↵0, ↵1),

log↵0,↵1 ⇠ p̂(log↵0,↵1 | Y
Fe
, Z

Fe), (6.16)

Except log↵0 and ↵1, all other parameters are a priori independent so that

the joint prior distribution is

p(✓O) · p(✓O,Fe
| D

Fe)

= p(rO, ✓OB , log n) · p(log↵0,↵1 | Y
Fe
, Z

Fe)

= p(rO) p(✓OB) p(log n) p̂(log↵0,↵1 | Y
Fe
, Z

Fe). (6.17)

Given the likelihood function in Eq (6.12) and the prior distribution in

Eq (6.17), and expanded from Eq (6.9), the joint posterior distribution in

the primary stage is

p(log↵0,↵1, r
O
, ✓

O
B , log n | Y

O
, Z

O
, Y

Fe
, Z

Fe)

/ p(Y O
| log↵0,↵1, r

O
, ✓

O
B , log n) · p(Z

O
| ✓

O
B)⇥

p(rO)p(✓OB)p(log n)p̂(log↵0,↵1 | Y
Fe
, Z

Fe). (6.18)

Similar to the FeXVII analysis, the observed source counts, Y O = {Y
O(w)},

are implicitly made up of the counts from the source exposure due to the

source only, Y O
S = {Y

O
S (w)}, and the counts due to the background only,

Y
O
B = {Y

O
B (w)}, i.e., Y O(w) = Y

O
S (w) + Y

O
B (w), for any w 2 W

O. Treating

them as missing data again, we assume Y O
S (w) and Y

O
B (w) follow independent

Poisson distributions with intensity s
O(w; log↵0,↵1, r

O
, log n) + 

O(w) and

✓
O
B for each w 2W

O,

Y
O
S (w) | log↵0,↵1, r

O
, log n

indep
⇠ Poisson

�
s
O(w; log↵0,↵1, r

O
, log n) + 

O(w)
�
,

Y
O
B (w) | ✓OB

indep
⇠ Poisson

�
✓
O
B

�
.

The missing data and all the model parameters can be estimated easily under
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the above reformulated models. The conditional distribution of Y O
B (w) given

all the model parameters and Y
O(w) for any w 2W

O can be computed using

the Bayes’ Theorem,

p(Y O
B (w) | Y O(w), log↵0,↵1, r

O
, ✓

O
B , log n)

=
p(Y O(w) | Y O

B (w), log↵0,↵1, r
O
, ✓

O
B , log n) · p(Y

O
B (w) | ✓OB)

p(Y O(w) | log↵0,↵1, r
O, ✓OB , log n)

=

✓
Y

O(w)

Y
O
B (w)

◆
·

⇣
✓
O
B

sO(w; log↵0,↵1, r
O, log n) + O(w) + ✓

O
B

⌘Y O
B (w)

⇥

⇣
s
O(w; log↵0,↵1, r

O
, log n) + 

O(w)

sO(w; log↵0,↵1, r
O, log n) + O(w) + ✓

O
B

⌘Y O(w)�Y O
B (w)

.

That is in the form of the probability mass function of a binomial distribution,

p(Y O
B (w) | Y O(w), log↵0,↵1, r

O
, ✓

O
B , log n)

indep
⇠ Binomial

�
Y

O(w),
✓
O
B

sO(w; log↵0,↵1, r
O, log n) + O(w) + ✓

O
B

�
. (6.19)

Moreover, if ✓OB follows a Gamma prior as in Eq (6.14), the marginal posterior

of ✓OB given Y
O
B and Z

O can also be computed using the Bayes’ Theorem,

p(✓OB | Z
O
, Y

O
B ) /

HY

h=1

�
p(ZO(wh) | ✓

O
B) · p(Y

O
B (wh) | ✓

O
B)

�
p(✓OB)

/ e
�✓OB

�
H(⌘+1)+a2

�
✓
O
B

�PH
h=1 Z

O(w)+
PH

h=1 Y
O
B (w)+a1�1

�
,

That is in the form of the probability density function of a Gamma distribu-

tion,

✓
O
B | Z

O
, Y

O
B ⇠ Gamma(

HX

h=1

Z
O(w) +

HX

h=1

Y
O
B (w) + a1, H(⌘ + 1) + a2).

(6.20)
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6.2.3 The effect of photon counts on emissivities in primary

stage

Here we are going to consider the e↵ect of photon counts on emissivities.

According to the previous work in Chapter 4 and Chapter 5, whether the

spectral observation is considered for estimating the emissivity parameters

or not can influence the estimation of the plasma parameters significantly.

In this section, referring back to the introduction on statistical methods in

Section 3.2, we consider both the pragmatic Bayesian method where we do

not learn about the emissivity choices from the information in the data and

the fully Bayesian method where we do consider the potential information in

the data to learn about the emissivities.

Pragmatic Bayesian method on emissivities

As described in Section 3.2, the pragmatic Bayesian method in the primary

stage works under the assumption that the FeXVII and the OVII photon

counts do not have the information for narrowing the uncertainty of the OVII

emissivities. Mathematically, this can be expressed as,

p(rO | Y
O
, Z

O
,D

Fe) = p(rO) (6.21)

i.e., rO and (Y O
, Z

O
,D

Fe) are independent. Thus, the pragmatic Bayesian

joint posterior distribution of rO and all other parameters Y O
B , log↵0,↵1, ✓

O
B ,

log n given (Y O
, Z

O) and D
Fe in the primary stage is

p(Y O
B , log↵0,↵1, r

O
, ✓

O
B , log n | Y

O
, Z

O
,D

Fe)

= p(Y O
B , log↵0,↵1, ✓

O
B , log n | r

O
, Y

O
, Z

O
,D

Fe) · p(rO | Y
O
, Z

O
,D

Fe)

(6.22)

= p(Y O
B , log↵0,↵1, ✓

O
B , log n | r

O
, Y

O
, Z

O
,D

Fe) · p(rO). (6.23)
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Inference for Y O
B is based on its conditional posterior distribution,

p(Y O
B | Y

O
, Z

O
,D

Fe
, log↵0,↵1, r

O
, ✓

O
B , log n)

