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Abstract

The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial

conjugate hierarchical model with covariate information incorporated via a logistic

regression. Various researchers in the literature have unknowingly used improper

posterior distributions or have given incorrect statements about posterior propriety

because checking posterior propriety can be challenging due to the complicated func-

tional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and

sufficient conditions for posterior propriety within a class of hyper-prior distributions

that encompass those used in previous studies. Frequency coverage properties of sev-

eral hyper-prior distributions are also investigated to see when and whether Bayesian

interval estimates of random effects meet their nominal confidence levels.

The second chapter deals with a time delay estimation problem in astrophysics.

When the gravitational field of an intervening galaxy between a quasar and the Earth

is strong enough to split light into two or more images, the time delay is defined as

the difference between their travel times. The time delay can be used to constrain

cosmological parameters and can be inferred from the time series of brightness data of

each image. To estimate the time delay, we construct a Gaussian hierarchical model

based on a state-space representation for irregularly observed time series generated by

a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian approach jointly

infers model parameters via a Gibbs sampler. We also introduce a profile likelihood of

the time delay as an approximation of its marginal posterior distribution.

The last chapter specifies a repelling-attracting Metropolis algorithm, a new Markov

chain Monte Carlo method to explore multi-modal distributions in a simple and fast

iii



manner. This algorithm is essentially a Metropolis-Hastings algorithm with a proposal

that consists of a downhill move in density that aims to make local modes repelling,

followed by an uphill move in density that aims to make local modes attracting. The

downhill move is achieved via a reciprocal Metropolis ratio so that the algorithm prefers

downward movement. The uphill move does the opposite using the standard Metropo-

lis ratio which prefers upward movement. This down-up movement in density increases

the probability of a proposed move to a different mode.

iv



Contents

Contents v

Acknowledgements vii

1 Data-dependent Posterior Propriety and Frequency Coverage Evaluation

of a Bayesian Beta-Binomial-Logit Model 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Inferential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Posterior propriety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Acceptance-rejection method . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Frequency method checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Example: Data of 18 baseball players . . . . . . . . . . . . . . . . . . . . . 28

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Bayesian Estimates of Astronomical Time Delays between Gravitation-

ally Lensed Stochastic Light Curves 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 A fully Bayesian model for time delay estimation . . . . . . . . . . . . . . . 42

2.3 Metropolis-Hastings within Gibbs sampler . . . . . . . . . . . . . . . . . . . 48

2.4 Profile likelihood of the time delay . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Time delay estimation strategy and numerical illustrations . . . . . . . . . . 55

v



2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 A Repelling-Attracting Metropolis Algorithm for Multimodality 67

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 A repelling-attracting Metropolis algorithm . . . . . . . . . . . . . . . . . . . 69

3.3 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendices 86

A Proofs of Theorem, Lemma, and Corollary in Chapter 1 90

A.1 Proof of Lemma 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 Proof of Theorem 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.3 Proof of Corollary 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.4 Proof of Theorem 1.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.5 Proof of Theorem 1.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Details on conditional distributions for the Gibbs sampler, profile likeli-

hood, and sensitivity analysis in Chapter 2 98

B.1 Conditional distributions of X(·) . . . . . . . . . . . . . . . . . . . . . . . . 98

B.2 The likelihood function of parameters. . . . . . . . . . . . . . . . . . . . . . 99

B.3 Metropolis-Hastings within Gibbs sampler . . . . . . . . . . . . . . . . . . . 100

B.4 Profile likelihood approximately proportional to the marginal posterior . . . 101

B.5 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 106

vi



Acknowledgements

Thank you to Carl N. Morris for your invitation to the world of statistical research and for

your sparing countless time to discuss ideas on hierarchical modeling. Thank you to Xiao-Li

Meng and David A. van Dyk for your expanding my horizon into Astro-statistics and Markov

chain Monte Carlo methods, for keeping me on the right track despite my innumerable trials

and errors, and for elaborating all my crude ideas to be noteworthy. I thank you all for being

a role model as a good researcher, a good teacher, and a good mentor.

I thank Joseph Kelly not only for teaching me valuable computational skills but for

collaborating on developing an R package, Rgbp, my first project at Harvard. I would like

to thank Kaisey Mandel for collaborating on my second project in Astrophysics and for

supporting me with his balanced astrophysical and statistical knowledge. I also thank Vinay

Kashyap and Aneta Siemiginowska for their guidance and support on the second project.

I thank my classmates and officemates, in particular, Joseph Lee, Qiuyi Han, Xufei Wang,

Jiannan Lu, Yang Chen, David Jones, Bambo Sosina, Ed Kao, Ludovis Stourm, and Shi Yu

for their friendship and support. I also thank my Korean friends, especially, Sunghwan Moon,

Hyunyong Noh, Eunjoo Park, Keeseon Nam, Sukeun Jeong, Hyunsung Park, Junhyun Lee,

Hanung Kim, Sujin Kim, Dongwoo Lee, Jiho Choi, Seonmi Park, Sokhyo Jo, Soyoun Shim,

Hyeyoung You, Inkeun Song, and Eun Lee.

Lastly, thank you to my mother Kyungae Lee, father Jungam Tak, and sisters Hyojin Tak

and Hyosun Tak for their constant encouragement, unwavering love, and support throughout

the years.

vii



To my family.

viii



Chapter 1

Data-dependent Posterior Propriety

and Frequency Coverage Evaluation

of a Bayesian Beta-Binomial-Logit

Model

1.1 Introduction

Binomial data from several independent groups sometimes have more variability than the

assumed Binomial distribution for each group’s count data. To account for this extra-

Binomial variability, called overdispersion, a Beta-Binomial (BB) model (Skellam, 1948)

puts a conjugate Beta prior distribution on unknown success probabilities by treating them

as random effects. A Beta-Binomial-Logit (BBL) model (Williams, 1982; Kahn and Raftery,

1996) is one way to incorporate covariate information into the BB model. The BBL model



has a two-level structure as follows: For each of k independent groups (j = 1, 2, . . . , k),

yj | pj
indep.∼ Bin(nj, pj), (1.1)

pj | r,β
indep.∼ Beta(rpEj , rq

E
j ), (1.2)

pEj = 1−qEj ≡ E(pj | r,β) =
exp(x>j β)

1 + exp(x>j β)
(1.3)

where yj is the number of successful outcomes out of nj trials, a sufficient statistic for the

random effect pj, p
E
j = 1− qEj denotes the expected random effect, xj = (xj1, xj2, . . . , xjm)>

is a covariate vector of length m for group j, β = (β1, β2, . . . , βm)> is a vector of m logistic

regression coefficients, and r represents the amount of prior information on pEj , considering

that the Beta prior distribution in (1.2) concentrates on pEj as r increases (Albert, 1988).

We focus only on a logit link function in (1.3) because it is canonical and is well defined

for both binary (nj = 1) and aggregate (nj ≥ 2) data. When there is no covariate with an

intercept term, i.e., x>j β = β1, the conjugate Beta distribution in (1.2) is exchangeable, and

the BBL model reduces to the BB model.

The goal of our two-level conjugate modeling is to estimate random effects (p1, p2, . . . , pk)

for a comparison between groups. For example, this model can be used to estimate unknown

true batting averages (random effects) of baseball players for a comparison among players

based on their numbers of hits and at-bats possibly with their covariate information. Bi-

ologists may be interested in unknown true tumor incidence rates in analyzing litter data

composed of each litter’s number of tumor-bearing animals out of total number of animals at

risk (Tamura and Young, 1987). The unknown true mortality rates on myocardial infarction

can be estimated based on the death rate data collected from several independent clinical

studies via a meta analysis (Gelman et al., 2013).

A Bayesian approach to the BBL model needs a joint hyper-prior distribution of r and β

that affects posterior propriety. Though a proper joint hyper-prior distribution guarantees

posterior propriety, various researchers have used improper hyper-prior distributions hoping

for minimal impact on the posterior inference. The articles of Albert (1988) and Daniels
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(1999) use dr/(1 + r)2 as a hyper-prior probability density function (PDF) for r, and inde-

pendently an improper flat hyper-prior PDF for β, dβ. Chapter 5 of Gelman et al. (2013)

suggests putting an improper hyper-prior PDF on r, dr/r1.5, and independently a proper

standard Logistic distribution on β1 when x>β = β1. (They use a different parameterization:

pj | α, β ∼ Beta(α, β) and dαdβ/(α + β)2.5. Transforming r = α + β and pE = α/(α + β),

we obtain dpEdr/r1.5.) However, the paper of Albert (1988) does not address posterior pro-

priety, the proposition in Daniels (1999) incorrectly concludes that posterior propriety holds

regardless of the data, and Chapter 5 of Gelman et al. (2013) specifies an incorrect condition

for posterior propriety.

To illustrate with an overly simple example for data-dependent conditions for posterior

propriety, we toss two biased coins twice each (nj = 2 for j = 1, 2). Let yj indicate the

number of Heads for coin j, and assume a BB model with x>β = β1. If we use any

proper hyper-prior PDF for r together with an improper flat density on an intercept term

β1 independently, posterior propriety holds except when both coins land either all Heads

(y1 = y2 = 2) or all Tails (y1 = y2 = 0) as shown by an X in the diagram. Here the notation

O means that the resulting posterior is proper. See Section 1.3.4 for details.

y1\y2 0 1 2
0 X O O
1 O O O
2 O O X

Also, there is a hyper-prior PDF for r that always leads to an improper posterior dis-

tribution regardless of the data. The article of Kass and Steffey (1989) adopts an improper

joint hyper-prior PDF, dβdr/r, without addressing posterior propriety. The paper of Kahn

and Raftery (1996) uses the same improper hyper-prior PDF for r, dr/r, which they show

is a Jeffreys’ prior, and independently a proper multivariate Gaussian hyper-prior PDF for

β, declaring posterior propriety without a proof. However, the hyper-prior PDF dr/r used

in both articles always leads to an improper posterior regardless of the data.
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Making an inference unknowingly based on an improper posterior distribution is dan-

gerous because the improper posterior distribution is not a probability distribution, and

thus Markov chain Monte Carlo methods may draw samples from a nonexistent probability

distribution (Hobert and Casella, 1996). We derive data-dependent necessary and sufficient

conditions for posterior propriety of a Bayesian BBL model equipped with various joint

hyper-prior distributions, and summarize these conditions in Figure 1.1, the centerpiece of

this article. We mainly work on a class of hyper-prior PDFs for r, dr/(t + r)u+1, where t

is non-negative and u is positive. It includes a proper dr/(1 + r)2 (Albert, 1988; Daniels,

1999) and an improper dr/r1.5 (Gelman et al., 2013) as special cases. Independently the

hyper-prior PDF for β that we consider is improper flat (Lebesque measure) for its intended

minimal impact on posterior inference or any proper one. When a posterior distribution is

improper due to improper hyper-prior distributions, one possible alternative is to use proper

hyper-prior distributions that can mimic the behavior of improper choices, e.g., dr/(t+r)u+1

with a small constant t to mimic dr/ru+1 and a diffuse Gaussian distribution for β to mimic

its improper flat choice.

We compare operating characteristics of several hyper-prior distributions for r via re-

peated sampling coverage simulations, which we call frequency method checking (Morris

and Christiansen, 1997; Morris and Tang, 2011b). Here, the purpose of frequency method

checking is to see when and whether the posterior intervals of the random effects pj meet

their nominal confidence levels. Because conditions for posterior propriety with specific im-

proper hyper-prior distributions are data-dependent, we estimate the coverage rates based

only on the simulated data sets that meet the conditions for posterior propriety.

This chapter is organized as follows. We derive an equivalent inferential model of the

Bayesian BBL model in Section 1.2. We derive necessary and sufficient conditions for pos-

terior propriety, address posterior propriety in past studies, discuss possible alternatives

when posterior distributions are improper, and provide two simple examples related to the

conditions for posterior propriety in Section 1.3. An acceptance-rejection method to fit a
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Bayesian BBL model is specified in Section 1.4 and frequency method checking techniques

are introduced in Section 2.2. We conduct frequency method checking to compare several

hyper-prior distributions in 2.2.

1.2 Inferential model

One advantage of the BBL model is that it allows the shrinkage interpretation in inference

(Kahn and Raftery, 1996). For j = 1, 2, . . . , k, the conditional posterior distribution of a

random effect pj given hyper-parameters and data is

pj | r,β,y
indep.∼ Beta(rpEj + yj, rq

E
j + (nj − yj)) (1.4)

where y = (y1, y2, . . . , yk)
>. The posterior mean of the conditional posterior distribution

in (1.4) is p̂j ≡ (1 − Bj)ȳj + Bjp
E
j . This mean is a convex combination of the observed

proportion ȳj = yj/nj and the expected random effect pEj weighted by the relative amount

of information in the prior compared to the data, called a shrinkage factor Bj = r/(r + nj);

r determines the precision of pEj and nj determines the precision of ȳj. If the conjugate

prior distribution contains more information than the observed data, i.e., ensemble sample

size r exceeds individual sample size nj, then the posterior mean shrinks more towards pEj

than towards ȳj. The posterior variance of this conditional posterior distribution in (1.4) is

a quadratic function of p̂j, i.e., p̂j(1− p̂j)/(r + nj + 1).

The conjugate Beta prior distribution of random effects in (1.2) has unknown hyper-

parameters, r and β. Assuming r and β are independent a priori, we introduce their joint

hyper-prior PDF as follows:

πhyp.prior(r,β) = f(r)g(β) ∝ g(β)

(t+ r)u+1
, for t ≥ 0 and u > 0. (1.5)

This class of hyper-prior PDFs for r, i.e., dr/(t+r)u+1, is proper if t > 0 and improper if t = 0.

A hyper-prior PDF for a uniform shrinkage prior on r, transformed from a uniform prior on a

shrinkage factor dB = d{r/(t+r)}, is dr/(t+r)2 with u = 1 for any positive constant t (Morris
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and Christiansen, 1997). This uniform shrinkage prior is known to have good frequentist

properties for Bayesian estimates (Strawderman, 1971; Morris and Christiansen, 1997). A

special case of the uniform shrinkage prior density function is dr/(1 + r)2 corresponding

to t = 1 used by Albert (1988) and Daniels (1999). As t goes to zero, a proper uniform

shrinkage prior density, dr/(t + r)2, becomes close to an improper hyper-prior PDF dr/r2.