= p(Y O
| Y

O
B , log↵0,↵1, r

O
, ✓

O
B , log n) p(Y

O
B | ✓

O
B)

= p(Y O
B | Y

O
, log↵0,↵1, r

O
, ✓

O
B , log n), (6.24)

following a binomial distribution as in Eq (6.19). Based on the assump-

tion in Eq (6.21), inference for log↵0,↵1, ✓
O
B , log n, and r

O is based on their

conditional posterior or prior distributions,

p(log↵0,↵1, r
O
, ✓

O
B , log n | Y

O
, Z

O
, Y

O
B ,D

Fe)

/ p(✓OB | Z
O
, Y

O
B ) p(log↵0,↵1, r

O
, log n | Y

O
S ,D

Fe),

/ p(✓OB | Z
O
, Y

O
B ) p(log↵0,↵1, log n | Y

O
S ,D

Fe) p(rO), (6.25)

where ✓OB given Z
O and Y

O
B follows a Gamma distribution as in Eq (6.20)

and Y
O
S = Y

O
� Y

O
B .

The pragmatic Bayesian method incorporates atomic uncertainty in a con-

servative manner. The assumption in Eq (6.21) ignores the potential in-

formation in the FeXVII and the OVII photon counts, DFe and D
O, that

may reduce uncertainty of atomic data represented by r
O and hence of those

plasma parameters. We next consider methods that allow both D
Fe and D

O

to be informative for rO.

Fully Bayesian method on emissivities

In contrast to the pragmatic Bayesian method, the fully Bayesian method, as

described in Section 3.2, eliminates the independence assumption in Eq (6.21)

and incorporates the potential information in D
Fe and D

O to learn about rO.

The fully Bayesian joint posterior distribution of log↵0,↵1, r
O
, ✓

O
B , log n given

D
O and D

Fe in the primary stage is given in Eq (6.18), which is equivalent

to integrating Y
O
B out from Eq (6.22).

The major di↵erence between the pragmatic Bayesian method and the fully

Bayesian method is if the information in the data is accounted for narrowing
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the uncertainty of atomic data.

6.2.4 Alternative OVII statistical model with no information

from FeXVII analysis

We assume that the FeXVII photon counts are uninformative to the estima-

tion of the common parameters. That is, we do not take into account the

information in the FeXVII photon counts for narrowing the uncertainty of

the common parameters. Mathematically, this assumption can be written as

p(log↵0,↵1 | D
Fe) = p(log↵0,↵1) (6.26)

i.e., (log↵0,↵1) and D
Fe are independent.

Instead of using the approximated distribution obtained from FeXVII anal-

ysis, we can put two independent continuous uniform distributions as the

prior distributions for log↵0 and ↵1 individually,

p(log10 ↵0) =
1

4
for 26  log10 ↵0  38, (6.27)

p(↵1) =
1

2.2
for 5.8  ↵1  8, (6.28)

which means no information from the preliminary analysis on FeXVII will

be carried forward into the primary analysis on OVII, i.e., Stage 2 in Sec-

tion 6.2.1 is not implemented. A three-stage analysis degrades to a two-stage

analysis. In this case, all the parameters are a priori independent so that the

alternative joint prior distribution is

p(✓O, ✓O,Fe) = p(rO) p(✓OB) p(log n) p(log↵0) p(↵1). (6.29)

Given the likelihood function in Eq (6.12) and the alternative prior distribu-

tion in Eq (6.29), the alternative joint posterior distribution in the primary
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stage becomes

p(log↵0,↵1, r
O
, ✓

O
B , log n | Y

O
, Z

O)

/ p(Y O
| log↵0,↵1, r

O
, ✓

O
B , log n) · p(Z

O
| ✓

O
B)⇥

p(rO) p(✓OB) p(log n) p(log↵0) p(↵1). (6.30)

Due to the fact that there are common parameters in the last two stages, there

are two main di↵erences when comparing the joint posterior distribution in

the primary stage in Eq (6.18) with its alternative one in Eq (6.30) under

the assumption in Eq (6.26): 1) DFe becomes informative for ✓O,Fe, and 2)

D
Fe becomes informative for ✓O. The latter one is not necessary because the

distribution of DFe does not depend on ✓O, as in Eq (6.10), Eq (6.11), and

Eq (6.4), and, mathematically, it will not make any di↵erence as well.

6.3 Gaussian prior on OVII emissivities with PCA

A Gaussian prior distribution via PCA, as discussed in Section 3.3.2, is used

to compress the given ensemble of emissivities MO for the seven OVII lines.

We reconstruct emissivity replicates based on the first J = 7 principal com-

ponents (out of Q = 8211) via Eq (3.18) and Eq (3.19) capturing 97% of the

total variance, as computed with Eq (3.17). A significant amount of compres-

sion has been achieved because very few components are needed to compute

the emissivity curve to a high precision. This approximation also achieves a

better reconstruction in the loge scale of the given emissivity ensemble, which

is computationally e�cient and is used throughout this chapter.

The complicated structure of the OVII emissivities, indicating the atomic

uncertainty, is illustrated, one panel per line, in Figure 6.1 using the given

ensemble of 10, 000 OVII emissivity realisations. The complexity of the un-

certainty of MO is evident. We have generated 10, 000 replicate emissivity

curves, the exactly same amount of emissivity curve as in the original ensem-

ble, using PCA compression in Eq (3.18) and Eq (3.19) with J = 7. The full

range, the middle 95%, and the middle 68.3% intervals of these replicates is

superimposed on the corresponding intervals for the original emissivity re-
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alisations in loge scale. The correspondence between the original emissivity

realisations and the PCA replicates is quite good, especially for the 68.3%

intervals.

6.4 Algorithms for the OVII analysis

We have considered two types of prior distributions for (log10 ↵0, ↵1), the ap-

proximated distributions, e.g., the approximated Gaussian distribution and

the approximated t-distribution, and an alternative one with independent

continuous uniform distributions individually, leading to two types of di↵er-

ent posterior distributions, as described in Section 6.2. We have also con-

sidered the e↵ect of photon counts on emissivities targeting on the posterior

distributions with the former prior via the pragmatic and the fully Bayesian

methods. Now we are working on the algorithms under the pragmatic and

the fully Bayesian methods, and under the alternative model.