This improper choice, dr/r2, is free of an arbitrary constant t and is the most conservative

choice that leads to the widest posterior intervals for random effects compared to those

obtained by any uniform shrinkage prior (Morris and Christiansen, 1997). Chapter 5 of

Gelman et al. (2013) suggests using dr/r1.5 as a diffuse hyper-prior PDF, which corresponds

to u = 0.5 and t = 0, together with a standard Logistic distribution on β. Jeffreys’ prior

dr/r (Kahn and Raftery, 1996) is not included in the class because it always leads to an

improper posterior distribution regardless of the data1; see Section 1.3.2. The hyper-prior

PDF for β, g(β), can be any proper PDF or an improper flat density.

The marginal distribution of the data follows independent Beta-Binomial distributions

(Skellam, 1948) with random effects integrated out. The probability mass function for the

Beta-Binomial distribution is, for j = 1, 2, . . . , k,

πobs(yj | r,β) =

(
nj
yj

)
B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rq
E
j )

(1.6)

where the notation B(a, b) indicates a beta function defined as
∫ 1

0
va−1(1−v)b−1dv for positive

constants a and b. The probability mass function in (1.6) depends on β because the expected

random effects, {pE1 , pE2 , . . . , pEk }, are a function of β as shown in (1.3). The likelihood

function of r and β is the product of these Beta-Binomial probability mass functions being

treated as expressions in r and β, i.e.,

L(r,β) =
k∏
j=1

πobs(yj | r,β) =
k∏
j=1

(
nj
yj

)
B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rq
E
j )

. (1.7)

1If the symbol A represents a second-level variance component in a two-level Gaussian multilevel model,
e.g., yj | µj ∼ Normal(µj , 1) and µj | A ∼ Normal(0, A), then A is proportional to 1/r. The improper
hyper-prior PDF dr/r2 = −d(1/r) corresponds to dA leading to Stein’s harmonic prior (Morris and Tang,
2011b), dr/r1.5 corresponds to dA/

√
A (Gelman et al., 2013), and dr/r is equivalent to an inappropriate

choice dA/A (Morris and Lysy, 2012).
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When nj = 1, this likelihood function reduces to the one of a logistic regression model:

L(r,β) =
k∏
j=1

(pEj )yj(1− pEj )1−yj =
k∏
j=1

(
exp(x>j β)

1 + exp(x>j β)

)yj (
1

1 + exp(x>j β)

)1−yj

, (1.8)

which is free of r. Since the data tell nothing about r when nj = 1 for all j, it is better

not to make any inference on the random effects, p1, p2, . . . , pk, via a Bayesian BBL model

unless we have prior information on r.

The joint posterior density function of hyper-parameters, πhyp.post(r,β | y), is propor-

tional to their likelihood function in (1.7) multiplied by the joint hyper-prior PDF in (1.5):

πhyp.post(r,β | y) ∝ πhyp.prior(r,β)× L(r,β). (1.9)

Finally, the full posterior density function of p = (p1, p2, . . . , pk)
>, r, and β is

πfull.post(p, r,β | y) ∝ πhyp.prior(r,β)×
k∏
j=1

πobs(yj | pj)× πprior(pj | r,β)

∝ πhyp.post(r,β | y)×
k∏
j=1

πcond.post(pj | r,β,y) (1.10)

where the distribution for the prior density function of random effect j, πprior(pj | r,β), is

specified in (1.2), and the distribution of the conditional posterior density of random effect

j, πcond.post(pj | r,β,y), is specified in (1.4).

1.3 Posterior propriety

The full posterior density function in (1.10) is proper if and only if πhyp.post(r,β | y) is

proper because
∏k

j=1 πcond.post(pj | r,β,y) is a product of independent and proper Beta

density functions. We therefore focus on posterior propriety of πhyp.post(r,β | y).

Definition 1.3.1. Group j whose observed number of successes is neither 0 nor nj, i.e.,

1 ≤ yj ≤ nj − 1, is called an interior group. Similarly, group j is extreme if its observed

number of successes is either 0 or nj. The symbol Wy denotes the set of indices corresponding
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to interior groups, i.e., Wy ⊆ {1, 2, . . . , k}, and ky is the number of interior groups, i.e., the

number of indices in Wy. We use W c
y to represent the set of k − ky indices for extreme

groups. The notation X ≡ (x1,x2, . . . ,xk)
> refers to the k × m covariate matrix of all

groups (k ≥ m) and Xy is the ky ×m covariate matrix of the interior groups.

The subscript y emphasizes the data-dependence of ky, Wy, and Xy. The rank of Xy

can be smaller than m when X is of full rank m because we obtain Xy by removing rows of

extreme groups from X. If all groups are interior, then ky = k and Xy = X. If all groups

are extreme, then ky = 0 and Xy is not defined.

1.3.1 Conditions for posterior propriety

In Figure 1.1, we summarize the necessary and sufficient conditions for posterior propriety

according to different hyper-prior PDFs, f(r) and g(β), under two settings: The data contain

at least one interior group (1 ≤ ky ≤ k) and the data contain only extreme groups (ky = 0).

To prove these conditions, we divide the first setting (1 ≤ ky ≤ k) into two: A setting

where at least one interior group and at least one extreme group exist (1 ≤ ky ≤ k − 1) and

a setting where all groups are interior (ky = k). The key to proving conditions for posterior

propriety is to derive certain lower and upper bounds for L(r,β) that factor into a function

of r and a function of β. We first derive lower and upper bounds for the Beta-Binomial

probability mass function of group j with respect to r and β because L(r,β) is just the

product of these probability mass functions of all groups.

Lemma 1.3.1. Lower and upper bounds for the Beta-Binomial probability mass function for

interior group j with respect to r and β are rpEj q
E
j /(1+r)nj−1 and rpEj q

E
j /(1+r), respectively,

up to a constant multiple. Those for extreme group j with yj = nj are (pEj )nj and pEj , each,

and those for extreme group j with yj = 0 are (qEj )nj and qEj , respectively, up to a constant

multiple.

Proof. See Appendix A.1.
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Figure 1.1: Necessary and sufficient conditions for posterior propriety of πhyp.post(r,β | y)
according to πhyp.prior(r,β) = f(r)g(β) under two settings: The data contain at least one
interior group (1 ≤ ky ≤ k) and the data contain only extreme groups (ky = 0). The
condition, rank(Xy) = m, implicitly requires ky ≥ m because Xy is a ky ×m matrix.

Lemma 1.3.1 shows that our bounds for the Beta-Binomial probability mass function

for either interior or extreme group j with respect to r and β factor into a function of r

and a function of β. Because L(r,β) is a product of these Beta-Binomial probability mass

functions of all groups, bounds for L(r,β) also factor into a function of r and a function of

β. Next we derive certain lower and upper bounds for L(r,β) with respect to r and β under

the first setting where all groups are interior.

Lemma 1.3.2. When all groups are interior (ky = k), L(r,β) can be bounded by

c1

rk
∏k

j=1 p
E
j q

E
j

(1 + r)
∑k

j=1(nj−1)
≤ L(r,β) ≤ c2

rk
∏k

j=1 p
E
j q

E
j

(1 + r)k
(1.11)

where c1 and c2 are constants that do not depend on r and β.

Proof. Without any extreme groups in the data, an upper bound for L(r,β) is the product

of the k upper bounds for the Beta-Binomial probability mass function of each interior group

in (A.4), i.e., rk(
∏k

j=1 p
E
j q

E
j )/(1 + r)k. Similarly, a lower bound for L(r,β) is the product of

the k lower bounds for the Beta-Binomial probability mass function of each interior group

9



in (A.7), i.e., rk(
∏k

j=1 p
E
j q

E
j )/(1 + r)

∑k
j=1(nj−1). It is clear that both bounds factor into a

function of r and a function of β.

When all groups are interior, the joint posterior density function πhyp.post(r,β | y)

equipped with any joint hyper-prior PDF πhyp.prior(r,β) is proper if∫
Rm

∫ ∞
0

πhyp.prior(r,β)×
rk
∏k

j=1 p
E
j q

E
j

(1 + r)k
drdβ <∞ (1.12)

because rk
∏k

j=1 p
E
j q

E
j /(1 + r)k is the upper bound for L(r,β) specified in (1.11). Also, the

joint posterior density function πhyp.post(r,β | y) is improper if∫
Rm

∫ ∞
0

πhyp.prior(r,β)×
rk
∏k

j=1 p
E
j q

E
j

(1 + r)
∑k

j=1(nj−1)
drdβ =∞ (1.13)

because rk
∏k

j=1 p
E
j q

E
j /(1 + r)

∑k
j=1(nj−1) is the lower bound for L(r,β) in (1.11).

Theorem 1.3.1. When all groups are interior (ky = k), the joint posterior density function

of hyper-parameters, πhyp.post(r,β | y), equipped with a proper hyper-prior density function

on r, f(r), and independently an improper flat hyper-prior density function on β, g(β) ∝ 1,

is proper if and only if rank(X) = m.

Proof. See Appendix A.2.

The condition for posterior propriety with a proper hyper-prior PDF for r is the same

as the condition for posterior propriety when r is a completely known constant due to the

factorization of the bounds for L(r,β) in (1.11). Thus, the condition for posterior propriety

in Theorem 1.3.1 arises only from the improper hyper-prior PDF for β.

Theorem 1.3.2. When all groups are interior (ky = k), the joint posterior density func-

tion of hyper-parameters, πhyp.post(r,β | y), equipped with f(r) ∝ 1/ru+1 for positive u and

independently a proper hyper-prior density function on β, g(β), is proper if and only if

k ≥ u+ 1.
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Proof. The β part of the upper bound for L(r,β) in Lemma 1.3.2, i.e.,
∏k

j=1 p
E
j q

E
j , is always

less than one. Thus, the upper bound for πhyp.post(r,β | y) up to a normalizing constant

factors into a function of r and a function of β as follows:

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) <
rk−(u+1)g(β)

(1 + r)k
. (1.14)

The integration of this upper bound with respect to r is finite if k ≥ u + 1 because in this

case we can bound the r part by 1/(1 + r)u+1 whose integration with respect to r is always

finite. The integration of g(β) with respect to β is finite because g(β) is a proper probability

density function.

If k < u + 1, then the integration of the lower bound for πhyp.post(r,β | y) is not finite

because there is rk in the numerator of the lower bound for L(r,β) in Lemma 1.3.2. Specif-

ically, once multiplying f(r) (∝ dr/ru+1) by rk, we know that rk−(u+1) goes to infinity as r

approaches zero if k < u+ 1.

The condition for posterior propriety when β has a proper hyper-prior distribution is the

same as the condition for posterior propriety when β is not a parameter to be estimated

(m = 0) due to the factorization of bounds for L(r,β) in (1.11). Thus, the condition for

posterior propriety arises solely from the improper hyper-prior PDF for r.

Theorem 1.3.3. When all groups are interior (ky = k), the joint posterior density function

of hyper-parameters, πhyp.post(r,β | y), equipped with the joint hyper-prior density function

πhyp.prior(r,β) ∝ 1/ru+1 for positive u is proper if and only if (i) k ≥ u+ 1 and (ii) rank(X) =

m.

Proof. Based on the upper bound for L(r,β) in Lemma 1.3.2, the upper bound for πhyp.post(r,β |

y) up to a normalizing constant factors into a function of r and a function of β as follows:

πhyp.post(r,β | y) ∝ πhyp.prior(r,β)L(r,β) ≤ rk−(u+1)

(r + 1)k

k∏
j=1

pEj q
E
j . (1.15)
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The double integration on the upper bound in (1.15) with respect to r and β is finite if and

only if (i) k ≥ u + 1 for the r part as proved in Theorem 1.3.2 and (ii) the k ×m covariate

matrix of all groups X has a full rank m for the β part as proved in Theorem 1.3.1.

If at least one condition is not met, then πhyp.post(r,β | y) becomes improper as proved

in Theorem 1.3.1 and 1.3.2.

The conditions for posterior propriety in Theorem 1.3.3 are the combination of the con-

dition in Theorem 1.3.1 and that in Theorem 1.3.2 because of the factorization of bounds

for L(r,β).

We begin discussing the conditions for posterior propriety under the second setting with

at least one interior group and at least one extreme group in the data (1 ≤ ky ≤ k − 1).

Corollary 1.3.1. With at least one interior group and at least one extreme group in the

data (1 ≤ ky ≤ k − 1), posterior propriety is determined solely by interior groups, not by

extreme groups.

Proof. See Appendix A.3.

Corollary 1.3.1 means that we can remove all the extreme groups from the data to

determine posterior propriety, treating the remaining interior groups as a new data set

(ky = k). Then we can apply Theorem 1.3.1, 1.3.2, or 1.3.3 to the new data set. If posterior

propriety holds with only the interior groups, then posterior propriety with the original data

with the combined interior and extreme groups (1 ≤ ky ≤ k − 1) also holds. Corollary 1.3.1

justifies combining the first and second settings as shown in Figure 1.1.

We start specifying the conditions for posterior propriety under the third setting where

there are no interior groups in the data (ky = 0).

Lemma 1.3.3. When all groups are extreme (ky = 0), L(r,β) can be bounded by

c3

k∏
j=1

(pEj )
nj×I{yj=nj}(qEj )

nj×I{yj=0} ≤ L(r,β) ≤ c4

k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0} (1.16)
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where c3 and c4 are constants that do not depend on r and β, and I{D} is the indicator

function of D.

Proof. A lower bound for the Beta-Binomial probability mass function of extreme group j

is either (pEj )nj in (A.9) or (qEj )nj in (A.10) depending on whether yj = nj or yj = 0. Thus,

the product of k lower bounds for the Beta-Binomial probability mass functions of extreme

groups, i.e.,
∏k

j=1(pEj )
nj×I{yj=nj}(qEj )

nj×I{yj=0} , bounds L(r,β) from below.

The product of the k upper bounds for the Beta-Binomial probability mass functions

of extreme groups in (A.8) or (A.10), i.e.,
∏k

j=1(pEj )
I{yj=nj}(qEj )

I{yj=0} , bounds L(r,β) from

above.

The upper and lower bounds in (1.16) are free of r, indicating that the hyper-prior

distribution of r must be proper for posterior propriety in this case (ky = 0). If the hyper-

prior distribution of β, g(β), is also proper, the resulting posterior is automatically proper

and we do not need to check posterior propriety. However, the posterior can be improper

when g(β) is improper. The next theorem deals with a case where g(β) ∝ 1.

Theorem 1.3.4. When all groups are extreme (ky = 0), the posterior density function of

hyper-parameters, πhyp.post(r,β | y), equipped with a proper hyper-prior density function for

r, f(r), and independently g(β1) ∝ 1, is proper if and only if there exists a finite value of β

that maximizes the upper bound in (1.16) up to a constant, i.e.,

k∏
j=1

(
exp(x>j β)

1 + exp(x>j β)

)I{yj=nj}
(

1

1 + exp(x>j β)

)I{yj=0}

. (1.17)

Proof. See Appendix A.4.

The function in (1.17) is essentially the same as the likelihood function of a logistic

regression in (1.8) because the powers in (1.17) are either one or zero with I{yj=0} = 1 −

I{yj=nj}. Thus, the value of β that maximizes (1.17) is the same as the maximum likelihood

estimate (MLE) of β in (1.8) for which we set yj = 1 if yj ≥ 1. A quick way to check whether

there exists a finite value of β that maximizes (1.17) is to fit a logistic regression model after
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setting yj = 1 if yj ≥ 1, using any statistical software, e.g., glm in R (R Development

Core Team, 2016). If no errors emerge, then the finite MLE of β exists; its uniqueness is

guaranteed if the MLE exists in a logistic regression (Jacobsen, 1989). However, Theorem

1.3.4 is inconvenient in that we need to fit a logistic regression model to check posterior

propriety. The next theorem specifies more descriptive sufficient conditions for posterior

propriety that do not require fitting a logistic regression, which are also necessary conditions

when there is only an intercept term, x>j β = β1 for all j.

Theorem 1.3.5. When all groups are extreme (ky = 0), the posterior density function of

hyper-parameters, πhyp.post(r,β | y), equipped with a proper hyper-prior density function for

r, f(r), and independently g(β1) ∝ 1, is proper if (i) there are at least m clusters of groups

whose covariate values are the same within each cluster and different between clusters, and

(ii) in each cluster there are at least one group of all successes and at least one group of all

failures. The k×m covariate matrix X is assumed to be of full rank m. These two conditions

are also necessary conditions when x>j β = β1.

Proof. See Appendix A.5.

When x>j β = β1, the necessary and sufficient conditions in Theorem 1.3.5 simply reduce

to having at least one group with all successes and at least one group with all failures in

the data. Theorem 4 of Natarajan and Kass (2000) shows that this reduced condition is the

same as the condition in Theorem 1.3.4, i.e., there exists a finite value of β that maximizes

(1.17).

The two conditions in Theorem 1.3.5 are only sufficient conditions when there are covari-

ates. For necessary conditions in this case, we need to show that integration of the lower

bound in (1.16) with respect to β is not finite when either conditions in Theorem 1.3.5 are

not met. However, the integration itself seems mathematically intractable. If either con-

ditions in Theorem 1.3.5 are not met, we need to go back to Theorem 1.3.4, checking the

existence of a finite value of β that maximizes (1.17) by fitting a logistic regression.
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Theorem 1.3.6. When all groups are extreme (ky = 0), the posterior density function of

hyper-parameters πhyp.post(r,β | y), equipped with any improper hyper-prior density function

f(r) and independently any hyper-prior density g(β), is always improper.

Proof. Because the lower bound for L(r,β) in Lemma 1.3.3 is free of r, L(r,β) cannot make

the integration of f(r) finite when f(r) is improper. Thus, πhyp.post(r,β | y) should always

be improper under this setting.

1.3.2 Posterior propriety in previous studies

The article of Albert (1988) does not address posterior propriety for dβdr/(1 + r)2. Our

work shows that the condition for posterior propriety when 1 ≤ ky ≤ k is rank(Xy) = m, i.e.,

the covariate matrix of interior groups is of full rank m. However, when ky = 0, posterior

propriety is unknown except for a case where only an intercept term is used (x>β = β1), see

Figure 1.1.

The proposition (1c to be specific) in Daniels (1999) for posterior propriety of the Bayesian

BBL model with the same hyper-prior PDF as Albert (1988) argues that the posterior

distribution is always proper. However, its proof is based on a limited case with only an

intercept term, x>j β = β1. Under this simplified setting, if there is only one extreme group

with two trials (y1 = 2, n1 = 2), the resulting joint posterior density function of r and β1 is

πhyp.post(r, β1 | y) ∝ (1 + rpE)pE

(1 + r)3
. (1.18)

The integration of (1.18) with respect to β1 is not finite because pE = exp(β1)/(1 + exp(β1))

converges to one as β1 approaches infinity. Figure 1.1 shows that at least one interior group is

required in the data for posterior propriety of the Bayesian BBL model under the simplified

setting (x>j β = β1) of Daniels (1999). Moreover, if all groups are extreme in the data under

the simplified setting with an intercept term, the posterior is proper if and only if there exist

at least one extreme group with all successes (
∑k

j=1 I{yj=nj} ≥ 1) and one extreme group

with all failures (
∑k

j=1 I{yj=0} ≥ 1) as shown in Figure 1.1. In our counter-example, there
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is only one extreme group with all successes, and thus the resulting posterior in (1.18) is

improper.

With only an intercept term (x>j β = β1), Chapter 5 of Gelman et al. (2013) specifies

that the joint posterior density function πhyp.post(r, β1 | y) with dr/r1.5 and independently

with the proper standard logistic distribution on β1 is proper if there is at least one interior

group. However, the resulting posterior can be improper with this condition. For example,

when there is only one interior group with two trials (y1 = 1, n1 = 2), the joint posterior

density function of r and β1 is

πhyp.post(r, β1 | y) ∝ πhyp.prior(r, β1)× L(r, β1) ∝ pEqE

r1.5
× rpEqE

(1 + r)
, (1.19)

where pE = exp(β1)/(1 + exp(β1)) = 1− qE. The integration of this joint posterior density

function with respect to r is not finite because the density function goes to infinity as r

approaches zero. (The integral of dr/r0.5 over the range [0, 0 + ε] for a positive constant ε

is not finite.) To achieve posterior propriety in this setting, we need at least two interior

groups in the data as shown in Figure 1.1.

The posterior distributions of Kass and Steffey (1989) and Kahn and Raftery (1996) are

always improper regardless of the data due to their hyper-prior PDF dr/r. This is because

the likelihood function in (1.7) approaches c(β), a positive constant with respect to r, as r

increases to infinity. Then the hyper-prior PDF dr/r, whose integration becomes infinite over

the range [ε,∞) for a positive constant ε, governs the right tail behavior of the conditional

posterior density function of r, πhyp.cond.post(r | β,y). It indicates that πhyp.cond.post(r | β,y)

is improper, and thus the joint posterior density πhyp.post(r,β | y) is improper.

1.3.3 Inference when a posterior distribution is improper

Making an inference based on an improper posterior distribution is dangerous because most

statistical inferential tools assume that the target distribution is a probability distribution

but the improper posterior distribution is not a probability distribution. For example, Hobert
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and Casella (1996) call attention to running a Gibbs sampler on an improper posterior dis-

tribution because the Gibbs sampler may seem to work well even when the posterior distri-

bution is improper. They emphasize checking posterior propriety in advance to prevent a

(non-recurrent) Gibbs chain from converging to some nonexistent probability distribution.

Athreya and Roy (2014) also show that Markov chain Monte Carlo methods can be mislead-

ing when the posterior is improper because a standard average estimator based on Markov

chains converges to zero with probability one. They introduce regenerative sequence Monte

Carlo methods that enable a valid inference even when a posterior distribution is improper.

When it comes to a BBL model, the conditions for posterior propriety in Figure 1.1 can

be met in most cases because in practice the data are composed of a suitably large number

of groups, k. However, improper hyper-prior PDFs may result in posterior impropriety when

the data are composed of a small number of groups. In this case, we recommend using proper

hyper-prior PDFs for r and β, e.g., a uniform shrinkage prior on r, dr/(t + r)2, which is

known to produce good frequentist properties (Strawderman, 1971; Morris and Christiansen,

1997), and a diffuse Gaussian prior on β with relatively large standard deviations (Kahn

and Raftery, 1996). Setting a small constant t in a uniform shrinkage prior is considered

as a conservative choice that allows the data to speak more with smaller shrinkage factors

(Morris and Christiansen, 1997). Another possibility (except when nj = 1 for all j) is to

estimate MLEs of r and β via (1.7) and plug these estimates into the conditional Beta

distributions of random effects in (1.4). This approach can be considered as an empirical

Bayes (EB) approach (Efron and Morris, 1975) with πhyp.prior(r,β) ∝ 1. However, this EB

approach tends to be over-confident in estimating random effects when k is small because

the EB approach does not account for the uncertainties of unknown r and β though these

uncertainties are large when k is small.
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1.3.4 Numerical illustration: Data of two bent coins

We have two biased coins; a bent penny and a possibly differently bent nickel (k = 2).

We flip these coins twice for each (n1 = n2 = 2) and record the number of Heads for the

penny (y1) and also for the nickel (y2). We model this experiment as yj | pj ∼ Bin(2, pj)

independently, where pj is the unknown probability of observing Heads for coin j. We

assume an i.i.d. prior distribution for random effects, pj | r, β1 ∼ Beta(rpE, rqE), where

pE = exp(β1)/[1 + exp(β1)] = 1− qE, i.e., a BB model.

We look into posterior propriety under four different settings depending on whether the

hyper-prior distribution for β1 (or equivalently pE) is proper or improper flat dβ, and on

whether the hyper-prior distribution of r is proper or dr/r2.

Table 1.1 shows when the posterior distribution is proper (denoted by O) and when it

is not (denoted by X). The posterior distribution in case (a) is always proper because both

hyper-prior distributions for r and β1 are proper. In case (b) where β1 has the Lebesque

measure and r has a proper hyper-prior PDF, the posterior is proper unless both coins land

either all Heads (y1 = y2 = 2) or all Tails (y1 = y2 = 0). This is because the condition

for posterior propriety is that the covariate matrix of interior coins is of full rank and this

condition without any covariates is met if at least one coin is interior; see Figure 1.1. In

(a) Any proper f(r) and any proper g(β1)

y1\y2 0 1 2
0 O O O
1 O O O
2 O O O

(b) Any proper f(r) and g(β1) ∝ 1

y1\y2 0 1 2
0 X O O
1 O O O
2 O O X

(c) f(r) ∝ 1/r2 and any proper g(β1)

y1\y2 0 1 2
0 X X X
1 X O X
2 X X X

(d) f(r) ∝ 1/r2 and g(β1) ∝ 1

y1\y2 0 1 2
0 X X X
1 X O X
2 X X X

Table 1.1: The symbol O indicates that the posterior distribution is proper on corresponding
data, and the symbol X indicates that the posterior distribution is not proper on correspond-
ing data.

18



cases (c) and (d), where r has the improper hyper-prior PDF, dr/r2, posterior propriety

holds only when each coin shows one Head and one Tail, i.e., both coins are interior (y1 =

y2 = 1); see Figure 1.1. Cases (c) and (d) have the same condition for posterior propriety

because the condition that arises from the improper flat hyper-prior PDF for β1 in case (d)

is automatically met if the condition arising from the improper hyper-prior PDF for r, i.e.,

ky ≥ 2, is met.

Next, we check the effect of different joint hyper-prior PDFs used in cases (a)–(d) on

the random effect estimation, e.g., p1. For this purpose, we set g(β1) = N(β1 | 0, 1010),

a diffuse Gaussian distribution with mean zero and variance 1010 for a proper hyper-prior

PDF of β1, and set f(r) ∝ 1/(10−5 + r)2 for a proper hyper-prior PDF of r. We draw 55,000

posterior samples of r and β1 from their joint posterior distribution, πhyp.post(r, β1 | y), us-

ing a Metropolis within Gibbs sampler (Tierney, 1994a), discarding the first 5,000 samples

as burn-ins. We adjust proposal scales of independent Gaussian proposal distributions to

obtain a reasonable acceptance probability around 0.35 for each parameter. Using the pos-

terior samples of r and β1, we draw the posterior sample of p1 from its marginal posterior

distribution πmarg.post(p1 | y) via a Monte Carlo integration:

πmarg.post(p1 | y) =

∫
R

∫ ∞
0

πcond.post(p1 | r, β1,y)× πhyp.post(r, β1 | y)drdβ1, (1.20)

i.e., sampling p1 from πcond.post(p1 | r, β1,y) given already sampled r and β1. In addition, we

estimate p1 via an EB approach for a comparison; estimating MLEs of r and β1, inserting

these into πcond.post(p1 | r, β1,y), and calculating (0.025, 0.975) quantiles of this conditional

Beta posterior distribution πcond.post(p1 | r, β1,y).

We fit these models on the data {y1 = y2 = 1} for which posterior distributions in cases

(a)–(d) are all proper. The resulting 95% posterior intervals for p1 are summarized in the

first row of Table 1.2. All these intervals are similar because the proper hyper-prior PDF of

r, dr/(10−5 + r)2, used in cases (a) and (b) mimics well its improper limit, dr/r2, used in

cases (c) and (d), and because the diffuse Gaussian hyper-prior PDF of β1 behaves similarly

to an improper flat density function. These intervals are wide, reflecting on the lack of
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Data \ Model Case (a) Case (b) Case (c) Case (d) EB
y1 = y2 = 1 (0.048, 0.950) (0.048, 0.951) (0.049, 0.951) (0.049, 0.950) (0.490, 0.510)
y1 = 0, y2 = 1 (0.000, 0.247) (0.000, 0.242) Improper Improper (0.218, 0.284)

Table 1.2: The 95% posterior intervals of p1 obtained by Bayesian BBL models equipped
with joint hyper-prior PDFs in cases (a)–(d), and those obtained by an empirical Bayes (EB)
approach. We set g(β1) = N(β1 | 0, 1010) and f(r) ∝ 1/(10−5 + r)2 for proper hyper-prior
PDFs of β1 and r, respectively.

information about r and β1 in two observations. However, the EB interval centered at 0.5 is

much too narrow because it does not account for the uncertainties of unknown r and β1.

The hyper-prior PDFs in cases (c) and (d) result in an improper posterior for the data

{y1 = 0, y2 = 1}. Thus, we fit models equipped with hyper-prior PDFs in cases (a) and (b)

and an EB model on these data. The posterior intervals for p1 are summarized in the second

row of Table 1.2. The intervals in cases (a) and (b) are similar because the diffuse Gaussian

prior for β1 is close to an improper flat prior. The EB interval centered at around 0.25 is

again much narrower than the full Bayesian intervals in (a) and (b).