6.4.1 Algorithm for the pragmatic Bayesian method on emis-

sivities

Under the assumption that the data in the primary stage carry little infor-

mation as to the uncertainty of emissivities in the primary stage, we aim

to construct MC sampler of those model parameters from the pragmatic

Bayesian target posterior distribution in Eq (6.23) using a four-step Gibbs

sampler. We iteratively update {Y
O
B (w)}, ✓OB , r

O, and (log↵0,↵1, log n) by

sampling them from the corresponding conditional posterior distributions or

prior distribution in Eq (6.24) and Eq (6.25).

At iteration `, we first obtain an MC sample of {Y O
B (w)

(`)
} from its condi-

tional posterior distribution given the current states of all other parameters,

p(Y O
B | Y

O
, ✓

O
B
(`�1)

, r
O(`�1)

, log↵0
(`�1)

,↵
(`�1)
1 , log n(`�1)), which follows a bi-

nomial distribution as in Eq (6.19). Secondly, given {Y
O
B (w)

(`)
}, we can

sample ✓OB
(`)

from p(✓OB | Z
O
, Y

O
B

(`)
) following a Gamma distribution as in

Eq (6.20). Thirdly, under the pragmatic Bayesian assumption, sampling of

r
O(`)

is essentially random from the entire space, i.e., from its prior dis-
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Figure 6.1: Summary of the emissivity samples of the seven OVII lines via PCA and sum-
mary of the PCA generated replicates in loge scale. One panel for each line, the mean over
all of the emissivity realisations, ¯log ✏, is subtracted o↵ to magnify the structure in M

O.
Zero line is plotted as a solid black curve. The light, dark, and darker grey areas cover the
full range, the middle 95% and 68.3% of all 10, 000 emissivity curves in loge scale. The
dashed, dot-dash, and dotted lines respectively outline intervals containing the full range, the
middle 95% and 68.3% of 10, 000 PCA generated replicates of the emissivity curves. In each
panel, the horizontally-arranged sub-panels correspond to each value of the equally-spaced
temperature grid, log T 2 (5.8, 8.0), and the temperature is increasing from left to right.
Within each sub-panel, for a given temperature, the density, log n 2 (8.0, 13.0), is increasing.
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tribution in Eq (6.13). Fourthly, given Y
O
S

(`)
= Y

O
� Y

O
B

(`)
, we can sample

(log↵0
(`)
,↵

(`)
1 , log n(`)) from p(log↵0,↵1, log n | Y

O
S

(`)
, r

O(`)
, log↵0

(`�1)
,↵

(`�1)
1 ,

log n(`�1)) by using the adaptive Metropolis algorithm, as discussed in Sec-

tion 2.2.2, on a three-dimension space. A new proposal distribution is re-

quired to be specified on the fly,

q(log↵0,↵1, log n | log↵0
(`�1)

,↵
(`�1)
1 , log n(`�1)) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

MVN

⇣
(log↵0,↵1, log n) | (log↵0

(`�1)
,↵

(`�1)
1 , log n(`�1)), 0.1

2

d ⌃0

⌘
,

if `  L
0
,

(1� �) · MVN

⇣
(log↵0,↵1, log n) | (log↵0

(`�1)
,↵

(`�1)
1 , log n(`�1)),

2.382

d ⌃(`)
⌘
+

� · MVN

⇣
(log↵0,↵1, log n) | (log↵0

(`�1)
,↵

(`�1)
1 , log n(`�1)),

0.12

d ⌃0

⌘
, if ` > L

0
,

(6.31)

when ` > L
0, ⌃(`) is set to a variance-covariance matrix based on

�
{log↵0

(·)
}
`�1
1 ,

{↵
(·)
1 }

`�1
1 , {log n(·)

}
`�1
1

�
if ` is a multiple of L, set to ⌃(`�1), otherwise; and ⌃0

is a diagonal matrix with prior variances of log↵0, ↵1, and log n as diagonal

entries.

The detailed four-step MC sampler under the pragmatic Bayesian model

proceeds for iteration ` = 1, . . . , L with

Step 1: Sample Y O
B (w)

(`)
| Y

O(w), log↵0
(`�1)

,↵
(`�1)
1 , ✓

O
B
(`�1)

, r
O(`�1)

, log n(`�1)
,

⇠ Binomial
�
Y

O(w),
✓OB

(`�1)

✓OB
(`�1)

+�SC(w;log↵0
(`�1),↵

(`�1)
1 ,rO(`�1),log n(`�1))

�

for each w 2W
O.

Step 2: Sample ✓OB
(`)

| Z
O
, Y

O
B

(`)

⇠ Gamma
�PM

j=1 Z
O(wj) +

PM
j=1 Y

O
B (wj)

(`)
+ a1,M(⌘ + 1) + a2

�
,

where ✓OB ⇠ Gamma(a1, a2) a conjugate prior.

Step 3: Sample r
O(`)
⇠MVN (0, I).

Step 4: Sample (log↵0
[prop]

,↵
[prop]
1 , log n[prop]) from

q(log↵0,↵1, log n | log↵0
(`�1)

,↵
(`�1)
1 , log n(`�1)) in Eq (6.31),
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compute

⇢ =
p(log↵0

[prop]
,↵

[prop]
1 , log n[prop]

| Y
Fe
S

(`)
)

p(log↵0
(`�1)

,↵
(`�1)
1 , log n(`�1)

| Y
Fe
S

(`)
)
, (6.32)

and set

(log↵0
(`)
,↵

(`)
1 , log n(`)) =

8
<

:
(log↵0

[prop]
,↵

[prop]
1 , log n[prop]), with probability min(⇢, 1),

(log↵0
(`�1)

,↵
(`�1)
1 , log n(`�1)), otherwise.

(6.33)

6.4.2 Algorithm for the fully Bayesian method on emissivities

We construct an MC sampler of those model parameters from the fully

Bayesian target posterior distribution in Eq (6.18) with the likelihood func-

tion in Eq (6.12) the prior in Eq (6.17). We can then obtain sample of those

model parameters from this higher dimension posterior via HMC by sampling

directly from their joint posterior distribution.

6.4.3 Algorithm for the alternative model with no informa-

tion from the preliminary analysis

The alternative target posterior distribution in Eq (6.30), with the likelihood

function in Eq (6.12) the prior independence assumption in Eq (6.29), is used

to construct an MC sampler of those model parameters. Sample of those

model parameters can then be obtained via HMC by sampling directly from

this joint posterior distribution.

6.5 Application to OVII simulation studies

We have proved that our programming is able to recover physical parame-

ters from the FeXVII photon counts in the preliminary stage via a simulation
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study in Section 5.5, where a t-distribution prior of (log↵0,↵1) can be sta-

tistically approximated from the posterior sample based on each simulated

FeXVII dataset. Now, we generate sets of the source and the background

counts for OVII from reasonable and known values of all the model parame-

ters. Specifically, the values for the temperature and the volume are assumed

to be the same in both stages. Simulating and fitting under the same model

will allow us to test the ability of our programming to recover physical pa-

rameters from both the FeXVII and the OVII photon counts in a three-stage

analysis.

We assume values of log↵0 = 31.17, ↵1 = 6.75, log n = 9.43, ✓OB = 0.93,

and J = 6 principle components r
O = (�1.18, 0.61, 2.36, 0.77, 2.92,�0.77),

capturing 97% of the total variance of the emissivities for six OVII lines

as computed with Eq (3.17), are used to construct a new emissivity via a

simple linear combination in Eq (3.18). Those values are obtained from an

initial fit to explore the reasonable range of those parameters. The values

for the former two are exactly the same as those in the FeXVII simulation

studies in the preliminary stage. In this setting, we obtain the expected val-

ues of the Poisson parameter in Eq (6.10) and Eq (6.11). We simulate 30

sets of source and background OVII photon counts for each channel from

the Poisson distributions in Eq (6.10) and Eq (6.11) independently. The

t-distribution approximation to p(log↵0,↵1 | Y
Fe
, Z

Fe) from the posterior

samples of log↵0 and ↵1 given each simulated FeXVII dataset in the pre-

liminary stage in Section 5.5 is used as a prior distribution for (log↵0,↵1) in

the primary stage together with each simulated OVII dataset.

We use the Stan software package to obtain sample of those model param-

eters via HMC by sampling directly from their joint posterior distribution

in Eq (6.18) given each of the above simulated sets of OVII photon counts.

For each simulated set of photon counts, there are 4 chains sampled 4000

iterations each starting with random initials and the first 3000 iterations are

discarded as burn-in. To make sure that the convergence is achieved, multiple

chains are applied.

Figure 6.2 shows the posterior means, the 68% and the 95% credible intervals

of the posterior samples for each parameter over the 30 simulated OVII
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datasets, compared with the true values of the corresponding parameters.

We note that almost all the estimates of those parameters are considerably

biased. Considering more data might be helpful to reduce this bias.

6.74 6.75 6.76 6.77 6.78

0
10

20
30

α1 (=log T)

re
pl

ic
at

io
n

O VII

31.170 31.175 31.180 31.185

0
10

20
30

log α0

re
pl

ic
at

io
n

0.7 0.8 0.9 1.0 1.1 1.2 1.3

0
10

20
30

λB

re
pl

ic
at

io
n

9.40 9.42 9.44 9.46

0
10

20
30

log n

re
pl

ic
at

io
n

−3 −2 −1 0 1 2

0
10

20
30

r1

re
pl

ic
at

io
n

−0.5 0.5 1.5 2.5

0
10

20
30

r2

re
pl

ic
at

io
n

0.0 1.0 2.0 3.0

0
10

20
30

r3

re
pl

ic
at

io
n

−1.0 0.0 1.0

0
10

20
30

r4

re
pl

ic
at

io
n

0.5 1.5 2.5 3.5

0
10

20
30

r5

re
pl

ic
at

io
n

−2 −1 0 1 2

0
10

20
30

r6

re
pl

ic
at

io
n

Figure 6.2: Summary of the posterior samples for the model parameters in the primary
OVII simulation study based on the observed exposure. For each parameter, there are poste-
rior means (blue square dots), the 68% (dark blue horizontal lines) and the 95% (light blue
horizontal lines) credible intervals over each of the 30 simulated datasets. They are com-
pared with the true values of the corresponding parameters, marked as red vertical lines.

We simulate more data by simply considering multiples of the original ob-

served exposure time. We do a complete replication and consider the same

multiples of the observed exposure time for both the FeXVII preliminary and

the OVII primary simulation studies. Specifically, with the true values of
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the parameters, we compute the expected counts in each channel as before,

multiply them with a certain number, and sample the dataset from Poisson

distributions with these multipled expected values independently.

We simulate another 30 simulated OVII datasets based on 75 multiples of

the observed exposure and fit the models again. Figure 6.3 is constructed in

the same ways and same scales as Figure 6.2 with the new fitted results. It

shows the estimates of those parameters are shifted and are less biased, and

the corresponding credible intervals get smaller compared with that from the

original observed exposure time. These credible intervals of the posterior

samples are proved to be confidence intervals because they have certain cov-

erage in this simulation study. The true values of the those parameters can

also be recovered more accurately. Besides the recovery, those histograms in

Figure 6.4 show the shape of the posterior distributions of those model pa-

rameters are more like Gaussian. The expected photon counts in the source

exposure, sO(w; log↵0,↵1, r
O
, log n) + 

O(w) + ✓
O
B , for each w 2W

O, can be

evaluated from the posterior means of samples for those model parameters

for each simulated dataset. The profile of the expected photon counts match

that of the simulated counts perfectly as in Figure 6.5. Almost 95% of the

standardised residuals of the expected photon counts, in Figure 6.6, fall in

(�2, 2) without any dependency. The standardised residuals look like inde-

pendent white noise as in Figure 6.7. All these indicate the model can fit the

data very well.

We have considered several larger simulated datasets based on 5, 10, 25, 50,

and 75 multiples of the observed exposure, and each of them has 30 repli-

cates. When fitting the models with the datasets for di↵erent multiples of

the observed exposure, we start the chains at same initial values of the pa-

rameters and the samples all together migrate over to the same direction no

matter how large the simulated data sets are. This indicates the convergence

is achieved as well.