1.3.5 Numerical illustration: Data of five hospitals

New York State Cardiac Advisory Committee (2014) has reported the outcomes for the

Valve Only and Valve/CABG surgeries. The data are based on the patients discharged

between December 1, 2008, and November 30, 2011 in 40 non-federal hospitals in New

York State. We select the smallest five hospitals with respect to the number of patients

for simplicity. Table 1.3 shows the data including the number of cases (nj), the number

j 1 2 3 4 5

nj 54 75 93 104 105
yj 3 4 1 1 1

EMRj 4.30 2.21 2.59 4.73 3.28

Table 1.3: Data of five hospitals. The number of patients in hospital j is denoted by nj,
the number of death in hospital j is denoted by yj, and the expected mortality rate (%) for
hospital j is denoted by EMRj .
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of deaths (yj), and expected mortality rate (EMRj). The EMRj is a hospital-wise average

over the predicted probabilities of death for each patient; the larger the EMRj is, the more

difficult cases hospital j handles. We use the EMRj as a continuous covariate. We assume

yj | pj ∼ Bin(nj, pj) independently. We also assume that the unknown true mortality rates pj

come from independent conjugate Beta prior distributions in (1.2) with xTj β = β1x1j+β2x2j,

where x1j = 1 and x2j = EMRj.

We consider four joint hyper-prior densities: dβdr/r2, dβdr/(1 + r)2, dβdr/r1.5 and

dβdr/(1+r)1.5. The condition for posterior propriety is rank(Xy) = 2 for all four joint hyper-

prior PDFs because this condition automatically meets ky ≥ 2. The data in Table 1.3 satisfy

the condition for posterior propriety because all the hospitals are interior (1 ≤ yj ≤ nj − 1

for all j and thus k = ky = 5) and their covariate matrix X = Xy is of full rank.

Based on the data in Table 1.3, we make two hypothetical data sets in Table 1.4. In the

first hypothetical data set, only one hospital is interior. The resulting posterior distribution

is improper for the four joint hyper-prior PDFs because the rank of the covariate matrix of

this interior hospital is not two (rank(Xy) = 1). In the second hypothetical data set, two

hospitals are interior but their EMRs are the same, meaning that the rank of the covariate

matrix of these two interior hospitals is one. Thus, the resulting posterior is improper for

the four joint hyper-prior PDFs.

Next we compare several models using these data sets in Table 1.3 and Table 1.4 to see

the effect of different constants, t and u, in dr/(t+ r)u+1; we consider using either u = 1 or

j 1 2 3 4 5

nj 54 75 93 104 105
yj 1 0 0 0 0

EMRj 4.30 2.21 2.59 4.73 3.28

j 1 2 3 4 5

nj 54 75 93 104 105
yj 1 2 0 0 0

EMRj 4.30 4.30 2.59 4.73 3.28

Table 1.4: Two hypothetical data sets of five hospitals. The number of patients in hospital
j is denoted by nj, the number of death in hospital j is denoted by yj, and the expected
mortality rate (%) for hospital j is denoted by EMRj. In the first data set, only the first
hospital is interior. In the second data set, the first two hospitals are interior but their EMRs
are the same.
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Data\Model 1/r2 1/(10−5 + r)2 1/r1.5 1/(10−5 + r)1.5 EB
Table 1.3 (0.011, 0.116) (0.011, 0.115) (0.008, 0.099) (0.008, 0.100) (0.012, 0.046)

Table 1.4 (L) Improper (0.000, 0.067) Improper (0.000, 0.066) (0.003, 0.005)
Table 1.4 (R) Improper (0.000, 0.068) Improper (0.001, 0.062) (0.002, 0.030)

Table 1.5: The 95% posterior intervals of p1 obtained by Bayesian BBL models equipped
with hyper-prior PDFs, g(β) = N(β | 0×12, 1010×I2), which is the same for all models, and
dr/(t+ r)u+1 with u = 1 or u = 0.5 and with t = 0 or t = 10−5. The 95% intervals obtained
by an empirical Bayes (EB) approach appear in the last column. The left hypothetical data
in Table 1.4 are denoted by Table 1.4 (L) and the right one by Table 1.4 (R).

u = 0.5 and either t = 0 or t = 10−5. The sampling configurations are the same as those

in the previous section except that we set g(β) = N(β | 0 × 12, 1010 × I2) for all models,

where 12 is a vector of ones and I2 is a 2× 2 identity matrix. Table 1.5 summarizes the 95%

posterior intervals for p1.

When models are all proper based on the data in Table 1.3, the interval estimates are

similar between t = 10−5 and t = 0, but quite different depending on whether u = 1 or

u = 0.5. Clearly, intervals based on u = 1 are wider (more conservative) than those based on

u = 0.5. This is because dr/r2 puts more weight at zero than dr/r1.5 a priori, and thus dr/r2

produces smaller posterior samples of r that leads to wider interval estimates in turn; the

variance of a conditional Beta posterior distribution for pj in (1.4), p̂j(1− p̂j)/(r + nj + 1),

increases as r decreases, where p̂j is its posterior mean. The improper hyper-prior PDFs,

dr/r2 and dr/r1.5, lead to posterior impropriety for the data in Table 1.4 due to the reasons

specified above. The EB approach leads to much narrower intervals for all three data sets.

1.4 Acceptance-rejection method

In this section, we illustrate an acceptance-rejection (A-R) method to draw posterior samples

of random effects and hyper-parameters (Robert and Casella, 2013). The joint posterior

density function of α = − log(r) and β based on their joint hyper-prior density function in

(1.9) is

f(α,β | y) ∝ f(α,β)L(α,β) ∝ exp(α)L(α,β). (1.21)

22



The A-R method is useful when it is difficult to sample a parameter of interest θ directly

from its target probability density f(θ), which is known up to a normalizing constant, but

an easy-to-sample envelope function g(θ) is available. The A-R method samples θ from the

envelope g(θ) and accepts it with a probability f(θ)/(Mg(θ)), where M is a constant making

f(θ)/g(θ) ≤ M for all θ. The distribution of the accepted θ exactly follows f(θ). The A-R

method is stable as long as the tails of the envelope function are thicker than those of the

target density function.

Thus, our goal is to draw posterior samples of hyper-parameters from (1.21), using an

easy-to-sample envelope function g(α,β) that has thicker tails than the target density func-

tion. We factor the envelope function into two parts, g(α,β) = g1(α)g2(β) to model the

tails of each function separately. We consider the tail behavior of the conditional posterior

density function f(α | β,y) to establish g1(α); f(α | β,y) behaves as exp(−α(k − 1)) when

α goes to ∞ and as exp(α) when α goes to −∞. It indicates that f(α | β,y) is skewed

to the left because the right tail touches the x-axis faster than the left tail does as long as

k > 1. A skewed t-distribution is a good candidate for g1(α) because it behaves as a power

law on both tails, leading to thicker tails than those of f(α | β,y).

It is too complicated to figure out the tail behaviors of f(β | α,y). However, because

f(β | α,y) in the Gaussian model (as an approximation) has a multivariate Gaussian density

function (Morris and Tang, 2011a; Kelly, 2014), we consider a multivariate t-distribution with

four degrees of freedom as a good candidate for g2(β).

Specifically, we assume

g1(α) = g1(α; l, σ, a, b) ≡ Skewed-t(α | l, σ, a, b), (1.22)

g2(β) = g2(β; ξ, S(m×m)) ≡ t4(β | ξ, S), (1.23)

where Skewed-t(α | l, σ, a, b) represents a density function of a skewed t-distribution of α with

location l, scale σ, degree of freedom a+ b, and skewness a− b for any positive constants a
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and b (Jones and Faddy, 2003). Jones and Faddy (2003) derive the mode of g1(α) as

l +
(a− b)

√
a+ b√

(2a+ 1)(2b+ 1)
, (1.24)

and provide a representation to generate random variables that follows Skewed-t(α | l, σ, a, b);

α ∼ l + σ

√
a+ b(2T − 1)

2
√
T (1− T )

, where T ∼ Beta(a, b). (1.25)

They also show that the tails of the skewed-t density function follow a power law with

α−(2a+1) on the left and α−(2b+1) on the right when b > a.

The notation t4(β | ξ, S) in (1.23) indicates a density function of a multivariate t-

distribution of β with four degrees of freedom, a location vector ξ, and a m × m scale

matrix S that leads to the variance-covariance matrix 2S.

We determine the parameters of g1(α) and g2(β), i.e., l, σ, a, b, ξ, and S, to make the

product of g1(α) and g2(β) similar to the target joint posterior density f(α,β | y). First, we

obtain the mode of f(α,β | y), (α̂, β̂), and the inverse of the negative Hessian matrix at the

mode. We define −H−1
α̂ to indicate the (1, 1)th element of the negative Hessian matrix and

−H−1

β̂
to represent the negative Hessian matrix without the first row and the first column.

For g1(α), we set (a, b) to (k, 2k) if k is less than 10 (or to (log(k), 2 log(k)) otherwise)

for a left-skewness and these small values of a and b lead to thick tails. We match the

mode of g1(α) specified in (1.24) to α̂ by setting the location parameter l to α̂ − (a −

b)
√
a+ b/

√
(2a+ 1)(2b+ 1). We set the scale parameter σ to (−H−1

α̂ )0.5ψ, where ψ is a

tuning parameter; when the A-R method produces extreme weights defined in (1.26) below,

we need enlarge the value of ψ.

For g2(β), we set the location vector ξ to the mode β̂ and the scale matrix S to −H−1

β̂
/2

so that the variance-covariance matrix becomes −H−1

β̂
.

For implementation of the acceptance-rejection method, we draw four times more trial

samples than the desired number of samples, denoted by N , independently from g1(α) and

g2(β). We calculate 4N weights, each of which is defined as

wi ≡ w(α(i),β(i)) =
f(α(i),β(i) | y)

g1(α(i))g2(β(i))
, for i = 1, 2, . . . , 4N. (1.26)
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The A-R method accepts each pair of (α(i),β(i)) with a probability wi/M where M is set to

the maximum of all the 4N weights. When the A-R method accepts more than N pairs, it

discards the redundant. If the A-R method accepts less than N pairs, then it additionally

draws N ′ (six times the shortage) pairs and calculates a new maximum M ′ from all the

previous and new weights; the A-R method accepts or rejects the entire pairs again with

new probabilities wj/M
′, j = 1, 2, . . . , 4N +N ′.

After obtaining posterior samples of hyper-parameters, we draw posterior samples of

random effects from

f(p | y) =

∫
f(p | r,β,y)f(r,β | y)drdβ, (1.27)

where p = (p1, p2, . . . , pk)
> and the distributions in the integrand are given in (1.4) and

(1.9). The integration on the right hand side of (1.27) can be done by sampling p from

f(pj | β, r,y) in (1.4) for j = 1, 2, . . . , k, given r = exp(−α) and β that are already sampled

from f(α,β | y), or equivalently f(r,β | y), via the A-R method.

1.5 Frequency method checking

The question as to whether the interval estimates of random effects for given confidence

level obtained by a specific model achieve the nominal coverage rate for any true parameter

values is one of the key model evaluation criteria. Unlike standard model checking methods

that test whether a two-level model is appropriate for data (Dean, 1992; Christiansen and

Morris, 1996), frequency method checking is a procedure to evaluate the coverage properties

of the model. Conditioning that the two-level model is appropriate, the frequency method

checking generates pseudo-data sets given specific values of hyper-parameters and estimates

unknown coverage probabilities based on these mock data sets (a parametric bootstrapping).
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1.5.1 Pseudo-data generation

Figure 1.2 displays the process of generating pseudo-data sets. It is noted that the conjugate

prior distribution of each random effect in (1.2) is completely determined by two hyper-

parameters, r and β. Fixing r and β at specific values, we generateNsim sets of random effects

from the conjugate prior distribution, i.e., {p(i), i = 1, . . . , Nsim}, where the superscript (i)

indicates the i-th simulation. Next, using the distribution of observed data in (1.1), we

generate Nsim sets of observed data sets {y(i), i = 1, . . . , Nsim} given each p(i).

Figure 1.2: Pseudo-data generating process.

1.5.2 Coverage probability estimation

After fitting the Gaussian model for each simulated data set, we obtain interval estimates

of the random effects p(i). Let (p̂
(i)
j, low, p̂

(i)
j, upp) represent the lower and upper bounds of the

interval estimate of random effect j based on the i-th simulation given a specific confidence

level. We define the coverage indicator of random effect j on the i-th mock data set as

I
(
p

(i)
j

)
=

 1, if p
(i)
j ∈

(
p̂

(i)
j, low, p̂

(i)
j, upp

)
,

0, otherwise.
(1.28)

This shrinkage indicator is equal to the value one if the random effect j in simulation i is

between its interval estimates and zero otherwise.

1.5.3 Simple unbiased coverage estimator.

When the confidence level is 95%, the proportion of 95% interval estimates that contain

random effect j is an intuitive choice for the coverage rate estimator for random effect
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j. This estimator implicitly assumes that there exist k unknown coverage probabilities of

random effects, denoted by Cr,β(pj) for j = 1, 2, . . . , k, depending on the values of the hyper-

parameters that generate random effects and mock data sets. The coverage indicators for

random effect j in (1.28) is assumed to follow an independent and identically distributed

Bernoulli distribution given the unknown coverage rate Cr,β(pj). The sample mean of these

coverage indicators is a simple unbiased coverage estimator for Cr,β(pj); for j = 1, 2, . . . , k,

Ī(pj) =
1

Nsim

Nsim∑
i=1

I
(
p

(i)
j

)
. (1.29)

The unbiased variance estimator of V ar(Ī(pj)) is, for j = 1, 2, . . . , k,

V̂ ar
(
Ī(pj)

)
=

1

Nsim(Nsim − 1)

Nsim∑
i=1

(
I(p

(i)
j )− Ī(pj)

)2

. (1.30)

1.5.4 Rao-Blackwellized unbiased coverage estimator.

Frequency method checking is computationally expensive in nature because it fits a model

on every mock data set. The situation deteriorates if the number of simulations or the size

of data is large, or the estimation method is computationally demanding. Christiansen and

Morris (1997) and Tang (2002) use a Rao-Blackwellized (RB) unbiased coverage estimator

for the unknown coverage rate of each random effect, which is more efficient than the simple

unbiased coverage estimator. For j = 1, 2, . . . , k,

Cr,β(pj) = E
(
Ī(pj) | r,β

)
= E

[
1

Nsim

Nsim∑
i=1

E
(
I(p

(i)
j ) | r,β,y(i)

) ∣∣∣∣ r,β], (1.31)

where the sample mean of the interior conditional expectations in (1.31) is the RB unbiased

coverage estimator. Specifically,

ĪRB(pj) =
1

Nsim

Nsim∑
i=1

E
(
I(p

(i)
j ) | r,β,y(i)

)
(1.32)

=
1

Nsim

Nsim∑
i=1

P
(
p

(i)
j ∈ (p̂

(i)
j, low, p̂

(i)
j, upp) | r,β,y(i)

)
. (1.33)
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We can easily compute the conditional posterior probabilities in (1.33) using the cumulative

density function of the Gaussian conditional posterior distribution of each random effect in

(1.4). The variance of ĪRB(pj) does not exceed the variance of a simple unbiased coverage

estimator, Ī(pj) (Rao, 1945; Blackwell, 1947).