Figure 6.8 show the bias of the average of the posterior means over all of the

simulated replicates and the corresponding average standard deviations in

frequency versus the multiples of the observed exposure for all the parameters

in the OVII primary simulation study. The bias of the parameter estimates
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Figure 6.3: Summary of the posterior samples for the model parameters in the primary
OVII simulation study based on 75 multiples of the observed exposure. The posterior means
(blue square dots), the 68% (dark blue horizontal lines) and the 95% (light blue horizontal
lines) credible intervals over each of the 30 simulated datasets for each parameter are plot-
ted in the same scale as in Figure 6.2 for the purpose of comparison. The true values of the
corresponding parameters are marked as red vertical lines.
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Figure 6.4: Density plots for the posterior samples of the model parameters across di↵er-
ent simulated datasets in the primary OVII simulation study based on 75 multiples of the
observed exposure. They all are compared with the corresponding true values of the parame-
ters marked as red vertical lines.
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Figure 6.5: The comparison of the expected photon counts, in blue, and the simulated
counts, in red, along the indices of the filtered wavelength for the first 9 replicates in the
primary OVII simulation study based on 75 multiples of the observed exposure.
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Figure 6.6: The standardised residuals of the expected source photon counts, along the
indices of the filtered wavelength, for the first 9 simulated datasets in the primary OVII
simulation study based on 75 multiples of the observed exposure. The standardised residual
is the ratio of the di↵erence between the simulated counts and the expected counts to the
square root of the expected counts since the counts follow Poisson distributions.
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Figure 6.7: Comparison of the quantiles of the standardised residuals of the expected
source photon counts versus a standard normal distribution. The results for the first 9 sim-
ulated datasets in the primary OVII simulation study based on 75 multiples of the observed
exposure are presented. An identity line is added as a benchmark. The standardised residuals
fall randomly around the identity lines indicating they are white noise.
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decreases and the corresponding average standard deviation gets smaller as

the sample size increases. The standard deviation for the bias estimate gets

smaller as we get more data as well. The error starts to dominate the bias

if we include about 10 or more multiples of the observed exposure for the

OVII primary simulation study, i.e., 10 times more data.

Figure 6.9 show the empirical coverage rates of the 68% and the 95% con-

fidence intervals of the posterior samples and the corresponding error bars

versus the multiples of the observed exposure for all the parameters in the

OVII primary simulation study. The number of 68% or 95% confidence in-

tervals of the posterior samples covering the true values follows a Binomial

distribution. The exact Binomial confidence interval is used as the error bar

since it is feasible when the probability of success is equal to 0 or 1 (Clop-

per & Pearson 1934). The empirical coverage rates and the corresponding

estimated intervals start to approach the nominal levels, and then tend to

overestimate the uncertainty of the parameters, as we incorporate more data.

This overestimation happens when we have about 75 times more data than

the original size.

The same trends apply to the parameters in the FeXVII preliminary simu-

lation study, as in Figure 6.10 and Figure 6.11. The error starts to dominate

the bias if we include about 5 or more multiples of observed exposure for the

FeXVII preliminary simulation study.

In summary, the estimated biases are decreasing and the parameter estimates

are better determined if we get more data, while the behaviour of coverage

rate for the confidence intervals is conservative if the size of the data is too

large. The results indicate we have to get about five to ten times more data

to make reliable statements about atomic uncertainty.

6.6 Application to OVII observed counts

We have an observed dataset from ’amp’ again, which comprises sets of ob-

served counts from the source and the background exposures in 1200 chan-

nels. We also have a collection of M = 10000 emissivity realisations for seven
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Figure 6.8: The bias of the average of the posterior means over all of the simulated repli-
cates, in orange dots, and the corresponding average standard deviations in frequency, in red
squares, versus the multiples of observed exposure, (1, 5, 10, 25, 50, 75), for all the parame-
ters in the OVII primary simulation study. The standard deviations for the bias estimates are
marked as orange vertical intervals.
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Figure 6.9: The empirical coverage rates of the 68% confidence intervals, in dark blue
triangle, and the 95% confidence intervals, in light blue circle, of the posterior samples
and the corresponding estimated intervals versus the multiples of observed exposure,
(1, 5, 10, 25, 50, 75), for all the parameters in the OVII primary simulation study.
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Figure 6.10: The bias of the average of the posterior means over all of the simulated repli-
cates, in green dots, and the corresponding average standard deviations in frequency, in pink
squares, versus the multiples of observed exposure, (1, 5, 10, 25, 50, 75), for all the parame-
ters in the FeXVII preliminary simulation study. The standard deviations for the bias esti-
mates are marked as green vertical intervals.
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Figure 6.11: The empirical coverage rates of the 68% confidence intervals, in dark brown
triangle, and the 95% confidence intervals, in light brown circle, of the posterior sam-
ples and the corresponding estimated intervals versus the multiples of observed exposure,
(1, 5, 10, 25, 50, 75), for all the parameters in the FeXVII preliminary simulation study.
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! (Å) �̂ !̂ (Å)

17.396 0.0137 17.3969
17.768 0.0189 17.7736
18.627 0.0108 18.6319
21.602 0.0115 21.6030
21.805 0.0100 21.8045
22.101 0.0100 22.0995

Table 6.1: A summary of the best-fit width, �̂, and the adjusted centres, !̂, for the OVII
LRF.

spectral lines of OVII.

Similar preprocessed steps, including filtering wavelength, removing the con-

taminated lines, and tuning the LRF as in Section 5.6.1, need to be imple-

mented on the OVII dataset before model fitting. A subset of channels based

on the lines of interest are selected carefully, typically the adjacent 20 chan-

nels on both sides of a line and preventing any possible contaminations from

other strong lines. There also could be gaps in W
O. There is a strong line at

17.36 Å from the Fe XVIII mixed with the OVII 17.40 Å lines. We therefore

need to ignore the channels in that area. There is another strong line from

Ca XVIII at 18.69 Å which would be blending the OVII 18.67 Å resulting in

the emissivity of line 18.67 Å is about a factor of 4 weaker than that of the

other lines. Therefore, we decide to ignore this contaminated 18.67 Å line in

the OVII analysis. As a result, there are in total only H = 112 sub-channels

considered for L = 6 lines in this OVII analysis. We also need to fit width

and centres of a t-distribution LRF to each individual lines, which are chosen

from their corresponding fine grids by minimizing the RSS of the expected

source photon counts, to get spectrum profiles line up with the data perfectly.