If one dataset y(i) is simulated for each set of random effects p(i), the variance estimator

below is an unbiased estimator of V ar(ĪRB(pj)). For j = 1, 2, . . . , k,

V̂ ar(ĪRB(pj)) ≡
1

Nsim(Nsim − 1)

Nsim∑
i=1

(
E(I(p

(i)
j ) | r,β,y(i))− ĪRB(pj)

)2

. (1.34)

1.5.5 Overall unbiased coverage estimator

To summarize the frequency method checking, we report the overall unbiased coverage esti-

mate and its variance estimate,

¯̄IRB =
1

k

k∑
j=1

ĪRB(pj) and V̂ ar( ¯̄IRB) =
1

k2

k∑
j=1

V̂ ar(ĪRB(pj)). (1.35)

1.6 Example: Data of 18 baseball players

Table 1.6 shows the data of 18 major league baseball players through their first 45 official

at-bats in the 1970 season (Efron and Morris, 1975). Our goal is to obtain point and interval

estimates of each player’s unknown true batting average pj (random effect) for a comparison

purpose, whilst considering a binary covariate information about whether a player was an

outfielder or not. We assume that each player’s unknown true batting average did not change

for the first 45 at-bats, and the at-bats were independent to each other given the unknown

true batting average.

We fit a Bayesian BBLR model (m = 2) to these data with the SHP analog, f1(r,β) ∝

dβdr/r2, for an illustrative purpose and three other joint HPDFs, f2(r,β) ∝ dβdr/(1 + r)2,

f3(r,β) ∝ dβdr/r1.5, and f4(r,β) ∝ dβdr/(1 + r)1.5, for a sensitivity analysis.

We summarize 5,000 posterior samples obtained via the A-R method in Table 1.6. The

binary covariate information forms two different conjugate Beta prior distributions for out-

28



Table 1.6: Data of 18 baseball players based on the first 45 official at-bats in the 1970 season
and summaries of 5,000 posterior samples obtained via the A-R method with drdβ/r2; for
player j, ȳj is the observed batting average out of 45 at-bats, xj2 is an outfielder indicator
taking on 1 if player j is an outfielder and 0 otherwise, E(Bj|y) is the posterior mean of
shrinkage factor, E(pEj |y) is the posterior mean of logit−1(x>j β), E(pj|y) is the posterior
mean of random effect j, and 95% P.I. is the (0.025, 0.975) quantiles of 5,000 posterior
samples of random effect j.

Names ȳj xj2 E(Bj |y) E(pEj |y) E(pj |y) 95% P.I.

Roberto Clemente 0.400 1 0.752 0.309 0.332 (0.257, 0.429)
Frank Robinson 0.378 1 0.752 0.309 0.324 (0.249, 0.416)
Frank Howard 0.356 1 0.752 0.309 0.321 (0.244, 0.411)
Jay Johnstone 0.333 1 0.752 0.309 0.315 (0.236, 0.401)

Ken Berry 0.311 1 0.752 0.309 0.309 (0.233, 0.394)
Ron Swaboda 0.244 1 0.752 0.309 0.293 (0.209, 0.372)

Del Unser 0.222 1 0.752 0.309 0.288 (0.201, 0.370)
Billy Williams 0.222 1 0.752 0.309 0.286 (0.197, 0.367)
Jim Spencer 0.311 0 0.752 0.233 0.252 (0.186, 0.341)

Don Kessinger 0.289 0 0.752 0.233 0.246 (0.179, 0.331)
Luis Alvarado 0.267 0 0.752 0.233 0.241 (0.175, 0.321)

Ron Santo 0.244 0 0.752 0.233 0.235 (0.167, 0.311)
Rico Petrocelli 0.222 0 0.752 0.233 0.229 (0.162, 0.301)
Ellie Rodriguez 0.222 0 0.752 0.233 0.230 (0.163, 0.305)
George Scott 0.222 0 0.752 0.233 0.229 (0.161, 0.304)

Bert Campaneris 0.200 0 0.752 0.233 0.225 (0.155, 0.296)
Thurman Munson 0.178 0 0.752 0.233 0.219 (0.146, 0.288)

Max Alvis 0.156 0 0.752 0.233 0.213 (0.139, 0.281)

fielders and infielders. The posterior mean of β1 is 0.386 with its (0.025, 0.975) quantiles

equal to (0.004, 0.760). As a result, the posterior mean of outfielder’s expected batting

average, i.e., E(pEj |y), is larger than that for infielder’s (0.309 > 0.233).

We draw the 95% posterior interval plot in Figure 1.3. The result clearly shows an

effect called regression towards the mean (RTTM) within outfielders and infielders. The first

player, for example, is an outfielder and his observed batting average is higher than any other

outfielders. This can be attributed to his good luck, considering that his observed batting

average is close to the upper bound of the posterior interval estimate. The RTTM implies

that his unknown true batting average will shrink towards outfielder’s expected batting

average in the long run. Thus, reflecting on the RTTM, the posterior mean of his unknown

true batting average becomes lower than his observed batting average.

We check the sensitivity of the posterior inference according to different hyper-prior
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Figure 1.3: The posterior means (red dots) of unknown true batting averages (random effects)
shrink the observed batting averages (empty circles) towards the posterior mean of expected
batting averages E(pEj |y) (blue horizontal bars). The 95% posterior intervals (vertical lines)
clarify the regression towards the mean.

distributions and summarize the outcomes in Table 1.7. The posterior inference on logistic

regression coefficients seems robust to the different HPDFs of r. The inference on r that

determines shrinkage factors is quite sensitive to the exponent (2 or 1.5) of the HPDF for

r; the posterior mean of the shrinkage factor is 0.752 when dr/r2 is used and 0.862 when

dr/r1.5 is used. The inference is more conservative when the exponent is two in that the

posterior distribution borrows less information (smaller shrinkage) from the second-level

prior distribution. The inference result looks insensitive to whether f(r) is improper (t = 1)

or not (t = 0), considering that the posterior mean of the shrinkage factor is 0.752 for dr/r2

Table 1.7: The posterior means (P.M.), posterior standard deviations (P.SD.), and 95%
posterior intervals (95% P.I.) of B = r/(r+45), β1, and β2 according to different hyper-prior
distributions.

(a) f1(r,β) ∝ drdβ/r2

P.M. P.SD. 95% P.I.
B 0.750 0.170 (0.379, 0.990)
β1 -1.197 0.131 (-1.458, -0.936)
β2 0.386 0.193 (0.004, 0.760)

(b) f2(r,β) ∝ drdβ/(1 + r)2

P.M. S.D. 95% P.I.
B 0.752 0.169 (0.375, 0.989)
β1 -1.199 0.133 (-1.458, -0.939)
β2 0.391 0.190 (0.012, 0.765)

(c) f3(r,β) ∝ drdβ/r1.5

P.M. S.D. 95% P.I.
B 0.862 0.144 (0.495, 1.000)
β1 -1.204 0.124 (-1.450, -0.960)
β2 0.392 0.176 (0.046, 0.743)

(d) f4(r,β) ∝ drdβ/(1 + r)1.5

P.M. S.D. 95% P.I.
B 0.861 0.144 (0.497, 1.000)
β1 -1.198 0.126 (-1.453, -0.951)
β2 0.388 0.180 (0.027, 0.736)
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and dr/(1 + r)2, and about 0.861 for dr/r1.5 and dr/(1 + r)1.5.

We conduct the FMC to evaluate whether their 95% Bayesian interval estimates for

random effects meet the nominal 95% confidence level. We fix the generative values of

(r, β1, β2) at (189, -1.197, 0.386), which are posterior median for r and posterior means for

β1 and β2 obtained under dβdr/r2. We simulate 3,000 (= Nsim) mock data sets, fitting

the Bayesian BBLR models with four different joint HPDFs on each simulated data set.

The conditions for posterior propriety are the same for all four joint HPDFs; the ky × 2

covariate matrix of interior groups (players) is of full rank 2. The probability of observing an

infeasible data set is negligible (6 × 10−90), and all 3,000 mock data sets met the condition

for posterior propriety. The posterior interval of each random effect is based on 5,000 (=

N) posterior samples obtained via the A-R method. We use the RB unbiased coverage

estimator to estimate the unknown true coverage rates of random effects, i.e., Cr,β1,β2(pj) for

j = 1, 2, . . . , 18.

In Figure 1.4, we display the results of the FMC obtained with four different HPDFs.

Each plot shows 18 RB coverage estimates denoted by circles. The standard error of coverage

estimates are too small to be displayed (average is 0.0002).

All four models produce 95% posterior interval estimates that meet the nominal 95%

confidence level. The coverage estimates obtained with f1(r,β) and f2(r,β) (the first row of

Figure 1.4) achieve the confidence level more conservatively than those obtained with f3(r,β)

and f4(r,β) (the second row of Figure 1.4). The result is consistent to the previous sensitivity

analysis because the length of posterior interval becomes shorter if a model produces a larger

r (a larger shrinkage) a posteriori; the HPDF with exponent 1.5 tends to allow larger r a

posteriori than that with exponent 2.

However, there is a limitation in this coverage statement because it is based only on a

single set of generative values. Obtaining coverage estimates over all parameter values seems

impossible as the parameters are continuous. We try a range of r values so that we can at

least have an idea about the tendency of coverage rates, while fixing the generative values
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Figure 1.4: Each plot shows 18 RB coverage rate estimates based on 3,000 mock data sets
generated by the values of hyper-parameters (r, β1, β2) = (189,−1.197, 0.386).

of β1 and β2.

We select equally-spaced 10 values of shrinkages inclusively between 0.05 and 0.95 and

revert them to 10 generative values of r to see the effect of increasing generative values of r

on coverage rate estimates (r = 45B/(1 − B) =2, 8, 15, 24, 37, 55, 84, 135, 255, and 855).

The generative values of β1 and β2 are (−1.179, 0.386), the same as before. We simulate

3,000 (= Nsim) mock data sets for each generative triple values of (r, β1, β2). We fit the

Bayesian BBLR models equipped with four different joint HPDFs on every mock data set.

The 95% posterior intervals of random effects are based on 5,000 posterior samples of each

random effect obtained via the A-R method. Because the coverage rate estimates in each

plot of Figure 1.4 are almost indifferent to players, we simplify the setting by assuming

Cr,β1,β2(pj) is the same as Cr,β1,β2 for all random effects and use the RB overall unbiased

coverage estimator.

The RB overall coverage rate estimates in Figure 1.5 show different patterns between the

first and second rows. The standard errors of coverage estimates are too small to be displayed

(average is 0.00014). The HPDFs on the first row, f1(r,β) and f2(r,β), produce 95%
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Figure 1.5: Each plot shows the 10 RB overall coverage rate estimates for Cri,β1,β2 ,
i = 1, 2, . . . , 10 on corresponding 10 shrinkage factors, i.e., (B1, B2, B3, . . . , B10) =
(0.05, 0.15, 0.25, . . . , 0.95), where Bi = ri/(ri + 45) for i = 1, 2, . . . , 10.

posterior intervals for random effects that slightly under-cover the nominal 95% confidence

level over the range of shrinkage values between 0.15 and 0.35. On the other hand, the

HPDFs on the second row, f3(r,β) and f4(r,β), produce the 95% posterior intervals that

have noticeable under-coverages on the wider range of shrinkage factors between 0.15 and

0.65. It indicates that the HPDF on the first row, f1(r,β) and f2(r,β), meet the spirit of

95% confidence level better.

1.7 Conclusion

The Beta-Binomial-Logit (BBL) model accounts for the overdispersion in the Binomial data

obtained from several independent groups with their covariate information considered. From

a Bayesian perspective, we derive data-dependent necessary and sufficient conditions for

posterior propriety of the Bayesian BBL model equipped with a joint hyper-prior density,

g(β)dβdr/(t + r)u+1, where t ≥ 0, u > 0, and g(β) can be any proper density or an

improper flat density. This joint hyper-prior density encompasses those used in the literature.
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Using two numerical illustrations, we look into posterior propriety and posterior properties,

suggesting conservative and diffuse choices of proper hyper-prior densities be used when the

posterior is improper due to improper hyper-prior probability density functions.

In the baseball example, we select four hyper-prior density functions for r and check their

operating characteristics via a repeated sampling coverage evaluation, which we call frequency

method checking. For this work, we use the Rao-Blackwellized unbiased coverage estimator to

estimate unknown coverage rates of random effects and implemented an acceptance-rejection

method to sample all the unknown parameters from their joint posterior distribution. It

turns out that the density functions for r whose exponent is equal to 2, i.e., dr/r2 (analog to

Stein’s harmonic prior) and dr/(1+r)2 (uniform shrinkage prior), produce more conservative

coverage rate estimates, meeting the nominal confidence level better over a wider range of

generative true shrinkage values than those with exponent 1.5.

There are several opportunities to build upon our work. First of all, it is not clear whether

the necessary and sufficient conditions specified in Figure 1.1 hold for other link functions,

e.g., a complementary log-log link function; a probit link function is not appropriate for a

BBL model because it is defined on binary data (nj = 1) not on aggregate data (nj ≥ 2).

As for frequency coverage properties, the data-dependent conditions for posterior propriety

make it hard to evaluate these properties because some models with improper hyper-prior

distributions do not define a frequency procedure for all possible data sets; the resulting

posterior can be improper for some data sets. Thus, in a repeated sampling simulation, we

may evaluate frequency properties given only the simulated data sets that achieve posterior

propriety. If the probability of generating the data sets that lead to an improper posterior

is negligible, this frequency evaluation procedure will be justified. We leave these for our

future research.
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Chapter 2

Bayesian Estimates of Astronomical

Time Delays between Gravitationally

Lensed Stochastic Light Curves

2.1 Introduction

Quasars are highly luminous astronomical sources in the distant Universe. The path that

light takes from a quasar to Earth can be altered by the gravitational field of a massive

intervening galaxy which thus acts as a lens, bending the trajectory of the emitted light; see

the first panel of Figure 2.1. If the gravitational field of the galaxy is a strong gravitational

lens, multiple images of the quasar can appear in slightly different locations in the sky, from

the perspective of an observer on Earth, an effect known as strong gravitational lensing

(Schneider et al., 1992, 2006). In this case, there are typically two or four replicate images,

referred to as doubly- or quadruply-lensed quasars.