Moreover, we set a boundary for the width in LRFs of at least 0.01 to match

the fact that the spectra cannot be too narrow. A summary of the best-fit

width and the adjusted centres is shown in Table 6.1 and is used throughout

this section.

Now, we are ready to demonstrate the e↵ects of the di↵erent types of models,

the pragmatic and the fully Bayesian methods on emissivities with informa-
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tion from the preliminary analysis and the alternative model with no infor-

mation from the preliminary analysis, mentioned in Section 6.2, by applying

them to this preprocessed datasets.

Four-step MC Sampler for the pragmatic Bayesian method on

emissivities

We implement the four-step Gibbs Sampler for the pragmatic Bayesian method

on emissivities. There are 1000000 MC iterations drawn from the joint poste-

rior distribution in Eq (6.23) considering a t-distribution prior on (log↵0,↵1)

where the first L0 = 1000 are used to trigger the sampler and the following

first half is discarded as burn-in. The first 6 principle components (out of

7038 features) are considered accounting for about 97% of the total variabil-

ity of the given emissivities. Specifically, in Step 4, the adaptive Metropolis

algorithm is used to sample (log↵0,↵1, log n) from p(log↵0,↵1, log n | Y
O
S ).

The empirical estimate of the variance-covariance matrix is updated at every

L = 50 iterations to prevent unnecessary computing. A small � = 0.05 is

used in the mixture proposal distribution. The prior variance matrix of the

variables is ⌃0 = diag(var(log↵0), var(↵1), var(log n)).

HMC for the fully Bayesian method on emissivities

Using the same 6 principle components, we implement the Stan software

package to obtain sample of those model parameters via HMC by sampling

directly from their joint posterior distribution in Eq (6.18) considering both

a Gaussian prior, called the Gaussian prior case, and a t-distribution prior,

called the t-distribution prior case, on (log↵0,↵1). For each case, there are

4 chains running, 4000 iterations sampled each, and the first 2000 iterations

of each chain are discarded as burn-in. Di↵erent starting values are used

for di↵erent chains making sure the starting values are located across the

supports. Multiple chains and di↵erent starting values are applied to make

sure that the convergence is achieved.
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HMC for the alternative model with no information from the

preliminary analysis

Using the same 6 principle components, we implement the Stan software

package to obtain sample of those model parameters via HMC by sampling

directly from their alternative joint posterior distribution in Eq (6.30) by

considering two independent uniform distributions on (log↵0,↵1), called the

uniform prior case. There are 4 chains running, 4000 iterations sampled

each, and the first 2000 iterations of each chain are discarded as burn-in.

Similarly, di↵erent starting values are used for di↵erent chains making sure

the starting values are located across the supports.

Output data analysis on t-distribution prior case

We start with the t distribution prior case. The comparison of the poste-

rior samples of those model parameters, (↵1, log↵0, ✓
Fe
B , log n, rO), under the

pragmatic and the fully Bayesian models on emissivities is shown in Fig-

ure 6.12. The fully Bayesian model on emissivities tends to shrink the error

bars of log n and log↵0 compared with that of under the pragmatic Bayesian

model on emissivities. For the posterior samples of ↵1, log↵0, and log n, the

fully Bayesian model is shifting the best estimates significantly since those

parameters are sensitive to the choice of the emissivities. We are learning

the emissivities from the data as well. Similar to the FeXVII case study, as

the posterior samples of some of the principal component variables under the

fully Bayesian model, e.g., rO3 and r
O
5 in Figure 6.12, are up to three standard

deviations away from the center of their prior distributions, it is possible to

see the best-fit atomic emissivities for the six OVII lines, which are preferred

by the data, could be quite far away from the default emissivity values from

the CHIANTI, e.g., the line 21.602 Å in Figure 6.13.

Under the fully Bayesian model on emissivities with the t distribution prior

case, we have obtained the parameter estimations with standard deviations:

log↵0 = 31.178 ± 0.010, ↵1 = 6.701 ± 0.010, and log n = 9.980 ± 0.020.

The expected photon counts in the source exposure can be evaluated from

163



6.66 6.70 6.74 6.78

0
20

40

α1 (=log T)

D
en

si
ty

31.0 31.4 31.8
0

20
40

log α0
D

en
si

ty fullBayes
pragBayes

0.6 0.8 1.0 1.2

0
2

4

λB

D
en

si
ty

9.6 9.8 10.0 10.4

0
10

log n

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

r1

D
en
si
ty

−4 −2 0 2 4

0.
0

0.
3

0.
6

r2

D
en
si
ty

−4 −2 0 2 4

0.
0

0.
4

0.
8

r3

D
en
si
ty

−4 −2 0 2 4

0.
0

0.
4

0.
8

r4

D
en
si
ty

−4 −2 0 2 4

0.
0

0.
3

0.
6

r5

D
en
si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

r6

D
en
si
ty

Figure 6.12: Comparison of the posterior samples of those model parameters in OVII case
study, (↵1, log↵0, ✓OB , log n, r

O
), under the pragmatic (amber) and the fully (green) Bayesian

models on emissivities when considering a t distribution prior on (↵1, log↵0).
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the posterior means of those model parameters sampled from HMC under

the fully Bayesian model on emissivities. There is a good mismatch between

the expected photon counts and the observed photon counts in the source

exposure along the wavelength, as seen in the upper panel of Figure 6.14. The

middle panel is a zoom in version, which is built up in the same way while the

gaps in the wavelength are removed, to look at the detailed features of the

spectrum profiles for those OVII lines. The contribution of the continuum

counts in the spectrum is about 6 counts per channel on average. There are

about 82% of the standardised residuals of the expected photon counts fall in

95% confidence interval, (�2, 2), without any dependency, in the lower panel

of Figure 6.14, indicating the current model can fit the data very well.