The light rays forming each of these gravitationally lensed quasar images take different

routes from the quasar to Earth. Since both the lengths of the pathways and the gravitational

potentials they traverse differ, the resulting multiple images are subject to differing lensing



Figure 2.1: The gravitational field of an intervening galaxy acts as a lens deflecting two
light rays of a quasar image towards the Earth as shown in the left panel. The arrival times
can differ owing to the different lengths of pathways and different gravitational potentials
they pass through. An optical V-band image of the doubly-lensed quasar Q0957+561 ob-
tained with the Canada France Hawaii telescope (Fischer et al., 1997; Munoz et al., 1998)
(https://www.cfa.harvard.edu/castles) appears in the right panel. The two bright sources
at the top and bottom are the lensed images of the quasar, and the small red point towards
the top-left of the lower quasar image is the lensing galaxy.

magnifications and their light rays arrive at the observer at different times. Because of this,

any fluctuations in the source brightness are observed in each image at different times. From

a statistical perspective, we can construct a time series of the brightness of each image,

known as a light curve. Features in these light curves appear to be shifted in time and these

shifts are called time delays.

Obtaining accurate time delay estimates is important in cosmology because they can be

used to address fundamental questions regarding the origin and evolution of the Universe.

For instance, Refsdal (1964) suggested using time delay estimates to constrain the Hub-

ble constant Ho, the current expansion rate of the Universe; given a model for the mass

distribution and gravitational potential of the lensing galaxy, the time delay between mul-

tiple images of the lensed quasar is inversely proportional to Ho (Blandford and Narayan,

1992; Suyu et al., 2013). Also, Linder (2011) showed that an accurate time delay estimate

could substantially constrain cosmological parameters in the equation of state of dark energy

characterizing the accelerated expansion of the Universe.

The upcoming large-scale astronomical survey conducted with the Large Synoptic Survey

Telescope (LSST, LSST Science Collaboration, 2009), will monitor thousands of gravitation-

ally lensed quasars beginning in 2022. The LSST is the top-ranked ground-based telescope
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project in the 2010 Astrophysics Decadal Survey, and will produce extensive high-cadence

time series observations of the full sky for ten years. In preparation for the Big Data era of

the LSST, Dobler et al. (2015) organized a blind competition called the Time Delay Chal-

lenge (TDC) which ran from October 2013 to July 2014 with the aim of improving time delay

estimation methods for application to realistic observational data sets. The TDC organizers

prepared thousands of simulated data sets mimicking real quasar data. We are among 13

teams who took part in the TDC, each of which analyzed the simulated data using their own

methods to estimate the blinded time delays1.

2.1.1 Data and challenges

We plot a pair of simulated light curves from a doubly-lensed quasar in Figure 2.2; the light

curves are labeled as A and B. Each observation time is denoted by vertical dashed lines, at

which the observer measures the brightness of each gravitationally lensed quasar image. In

a real data analysis, these images would correspond to the two bright sources in the second

panel of Figure 2.1. The brightness is reported on the magnitude scale, an astronomical

logarithmic measure of brightness, in which smaller numbers correspond to brighter objects.

The magnitudes in Figure 2.2 are presented up to an overall additive calibration constant.

Since the time delay is estimated via relative comparison between fluctuations in the two

light curves, it is insensitive to this overall additive constant.

For a doubly-lensed quasar, there are four variables recorded on an irregularly spaced

sequence of observation times t = (t1, t2, . . . , tn)>; the observed magnitudes denoted by

x(t) = (x(t1), x(t2), . . . , x(tn))> for light curve A and by y(t) = (y(t1), y(t2), . . . , y(tn))> for

light curve B, as well as the standard deviations of the measurement errors of the two light

curves δ(t) = (δ(t1), δ(t2), . . . , δ(tn))> and η(t) = (η(t1), η(t2), . . . , η(tn))>, respectively.

In Figure 2.2, x(t) and y(t) are represented by red squares and blue circles, and their

1In the last stage of the TDC (called rung4 in the TDC), an earlier version of our method achieved the
smallest average coefficient of variation (precision), the TDC target for the average error level (accuracy)
within one standard deviation, and acceptable average squared standardized residual (χ2) after analyzing
the second highest number of data sets (f). See Liao et al. (2015) for detailed result of the TDC.
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Figure 2.2: The red squares and blue circles indicate the observed magnitudes of the two
simulated images at each observation time. The half lengths of vertical lines represent the
standard deviations of the measurement errors. The convention in astrophysics is to plot
the magnitude inversely so that smaller magnitudes (brighter object) appear on the top and
larger ones (fainter object) on the bottom. The quasar magnitudes are vertically offset by
an overall calibration constant, the value of which is unimportant for time delay estimation.

measurement standard errors by the half lengths of vertical lines around the magnitudes.

Similarly, for a quadruply-lensed quasar, there are four light curves, each with their own

measurement errors.

Since a quasar exhibits fluctuations in its brightness, it is possible to estimate time delays

between different copies of those fluctuations. In Figure 2.2, for example, the bottom of the

V-shaped valley of light curve A at around 900 days precedes that of light curve B by around

50 days. Other features in the light curves exhibit a similar time delay of about 50 days.

However, a number of aspects of the light curves in Figure 2.2 make accurate time

delay estimation statistically challenging. First, irregular observation times are inevitable

because poor weather sometimes prevents observations. Second, the motion of the Earth

around the Sun causes seasonal gaps because part of the sky is not visible at night during

certain months. Third, since the light of each gravitationally lensed image traverses different

paths through the gravitational potential, they are subject to differing degrees of lensing

magnification. Thus, the light curves often exhibit different average magnitudes. Finally,

observed magnitudes are measured with error, leading to relatively larger measurement errors

for fainter images.

Moreover, some quasar images exhibit additional independent extrinsic variability, an
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Figure 2.3: The light curves of two lensed images can have different long-term trends caused
by microlensing due to stars moving within the lensing galaxy. This effect independently
introduces a long-term magnification trend in each image. Here, we simulate the effect of
two different long-term linear microlensing trends on the light curves in Figure 2.2. The
dotted lines depict the linear microlensing trend for each image.

effect called microlensing. This occurs when gravitational lensing by stars moving inside

the lensing galaxy independently introduces brightness magnification variations into each

path of of light, in addition to the overall magnifications caused by strong lensing of the

galaxy (Chang and Refsdal, 1979; Tewes et al., 2013). If the timescale of the microlensing

variability is much larger than that of the intrinsic quasar variability, the individual light

curves may exhibit different long-term trends that are not related to the intrinsic variability

of the source. As an illustration, we plot the same simulated light curves A and B with

different added linear trends to simulate the effect of microlensing in Figure 2.3.

2.1.2 Other time delay estimation methods

Grid-based searches for time delay estimates are classic in this field. One-dimensional grid

methods estimate the time delay, ∆AB,2 between light curves A and B by minimizing the

χ2 distance or by maximizing the cross-correlation between two light curves, x(t) and y(t+

∆AB), on a grid of values of ∆AB (Fassnacht et al., 1999). Both techniques require an

interpolation scheme. The dispersion method (Pelt et al., 1994) combines two light curves

by shifting one of them in time and magnitude by ∆AB and β0, respectively. This is called

2A positive value of ∆AB indicates that features in light curve A appear before they appear in light
curve B.
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the curve-shifting assumption. The method estimates ∆AB and β0 on a two dimensional

grid by minimizing the sum of squared differences between consecutive pairs of magnitudes

on the combined curve. A bootstrapping method is used to produce standard errors of the

time delay estimates. These methods account only for the intrinsic variability of a quasar.

(When it is clear from the context, we suppress the subscript on ∆AB and simply use ∆.)

Model-based methods have also been proposed in past to avoid the computational burden

of evaluating the fit on a fine grid. For example, Tewes et al. (2013) model the intrinsic and

extrinsic variabilities of light curves using high-order and low-order splines, respectively.

They obtain the least square estimate of ∆ by iterating a two-step fitting routine in which

splines are first fit given ∆ and then ∆ is optimized given the model fit. They also use a

parametric bootstrapping for the standard error of the time delay estimate.

Harva and Raychaudhury (2006, hereafter H&R) introduced the first fully Bayesian ap-

proach, though they do not account for microlensing. They assume each observed light curve

is generated by an unobserved underlying process. One of the latent processes is assumed

to be a shifted and scaled version of the other, with the time and magnitude shifts and the

magnitude scale treated as unknown parameters. They use a collapsed Gibbs-type sampler

for model fitting, with the latent process integrated out of the target posterior distribution.

Unlike other existing methods this approach unifies parameter estimation and uncertainty

quantification into a single coherent analysis based on the posterior distribution of ∆.

2.1.3 Our Bayesian and profile likelihood approaches

The TDC motivated us to improve on H&R’s fully Bayesian model by taking advantage of

modeling and computational advances made since H&R’s 2006 proposal. Specifically, we

adopt an Ornstein-Uhlenbeck (O-U) process (Uhlenbeck and Ornstein, 1930) to model the

latent light curve. The O-U process has been empirically shown to describe the stochastic

variability of quasar data well (Kelly et al., 2009; Koz lowski et al., 2010; MacLeod et al.,

2010; Zu et al., 2013). We address the effect of microlensing by incorporating a polynomial
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regression on time into the model. We specify scientifically motivated prior distributions

and conduct a set of systematic sensitivity analyses. A Metropolis-Hastings (M-H) within

Gibbs sampler (Tierney, 1994b) is used to take advantage of the latent process rather than

integrating it out as did H&R. We improve the convergence rate of our MCMC (Markov

chain Monte Carlo) sampler by using an ancilarity-sufficiency interweaving strategy (Yu and

Meng, 2011) and adaptive MCMC (Brooks et al., 2011).

To complement the Bayesian method, we introduce a simple profile likelihood approach

that allows us to remove nuisance parameters and focus on ∆ (e.g., Davison, 2003). We

show that the profile likelihood function of ∆ is approximately proportional to the marginal

posterior distribution of ∆ when a Jeffreys’ prior is used for the nuisance parameters (Berger

et al., 1999), see Appendix B.4. For the problems we investigate the profile likelihood is

nearly identical to the marginal posterior distribution, validating both methods.

Our time delay estimation strategy combines these two complementary approaches. We

first obtain the profile likelihood of ∆, which is simple to compute. A more principled fully

Bayesian analysis focuses on the dominant mode identified by the profile likelihood and pro-

vides joint inference for the time delay and other model parameters via the joint posterior

distribution.

The rest of this chapter is organized as follows. We describe our Bayesian model in

Section 2.2 and the MCMC sampler that we use to fit it in Section 2.3. In Section 2.4,

we introduce the profile likelihood approach. We then specify our estimation strategy and

illustrate it via a set of numerical examples in Section 2.5. An R package, timedelay,

that implements the Bayesian and profile likelihood methods is publicly available at CRAN

(https://cran.r-project.org/package=timedelay).
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2.2 A fully Bayesian model for time delay estimation

2.2.1 Latent time series

We assume that each time-delayed light curve is generated from a latent curve representing

the true source magnitude in continuous time. For example, the solid red and dashed blue

curves in Figure 2.4 are the latent light curves and are denoted by X = {X(t), t ∈ R}

and Y = {Y (t), t ∈ R}, respectively, where X(t) and Y (t) are unobserved true mag-

nitudes at time t. We use the vector notation X(t) = (X(t1), X(t2), . . . , X(tn))> and

Y (t) = (Y (t1), Y (t2), . . . , Y (tn))> to denote the n magnitudes of each latent light curve at

the irregularly-spaced observation times t.

A curve-shifted model (Pelt et al., 1994; Kochanek et al., 2006) assumes that one of the

latent light curves is a shifted version of the other, that is

Y (t) = X(t−∆) + β0, (2.1)

where ∆ is a shift in time and β0 is a magnitude offset. For example, we generated the latent

curves in Figure 2.4 under the model in (2.1). Thus the two latent curves exactly overlap if

the solid red curve is shifted by ∆ days and by β0 magnitude units. The key advantage of this

model is that a single latent light curve, here X, is sufficient to represent the true magnitude

time series of the two (or more) lensed images. This model is a special case of H&R’s scaled

Figure 2.4: The dashed blue and solid red curves represent the latent continuous time light
curves and are superimposed on Figure 2.2. The curve-shifted model in (2.1) specifies that
the blue dashed curve is a shifted version of the red curve by ∆ (=70) days in time and by
β0 (=0.07) in magnitude.
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curve-shifted model, Y (t) = sX(t−∆)+β0, where s is a magnitude scale change, mentioned

at the end of Section 2.1.2. Setting s = 1 is reasonable because gravitational lensing only

deflects the source light and magnifies it, i.e., multiplies the source flux. Because magnitude

is on the log10 scale of source flux, we expect an additive offset, i.e., β0, rather than a scale

change. Since the curve-shifted model reflects gravitational lensing well, it is appropriate for

estimating ∆, at least in the absence of microlensing.

Microlensing causes additional long-term extrinsic variability unrelated to the intrinsic

quasar variability driving the dynamics of X. Thus, the curve-shifted model is not appro-

priate in the presence of microlensing. To account for microlensing, we assume that one of

the latent light curves is a time-shifted version of the other, but with an additional m-order

polynomial regression on t−∆, that is

Y (t) = X(t−∆) +w>m(t−∆)β, (2.2)

where wm(t−∆) ≡ (1, t−∆, (t−∆)2, . . . , (t−∆)m)> is a covariate vector of length m+ 1,

and β ≡ (β0, β1, β2, . . . , βm)> is a vector of regression coefficients. The polynomial regression

term in (3.15) accounts for the difference in the microlensing trends of the two light curves,

i.e., the difference between the long-term trends of Y (t) and X(t − ∆). The microlensing

model in (3.15) reduces to a curve-shifted model in (2.1) if β1 = β2 = · · · = βm = 0.

The best choice for the order of the polynomial regression depends on the extent of

microlensing, and this varies from quasar to quasar. We set m = 3 as a default because

the third order polynomial regression has been successfully applied to model lensed quasars

(Kochanek et al., 2006; Morgan et al., 2012; Courbin et al., 2013). If we find evidence via

the profile likelihood that a third order polynomial regression is not sufficient to reduce the

effect of microlensing (see Section 2.5.1 for details), we can impose a reasonable upper bound

of m by running preliminary regression on the observed light curves, and comparing the fits.
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2.2.2 Distribution of the observed data

Observing the gravitationally-lensed images with a telescope, an astronomer measures the

magnitude in each image, x(tj) and y(tj), along with the standard deviations, δ(tj) and η(tj),

at time tj, j = 1, 2, . . . , n. We assume that these measurements have independent Gaussian

errors centered at the latent magnitudes X(tj) and Y (tj), i.e.,

x(tj) | X(tj)
indep.∼ N[X(tj), δ

2(tj)], (2.3)

y(tj) | Y (tj)
indep.∼ N[Y (tj), η

2(tj)], (2.4)

where N[M,V ] is a Gaussian distribution with mean M and variance V , and x(t) and y(t)

are independent given their true magnitudes. Using the model in (3.15), we can express

(3.16) as

y(tj) | X(tj −∆),∆,β
indep.∼ N[X(tj −∆) +w>m(tj −∆)β, η2(tj)]. (2.5)

Given ∆, we define t∆ = (t∆1 , t
∆
2 , . . . , t

∆
2n)> as the sorted vector of 2n times among

the n observation times, t, and the n time-delay-shifted observation times, t − ∆. Also,

X(t∆) = (X(t∆1 ), X(t∆2 ), . . . , X(t∆2n))> is the vector of 2n latent magnitudes at the times in

t∆. The joint density function of the observed data given X(t∆), ∆, and β is

p(x(t),y(t)|X(t∆),∆,β) =
n∏
j=1

p(x(tj)|X(tj))× p(y(tj)|X(tj −∆),∆,β), (2.6)

where the two distributions in the product are given in (2.3) and (2.5).

2.2.3 Distribution of the latent magnitudes

We assume the latent continuous time light curve, X, is a realization of an O-U process

(Uhlenbeck and Ornstein, 1930) as proposed in Kelly et al. (2009, hereafter KBS). The

stochastic differential equation,

dX(t) = −1

τ

(
X(t)− µ

)
dt+ σdB(t), (2.7)
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defines the O-U process, where µ and σ are on the magnitude scale and govern the overall

mean and short-term variability of the underlying process, τ is a timescale (in days) for the

process to revert to the long-term mean µ, {B(t), t ≥ 0} is a standard Brownian motion,

and dB(t) is an interval of the Brownian motion, whose distribution is Gaussian with mean

zero and variance dt. We denote the three O-U parameters by θ = (µ, σ2, τ)>.

KBS empirically demonstrated that the power spectrum of the O-U process is consistent

with the mean power spectrum of 55 well-sampled quasar light curves at a specific frequency

range with timescales shorter than τ . KBS also investigated the associations between model

parameters and the physical properties of quasars. For example, τ has a positive correlation

with black hole mass, which is consistent with previous astrophysical studies. Koz lowski

et al. (2010) and MacLeod et al. (2010) were concerned about a possible selection bias in the

sample of quasars used in KBS and thus they analyzed thousands of light curves. Koz lowski

et al. (2010) found further support for the O-U process in their analyses of about 2,700

quasars obtained from the Optical Gravitational Lensing Experiment (OGLE, Koz lowski and

Kochanek, 2009). They showed that the distribution of the goodness of fit statistic obtained

by fitting the O-U process to their light curves was consistent to the expected distribution

of the statistic under the assumption that the light curve variation was stochastic. MacLeod

et al. (2010) further verified the argument about the correlations between model parameters

and physical properties in KBS by analyzing about 9,000 quasars obtained from the Sloan

Digital Sky Survey (Berk et al., 2004). Zu et al. (2013) also supported the O-U process

by comparing it to the Gaussian process with three different covariance functions in fitting

about 200 OGLE light curves. Their numerical results based on the F -test and Bayesian

information criterion supported the O-U process. These studies popularized the O-U process

among astrophysicists to the extent that the TDC simulated its quasar light curves under

an O-U process (Dobler et al., 2015). The earlier approach of H&R (2006) preceded these

more recent advances in astrophysical and statistical modeling of quasars.

The solution of the stochastic differential equation in (2.7) provides the sampling distri-

45



bution for the time-sorted latent magnitudesX(t∆) via its Markovian property. Specifically,

X(t∆1 ) | ∆,θ ∼ N

[
µ,

τσ2

2

]
, and for j = 2, 3, . . . , 2n, (2.8)

X(t∆j ) | X(t∆j−1),∆,θ ∼ N

[
µ+ aj

(
X(t∆j−1)− µ

)
,
τσ2

2
(1− a2

j)

]
,

where aj ≡ exp(−(t∆j − t∆j−1)/τ) is a shrinkage factor that depends on the observational

cadence and τ . If two adjacent latent magnitudes are close in time, i.e., t∆j − t∆j−1 is small,

aj is close to one and X(t∆j ) borrows more information or shrinks more towards the previous

latent magnitude, X(t∆j−1), and exhibits less uncertainty. On the other hand, if neighboring

latent magnitudes are distant in time, e.g., due to a seasonal gap, aj is close to zero, and

X(t∆j ) borrows little information from the distant value X(t∆j−1) and instead approaches the

overall mean µ. This is known as mean reversion property of the O-U process.

The joint density function of the 2n latent magnitudes is

p(X(t∆) | ∆,θ) = p(X(t∆1 ) | ∆,θ)×
2n∏
j=2

p(X(t∆j ) | X(t∆j−1),∆,θ), (2.9)

where the distributions on the right-hand side are given in (2.8).

2.2.4 Prior distributions for the time delay and the magnitude

offset

We adopt the proper prior distributions, for ∆ and β,

p(∆,β) = p(∆)p(β) ∝ I{u1≤∆≤u2} × Nm+1(β | 0, 105 × Im+1), (2.10)

where I{D} is the indicator function of D, Nm+1(β | 0, Im+1) is an m+1 dimensional Gaussian

density evaluated at β whose mean is 0, a vector of zeros with length m+ 1, and variance-

covariance matrix is 105 × Im+1, with an m + 1 dimensional identity matrix Im+1. We put

a diffuse Gaussian prior on β to minimize impact on the posterior inference and to ensure

posterior propriety.
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The range of the uniform prior distribution on ∆, [u1, u2], reflects the range of interest.

One choice is the entire feasible range (or feasible range) of ∆, [t1 − tn, tn − t1], where there

is at least one data point that overlaps between the two light curves. Outside of this range,

the two light curves do not overlap and the data cannot identify ∆. (H&R used a diffuse

Gaussian prior distribution on ∆ that was defined outside its feasible range.)

In some cases, information about the likely range of ∆ is available from previous analyses

or possibly from astrophysical probes. To find the likely range of ∆, we can also use a

physical model for the mass and gravitational potential of the lens, as well as the redshifts

(an astronomical measure of distance) and relative spatial locations of a quasar and lens.

2.2.5 Prior distributions for the parameters in the O-U process

Considering both scientific knowledge and the dynamics of the O-U process, we put a uniform

distribution on the O-U mean µ, an independent inverse-Gamma (IG) distribution, IG(1,

bσ), on its short-term variance σ2, and an independent IG(1, 1) distribution on its timescale

τ , i.e.,

p(µ, σ2, τ) = p(µ)p(σ2)p(τ) ∝ exp(−bσ/σ2)

(σ2)2
· exp(−1/τ)

τ 2
(2.11)

× I{−30≤µ≤30} · I{σ2>0} · I{τ>0}.

Here the uniform distribution on µ encompasses a magnitude range from that of the Sun

(magnitude = −26.74) to that of the faintest object visible with the Hubble Space Telescope

(magnitude = 30). The IG distributions on τ and σ2 set their soft lower bounds3 to focus

on practical solutions in which ∆ can be constrained. For example, in the limits when τ is

much less than the observation cadence or when σ2 is much smaller than the measurement

variance divided by the cadence, the discrete observations of the continuous latent light curve

appear as serially uncorrelated white noise sequence. In these limiting cases it is impossible

3Because the density function of IG(a, b) decreases exponentially from its mode, b/(a+ 1), toward zero
and geometrically decreases with a power of a + 1 towards infinity, it is relatively unlikely for the random
variable to take on values smaller than its mode.
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to estimate ∆ by matching serially correlated fluctuation patterns. The soft lower bounds

for τ and σ2 discount these limiting cases, and allow us to focus on the relevant parameter

space in which we expect time delay estimation to be feasible.

The relationship between the IG and scaled inverse-χ2 distributions allows us to interpret

the shape parameter of the IG as half the number of directly observed pseudo realizations

of the O-U process that would carry equivalent information as the prior distribution. (See,

e.g., Gelman et al. (2013) for a discussion of the pseudo observation interpretation of prior

distributions.) Thus, we set the shape parameter of the IG prior on τ to one; this corresponds

to two pseudo observations and can be interpreted as an indication that the prior distribution

is relatively weak. It is practical to set the scale parameter of the IG prior for τ to one; the

resulting soft lower bound on τ is 0.5 day and is smaller than all estimates of τ in MacLeod

et al. (2010), who analyzed 9,275 quasars.

For the IG prior distribution of σ2, we set the shape parameter to one and the scale

parameter4 to (Mean measurement standard error)2 / (Median cadence), i.e.,

bσ =
[{
∑n

j=1 δ(tj) +
∑n

j=1 η(tj)}/2n]2

Median(t2 − t1, t3 − t2, . . . , tn − tn−1)
. (2.12)

This scale parameter enables us to search for solutions for which we can constrain ∆ by

avoiding the above limiting cases. Another viable choice for the scale parameter is bσ = 2/107

because all estimates of σ2 in MacLeod et al. (2010) are larger than this value. Sensitivity

analyses for the choice of prior distributions of τ and σ2 appear in Appendix B.5.

2.3 Metropolis-Hastings within Gibbs sampler

Our overall hierarchical model is specified via the observation model in (2.3) and (2.5), the

O-U process for the latent light curve in (2.8), and the prior distributions given in (2.10)

and (2.11). Our first approach to model fitting uses a Gibbs-type sampler to explore the

resulting full posterior distribution. Instead of integrating out the latent magnitudes and

4The physical unit of bσ is magnitude squared per day, hereafter mag2 per day.
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using a collapsed sampler as H&R did, we treat X(t∆) as latent variables, alternatively

updating X(t∆) and the other model parameters. (We could formulate our approach as

data augmentation with X(t∆) as the missing data, see van Dyk and Meng (2001).)

Specifically, we use a Metropolis-Hastings within Gibbs (MHwG) sampler (Tierney, 1994b)

that iteratively samples five complete conditional distributions of the full joint posterior den-

sity, p(X(t∆),∆,β,θ | x(t),y(t)), proportional to the product of densities of observed and

latent data in (2.6) and (2.9) and prior densities in (2.10) and (2.11). Iteration l of our

sampler is composed of five steps.

Step 1: Sample (X(l)(t∆
(l)

),∆(l)) ∼ p(X(t∆),∆ | β(l−1),θ(l−1)) (2.13)

= p(X(t∆) | ∆,β(l−1),θ(l−1))× p(∆ | β(l−1),θ(l−1)) by M-H

Step 2: Sample β(l) ∼ p(β | θ(l−1),X(l)(t∆
(l)

),∆(l)) (2.14)

Step 3: Sample µ(l) ∼ p(µ | (σ2)(l−1), τ (l−1),X(l)(t∆
(l)

),∆(l),β(l)) (2.15)

Step 4: Sample (σ2)(l) ∼ p(σ2 | τ (l−1),X(l)(t∆
(l)

),∆(l),β(l), µ(l)) (2.16)

Step 5: Sample τ (l)∼ p(τ | X(l)(t∆
(l)
),∆(l),β(l), µ(l), (σ2)(l)) by M-H, (2.17)

where we suppress conditioning on x(t) and y(t) in all five steps. The conditional distri-

butions in (2.14), (2.15), and (2.16), are standard families that can be sampled directly,

whereas those in (2.13) and (2.17) require M-H updates. We use the factorization in (2.13)

to construct a joint proposal, (X̃(t∆̃), ∆̃), for (X(t∆),∆) and calculate its acceptance

probability. First, ∆̃ is proposed from the Gaussian density N(∆(l−1), ψ2), where ψ is a

proposal scale and is set to produce a reasonable acceptance rate. Given ∆̃, we propose

X̃(t∆̃) ∼ p(X(t∆̃) | ∆̃,β(l−1),θ(l−1),x(t),y(t)); this is a Gaussian distribution and is

specified in Appendix B.1. Because the proposal for ∆ and that for X(t∆) given ∆ are

symmetric, (X̃(t∆̃), ∆̃) is accepted with a probability min(1, r), where

r =
p(∆̃ | β(l−1),θ(l−1),x(t),y(t))

p(∆(l−1) | β(l−1),θ(l−1),x(t),y(t))
. (2.18)

Details of the marginalized density p(∆ | β,θ,x(t),y(t)) in (2.18) appear in Appendix B.2

and details of Step 2–5 appear in Appendix B.3.
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The direct updates for β, µ, and σ2 are based on standard families that are not avail-

able under H&R’s collapsed approach. Thus the collapsed approach must update each of

the model parameters via a Metropolis or M-H update, which can slow down the rate of

convergence. (Collapsing Gibbs-type samplers, however, is known to improve their rate of

convergence (Liu, 2008) if the complete conditionals can be sampled directly.) Also, the col-

lapsed MHwG (CMHwG) sampler requires about three times more CPU time per iteration

than the (non-collapsed) MHwG sampler that we propose. In Figure 2.5, we compare the

autocorrelation functions (ACFs) of ∆, β0, µ, σ2, and τ obtained by the CMHwG sampler

(first row) and those obtained by our MHwG sampler (second row). The sampler in the

third row is discussed in Section 2.3.1. All algorithms are run using the curve-shifted model

in (2.1) fit to data for quasar Q0957+561 (Hainline et al., 2012). Except for that of β0, the

ACFs generated with CMHwG (first row), decay slower than those obtained with MHwG

(second row). The effective sample sizes per second (ESS/sec) tend to improve with MHwG

over CMHwG. For example, for ∆ the ESS/sec is 5.23 with CMHwG and 21.09 with MHwG.