Comparison of the models with different prior distributions

Besides the t distribution prior case, we also test the Gaussian prior case

and the uniform prior case to check the sensitivity of the results to the shape

of the prior distributions. Figure 6.15 compares the posterior and the prior

sample of those model parameters from all three cases.

The posterior distributions for log↵0 and ↵1 shift a little bit away from their

prior distributions in the Gaussian prior case indicating the preliminary anal-

ysis on the FeXVII has provided more information and resulting in narrower

error bars while adding the primary OVII analysis has not brought much

e↵ect on it. This is due to the fact that the Gaussian prior obtained in the

preliminary stage is too narrow to incorporate the information from the like-

lihood in the primary stage and the sampling does not go across the whole

space.

Instead of taking into account the information in the FeXVII photon counts,

there is only the information from the OVII photon counts considered in

the uniform prior case. The posterior distributions for log ↵0 and log n tend

to be as flat as their corresponding prior distributions indicating the OVII

datasets does not provide any information on the estimation of log↵0 and

log n. The result is consistent with the fact that, without the prior tempera-

ture information from the FeXVII analysis, the OVII photon counts cannot
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Figure 6.14: Comparison of the expected spectrum profiles under the fully Bayesian model
with the observed OVII spectrum profiles. The upper panel compares the expected photon
counts, marked as blue curve, with the observed photon counts, marked as green curve, in
the source exposure along the wavelength (Å). The lines of interest are marked as ’*’. The
middle panel is a zoom in version focusing on the areas covered by the lines of interest. It
is constructed in the same way while removing the gaps in the wavelength to compare the
spectrum profiles closely and x-axis is the indices of model wavelength. The six wavelengths
of interest are marked on top of each line. The light blue dashed curve represents the con-
tribution of the continuum counts in the spectrum. The standardized residuals, which is the
ratio of the di↵erence between the observed counts and the expected counts to the square
root of the expected counts since the counts follow Poisson distributions, are plotted along
the indices of model wavelength in the lower panel.
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provide enough information to estimate log n since the OVII line systems are

sensitive to both the temperature and the density.

In contrast to the narrow Gaussian prior, the t-distribution prior has fatter

tails and cover a wider range. In the t-distribution prior case, the OVII

dataset does provide information on the estimation of model parameters.

The posterior distributions for log↵0 and log n are significantly wider than

that of in the Gaussian prior case and their corresponding prior distributions.

As expected by the astronomers, once the information from the OVII photon

counts is added, it introduces more uncertainties compared to the Gaussian

prior case where the primary OVII analysis has no e↵ect. The posterior

distribution for log↵0 and log n are significantly narrower than that of in

the uniform prior case. It is consistent with the fact that the OVII line

systems have information about the density which still depends on the tem-

perature. Incorporating the temperature information from the preliminary

FeXVII analysis in an appropriate way does reduce the uncertainties of den-

sity estimation significantly.

In summary, the prior information from the preliminary FeXVII analysis

plays a major role in the Gaussian prior case while the likelihood in the

primary OVII analysis contribute almost nothing. The uniform prior case

depends only on the OVII dataset. The t-distribution prior case combines the

information from both the FeXVII and the OVII datasets. These three cases

are equivalent to a weighting strategy where di↵erent weights are assigned

to the information provided by the FeXVII and the OVII photon counts

respectively. Depending on the weights we put on each of those analyses,

di↵erent inferences about the temperature are obtained. The Gaussian prior

case puts most of the weight on the FeXVII analysis. The uniform prior case

puts all of the weight on the OVII analysis. The t-distribution prior case is

mixing over the two analyses properly by carrying forward the temperature

information from the preliminary FeXVII analysis into the primary analysis

on OVII.
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Figure 6.15: Comparison of the posterior sample of those model parameters in OVII case
study under the fully Bayesian models with di↵erent prior distributions for (log↵0,↵1).
There are three di↵erent prior distributions considered, with blue representing t distribu-
tion prior, amber a Gaussian prior distribution, and green a uniform prior distribution. The
dashed lines represent the prior distributions and the solid lines represent the corresponding
posterior distributions.
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6.7 Conclusions and discussion

We have incorporated three di↵erent sources of uncertainties, uncertainties

of the OVII atomic data, uncertainties for the common parameters in both

of the OVII and the FeXVII analyses, and uncertainties for all other plasma

parameters in the OVII analysis, via a three-stage analysis. Reasonable

parameter inferences are obtained when carrying forward the results from the

two preliminary analyses into the primary analysis. We have considered a

Bayesian framework to interpret the observed OVII photon counts in terms of

a given ensemble of atomic data. A fully Bayesian model, where the observed

photon counts are informative to the uncertainty in the atomic emissivities,

reduces the uncertainties in the plasma parameters, compared to that of

from a pragmatic Bayesian model, where the observed photon counts do not

a↵ect the uncertainties in the emissivities. The former model achieves an

accurate and precise performance. We also check the sensitivity of the fitted

results to the shape of di↵erent prior distributions. The t distribution prior

case is able to assign appropriate weights to the information provided by

the datasets in multiple stages. As a result, incorporating the temperature

information from the preliminary FeXVII analysis via a t distribution prior,

together with the atomic uncertainties, into the primary OVII analysis does

reduce the uncertainties of density estimation significantly.

We have been working on a single value temperature parameter on the whole

atmosphere to explain all the issues in respect of astronomy throughout

Chapter 5 and Chapter 6. However, di↵erent estimates for temperature

have been obtained from di↵erent models with di↵erent weighting scheme

on the sources of information after careful preprocessing and model fitting

works. It indicates that a single temperature value on the whole atmosphere

is probably not enough. Generalizing this single value temperature to a dis-

tribution of temperature by including more parameters, e.g., assuming the

square root of temperature follows a normal distribution, might be a follow-

ing step. Finding out a distribution of temperature could be a future aim of

this spectral analysis.
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7
Conclusions and discussion

7.1 A general three-stage analysis

We summarize a general framework for a three-stage analysis where all kinds

of uncertainties could be involved. By generalizing the mathematical frame-

work from Section 3.2, a general three-stage analysis can be summarized

as

Stage 1: X1 |  1, 
0

1. (7.1)

Stage 2: X2 |  1, 2, 
0

2. (7.2)

Stage 3: X3 |  1, 2, 3. (7.3)

In Stage 1, the dataset, X1, is modelled with respect to the unknown pa-

rameters,  1 and  
0
1. In Stage 2, the dataset, X2, is modelled with respect

to the unknown parameters,  1,  2, and  
0
2. In Stage 3, i.e., the primary

stage, the dataset, X3, is modelled with respect to the unknown parameters,

 1,  2, and  3. Note that  1 represents an unknown parameter or a set of

unknown parameters that is common among all three models in the Stage 1,

Stage 2, and Stage 3 analyses. In the meanwhile,  2, an unknown parameter
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or a set of unknown parameters, is common between the two models in the

Stage 2 and Stage 3 analyses. The output information, typically estimates

or posterior distributions, for  1 and  2 from the two individual preliminary

analyses is required for and will be carried forward into the primary stage.

Practically those parameters can represent systematic data like atomic data,

parameters of interest, or any information from a preliminary analysis in the

astrophysical study or other areas of interest.

Looking back on the special three-stage analysis in Chapter 6 and comparing

it with the general form above,  1 represents the OVII atomic parameter

that is common in Stage 1 and Stage 3 only,  2 = (log↵0,↵1) the common

parameters in the Stage 2 FeXVII and the Stage 3 OVII analyses only, and

 3 the parameters only exist in the Stage 3 OVII analysis.

We have been working on a pragmatic Bayesian method with respect to

the atomic emissivities assuming the FeXVII and the OVII spectra do not

provide any information on the choice of atomic emissivities. Generally, this

is a pragmatic Bayesian method with respect to the parameter in Stage 1

assuming the datasets in Stage 2 and Stage 3 do not provide any information

on the choice of Stage 1 parameter. Mathematically, it is expressed as,

p( 1 | X1, X2, X3) = p( 1 | X1), (7.4)

i.e.,  1 and X2, X3 given X1 are independent. From a Bayesian statistical

point of view, given X1, the prior distribution for  1 is the same as the

posterior distribution for  1 given X2 and X3.

Similarly, we can work on another pragmatic Bayesian method with respect

to the common parameters in both of the FeXVII and the OVII analyses

assuming the OVII spectrum and the model for generating OVII atomic

data do not provide any information on the estimations of those common

parameters. In other words, only the FeXVII spectrum provides informa-

tion on the estimation of the common parameter. Generally, this is a prag-

matic Bayesian method with respect to the Stage 2 parameter assuming the

datasets in Stage 1 and Stage 3 do not provide any information on the choice
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of Stage 2 parameter. Mathematically, it is expressed as,

p( 2 | X1, X2, X3) = p( 2 | X2), (7.5)

i.e.,  2 and X1, X3 given X2 are independent.

A pragmatic Bayesian method means we would rely completely on the prior

distribution of a subset of parameters instead of learning about these pa-

rameters from any of the following analyses. Therefore, the prior and the

posterior distributions of this subset of parameters will be exactly the same

under the pragmatic Bayesian assumption. Compared with the correspond-

ing fully Bayesian method where the assumption is eliminated, we will learn

how large the e↵ect of the information of the data from the following analyses

on the uncertainties of the subset of parameters, i.e., quantities of interest.

However, for the OVII analysis in Chapter 6, we would not work on the sec-

ond pragmatic Bayesian method above since there is no meaning regarding

the assumption in physics.

7.2 Summary

From a statistical point of view, we have designed the multistage analysis to

improve the accuracy of model parameter inference when di↵erent sources

of uncertainties coming from di↵erent stages need to be incorporated into

subsequent analyses. It is a robust principled method that can be applied

to any problems under the setting where the output from one or several

preliminary analyses is required for a following primary analysis. A simple

two-stage analysis is studied by accounting for uncertainties in atomic data

from a preliminary analysis and carrying forward it into a primary analysis

with observed spectral data in Chapter 4 and Chapter 5. Following this work,

a more complicated three-stage analysis is studied where both uncertainties

in atomic data from a preliminary analysis and uncertainties for a subset of

parameters from another preliminary analysis are incorporated into a primary

analysis with observed spectral data in Chapter 6. This methodology can

also be generalized to incorporate more sources of uncertainties coming from
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multiple preliminary analyses into a subsequent primary analysis.

We have used a Bayesian framework to interpret the observed spectral data

in the context of the atomic data. A pragmatic Bayesian method, where each

realization of emissivities is considered as fully specified and uncorrectable,

yields larger uncertainties in the estimations of parameters than the uncer-

tainty coming from the observed data alone. It is considered as an imprecise

but accurate approach to parameter estimations. A fully Bayesian method,

where we allow for the data to update the atomic data uncertainties, reduces

the uncertainties in the parameters and shifts the estimates towards more

accurate values. The advantages are evident and it is considered as a precise

and accurate approach to parameter estimations.

Besides a brute force discrete approach where the atomic realizations are con-

sidered individually, a continuous analysis where principal component anal-

ysis is used to fully summarize the atomic uncertainties via a multivariate

Gaussian distribution, to incorporate uncertainties in atomic data into our

highly structured statistical model. It provides a concise statistical compres-

sion when there are complex correlations in the given emissivity ensemble.

From an astrophysical point of view, the methodology that we have developed

in this thesis represents a breakthrough in how atomic data uncertainties

are brought into a spectral analysis. We have been able to use the observed

spectral data to narrow the uncertainty in the atomic data. In the meanwhile,

we have estimated the electron density and path length of solar corona using

the FeXIII line spectrum observed from the EUV Imagining spectrometer on

the Hinode satellite, and have estimated the coronal density and temperature

of Capella using the FeXVII and the OVII line systems in the soft X-ray

regime over the course of the Chandra mission. Future improvements to the

methodology and the structure of atomic databases will no doubt improve

the process and make it more accessible. In addition to the uncertainty in

the atomic data, commonly known as the dominant source of error in the

analysis of solar and stellar spectra, our methodology is able to account for

other sources of systematic uncertainties.
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