The exception is β0, for which ESS/sec is 6.33 with CMHwG, but only 1.74 with MHwG. In

Figure 2.5: The autocorrelation functions for ∆, β0, µ, σ
2, and τ (columns from left to right)

based on 10,000 posterior samples after a burn-in of 10,000. Results are obtained using
three different posterior samplers (CMHwG, MHwG, and MHwG + ASIS, rows from top to
bottom). We use the curve-shifted model for simplicity and the data from quasar Q0957+671
analyzed in Section 2.5.3.
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the following section, we discuss a way to improve the convergence rate of β0 (β in general)

for the MHwG sampler, while retaining its fast running time.

2.3.1 Ancillarity-sufficiency interweaving strategy

To improve the convergence rate of β, we adopt the ancillarity-sufficiency interweaving strat-

egy (ASIS, Yu and Meng, 2011). ASIS interweaves trajectories of Markov chains of β ob-

tained by two discordant parameterizations of the unknown quantities. The two parameter-

izations are designed so that the latent variables can be viewed as ancillary and sufficient

statistics for β, respectively.

In the parameterization used up until now, X(t∆) is an ancillary augmentation (AA)

for β in that it is an ancillary statistic for β. That is, the distribution of X(t∆) in (2.8)

does not depend on β. On the other hand, a sufficiency augmentation (SA) for β is based

on the latent variables that have sufficient information to estimate β, that is, a sufficient

statistic for β. To derive a SA for β, we introduce the parameterization,

K(t∆j ) ≡ X(t∆j ) +w>m(t∆j )β · It−∆(t∆j ), for j = 1, 2, . . . , 2n, (2.19)

where

It−∆(t∆j ) =

 1, if t∆j ∈ t−∆,

0, if t∆j ∈ t.
(2.20)

This indicator is one if t∆j is an element of t − ∆ = {t1 − ∆, t2 − ∆, . . . , tn − ∆} and zero

otherwise. Using (2.19), we express the observation model in (2.3) and (2.5) as

x(tj) | K(tj)
indep.∼ N[K(tj), δ

2(tj)]. (2.21)

y(tj) | K(tj −∆),∆
indep.∼ N[K(tj −∆), η2(tj)]. (2.22)
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The distributions of latent light curve in (2.8) is replaced by

K(t∆1 ) | ∆,β,θ ∼ N

[
µ+w>m(t∆1 )β · I{t−∆}(t

∆
1 ),

τσ2

2

]
, (2.23)

K(t∆j ) | K(t∆j−1),∆,β,θ ∼ N

[
µ+w>m(t∆j )β · I{t−∆}(t

∆
j )

+aj
(
K(t∆j−1)− µ−w>m(t∆j−1)β · I{t−∆}(t

∆
j−1)

)
,
τσ2

2
(1− a2

j)

]
.

Under this reparameterization of the model in terms of K(t∆), β appears only in (2.23),

which means that K(t∆) contain sufficient information to estimate β and thus K(t∆)

is SA for β. Because the parameterization does not affect the prior distributions of the

model parameters in (2.10) and (2.11), the full joint posterior density in terms of K(t∆),

i.e., p(K(t∆),∆,β,θ | x(t),y(t)), is proportional to the product of densities of observed

and latent data, whose distributions are specified in (2.21), (2.22), and (2.23), and prior

densities in (2.10) and (2.11). Consequently, the marginal posterior distribution of the

model parameters, {∆,β,θ}, is unchanged.

ASIS interweaves the trajectory of β from a sample constructed under AA and that

constructed under SA. This can be accomplished by replacing Step 2 in (2.14) with the

following four steps:

Step 2a : Sample β
(l)
AA ∼ p(β | θ(l−1),X(l)(t∆

(l)

),∆(l)) (2.24)

Step 2b : Set K(l)(t∆
(l)

j )= X(l)(t∆
(l)

j ) +w>m(t∆
(l)

j )β
(l)
AAIt−∆(l)(t∆

(l)

j ) (2.25)

Step 2c : Sample β
(l)
SA ∼ p(β | θ(l−1),K(l)(t∆

(l)

),∆(l)) (2.26)

Step 2d : Set X(l)(t∆
(l)

j )= K(t∆
(l)

j )−w>m(t∆
(l)

j )β
(l)
SAIt−∆(l)(t∆

(l)

j ) (2.27)

Again, we suppress the condition on x(t) and y(t). In Step 2c, we set β(l) to β
(l)
SA sampled

from its conditional posterior distribution specified in (B.11). In Step 2d, ASIS updates the

latent variables, X(l)(t∆
(l)

), to adjust for the inconsistency between the updates sampled

in (2.15)–(2.17) that are based on the X(l)(t∆
(l)

) and the update β(l) that is based on

K(l)(t∆
(l)

). Updating X(l)(t∆
(l)

) in (2.27) synchronizes this inconsistency and preserves

the stationary distribution (Yu and Meng, 2011). The additional computational cost of ASIS
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is negligible because the conditional updates in (2.24) and (2.26) include quick multivariate

Gaussian sampling, see Appendix (B.7) and (B.11) for details.

ACFs of the model parameters obtained by MHwG equipped with ASIS, denoted by

MHwG+ASIS, appear on the third row of Figure 2.5; the ACF of β0 in the second column

shows a noticeable improvement compared to that obtained by MHwG sampler. The ESS/sec

for β0 is 20.95 with MHwG+ASIS and 1.74 with MHwG. (The ESS/sec for ∆ is 21.35 with

MHwG+ASIS and 21.09 with MHwG.)

2.3.2 Adaptive MCMC

Our MHwG sampler (either with or without ASIS) requires a proposal distribution in

each of its two Metropolis steps, that is, N
[
∆(l−1), ψ2

]
used to update ∆(l) in (2.13) and

N
[
log(τ (l−1)), φ2

]
used to update log(τ (l)) in (2.17), where ψ and φ are the proposal scales.

To avoid burdensome off-line tuning of the proposal scales, we implement an adaptive MCMC

(Brooks et al., 2011) that allows automatical adjustment during the run. We implement an

algorithm that updates the two proposal scales every 100 iterations, based on the most re-

cent 100 proposals as outlined in Step 6 of Figure 2.6. The Markov chains equipped with

the adaptive MCMC converge to the stationary distribution because the adjustment factors,

exp(±min(0.01, 1/
√
i)), in Step 6 of of Figure 2.6 approach one as i goes to infinity. This

condition is called diminishing adaptation condition (Roberts and Rosenthal, 2007). We set

the lower and upper bounds of the acceptance rate to 0.23 and 0.44, respectively (Gelman

et al., 2013).

The steps of the adaptive MHwG+ASIS sampler are specified in Figure 2.6. We describe

our choice of initial values of the parameters in Section 2.5 as a part of our time delay

estimation strategy.
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Set X(0)(t∆
(0)

), ∆(0), β(0), µ(0), (σ2)(0), τ (0), ψ(0), φ(0).
For l = 1, 2, . . .
Step 1: Sample ∆(l) using a Metropolis step with proposal rule N[∆(l−1), (ψ(l−1))2].

If a new proposal for ∆(l) is accepted, then sample X(l)(t∆
(l)

),

or otherwise set X(l)(t∆
(l)

) to X(l−1)(t∆
(l−1)

).

Step 2: (ASIS) Update β(l) and X(l)(t∆
(l)

) via (2.24)–(2.27).
Step 3: Sample µ(l) via (2.15).
Step 4: Sample (σ2)(l) via (2.16).
Step 5: Sample τ (l) using a M-H step with proposal rule N[log(τ (l−1)), (φ(l−1))2].
Step 6: (Adaptation) If l mod 100 = 0

if the acceptance rate of ∆ in iterations l − 99, l − 98, . . . , l > 0.44 then
ψ(l) ← ψ(l−1) × exp(min(0.01, 1/

√
(l/100)))

else if the acceptance rate of ∆ in iterations l − 99, l − 98, . . . , l < 0.23 then
ψ(l) ← ψ(l−1) × exp(−min(0.01, 1/

√
(l/100)))

end if

if the acceptance rate of τ in iterations l − 99, l − 98, . . . , l > 0.44 then
φ(l) ← φ(l−1) × exp(min(0.01, 1/

√
(l/100)))

else if the acceptance rate of τ in iterations l − 99, l − 98, . . . , l < 0.23 then
φ(l) ← φ(l−1) × exp(−min(0.01, 1/

√
(l/100)))

end if

Otherwise ψ(l) = ψ(l−1) and φ(l) = φ(l−1).

Figure 2.6: Steps of the adaptive MHwG+ASIS sampler.

2.4 Profile likelihood of the time delay

A profile likelihood of ∆ (e.g., Davison, 2003) is a simple approximation to the marginal

posterior distribution of ∆, p(∆ | x(t),y(t)). It is defined as

Lprof(∆) ≡ max
β,θ

L(∆,β,θ) = L(∆, β̂∆, θ̂∆), (2.28)

where L(∆,β,θ) is the likelihood function of the model parameters, that is,

L(∆,β,θ) = p(x(t),y(t) | ∆,β,θ) (2.29)

=

∫
p(x(t),y(t) |X(t∆),∆,β)× p(X(t∆) | ∆,θ) dX(t∆),

and (β̂∆, θ̂∆) are the values of (β, θ) that maximize L(∆,β,θ) for each ∆.

In regular problems the profile likelihood of a parameter, say ϕ, approximates its marginal

posterior distribution with a uniform prior on ϕ. This happens, for example, if the log likeli-

hood of the model parameters is approximately quadratic given ϕ under standard asymptotic
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arguments. The prior distribution on the parameters other than ϕ is chosen in such a way

as to approximately overset the variance term of the log likelihood, e.g., as happens asymp-

totically with the Jeffreys’ prior, see Appendix D for details.

Treating Lprof(∆) as an approximation to p(∆ | x(t),y(t)), we evaluate Lprof(∆) on a

fine grid of values over the interesting range of ∆, {∆1,∆2, . . . ,∆w}. We set ∆j −∆j−1 =

0.1 (j = 2, 3, . . . , w) for a high-resolution mapping although this can be computationally

burdensome due to the large number of values on the grid. For example, if the feasible

range for ∆ is [−1500, 1500], the grid consists of 30,001 values. At one second per evaluation

this requires about 8 hours and 20 minutes. Though computationally expensive, the high-

resolution mapping of Lprof(∆) is useful because it clearly identifies the likely (modal) values

of ∆. In practice, we use multiple cores in parallel to reduce the computation time.

The profile likelihood evaluated on the grid can be used to approximate the posterior

mean E(∆ | x(t),y(t)) by

∆̂mean ≡
∑w

j=1 ∆j × Lprof(∆j)∑w
j=1 Lprof(∆j)

, (2.30)

and the posterior variance Var(∆ | x(t),y(t)) by

V̂ ≡
∑w

j=1 ∆2
j × Lprof(∆j)∑w

j=1 Lprof(∆j)
−

[∑w
j=1 ∆j × Lprof(∆j)∑w

j=1 Lprof(∆j)

]2

. (2.31)

Moreover, the posterior mode of ∆ can be approximated by a value of ∆ in the grid that max-

imizes the profile likelihood, which is a discrete approximation to the maximum likelihood

estimator, ∆̂MLE ≡ arg max∆ Lprof(∆).

2.5 Time delay estimation strategy and numerical

illustrations

The first step of our analysis is to plot Lprof(∆) over the range of ∆ to check for multimodality

that may indicate multiple modes in the marginal posterior distribution of ∆. For some
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quasars, the interesting range of ∆ can be narrowed using the results of past analyses or

information from other astrophysical probes. If prior information for ∆ is unavailable, we

explore the feasible range.

In our numerical studies, we find that when Lprof(∆) is unimodal, the moment estimates

of ∆ based on Lprof(∆), i.e., ∆̂mean in (2.30) and V̂ in (2.31), are almost identical to the

posterior mean and variance obtained via MCMC. On the other hand, modes near the

margins of the range of ∆ may indicate microlensing, see Section 2.5.1. In this case, the

order of polynomial regression must be increased. If there are multiple modes, but they are

not near the margins of the range, each mode merits investigation.

As a cross-check, we run three MCMC chains near the major mode(s) identified by

Lprof(∆). The three starting values for each mode are {mode, mode ± 20 days}. Each

chain is run for 20,000 iterations and the first 10,000 iterations are discarded as burn-in. For

all chains, we set the starting value of β to the estimated regression coefficients obtained

by regressing y(t) −
∑

j x(tj)/n on a covariate matrix Wm(t − ∆(0)) whose jth row is

W>
m(tj − ∆(0)), where ∆(0) is the initial value of ∆. The initial value of X(t∆) is the

combined light curve, that is, {x(t),y(t− ∆(0))−W>
m(t−∆(0))β(0)} sorted in time. The

starting value of µ is set to the mean of x(t), that of σ2 to 0.012, and that of τ to 200. We

set the initial standard deviations of the proposal distributions as ψ = 10 and φ = 3.

We use simulated data of doubly- and quadruply-lensed quasars publicly available at

the TDC website (http://timedelaychallenge.org) to illustrate our time delay estimation

strategy when prior information for ∆ is not available. We also analyze observed data of

quasars Q0957+561 and J1029+2623 over the feasible range of ∆ for illustrative purpose,

though prior information is available to limit the range of ∆.

We report the CPU time in second using a server equipped with two 8-core Intel Xeon

E5-2690 at 2.9 GHz and 64 GB of memory. We report the entire mapping time for Lprof(∆).

56



2.5.1 A doubly-lensed quasar simulation

The simulated data for a doubly-lensed quasar are plotted in the first panel of Figure 2.7;

the median cadence is 3 days, the cadence standard deviation is 1 day, and observations are

made for 4 months in each of 5 years for 200 observations in total. The light curves suffer

from microlensing which can be identified from their different long-term linear trends and

similar short-term (intrinsic) variability.

To show the effect of microlensing on the time delay estimation, we fit both the curve-

shifted model (m = 0) in (2.1) and the microlensing model with m = 3 in (3.15). We

plot log(Lprof(∆)) and Lprof(∆) base on the curve-shifted model over the feasible range,

[t1−tn, tn−t1] = [−1575.85, 1575.85], in the two panels of Figure 2.8. The profile likelihood

exhibits large modes near the margins that overwhelm the profile likelihood near the true

time delay (5.86 days denoted by the vertical red dashed line).

In the presence of microlensing, the curve-shifted model cannot identify the time delay

because the latent curves are not shifted versions of each other. The modes of Lprof(∆) near

the margins of the range of ∆ occur because a small overlap between the tips of two light

curves may exhibit the only similar fluctuation patterns detectable by shifting one of the

light curves. In Figure 2.9, for instance, we shift light curve B in the x-axis by the three

Figure 2.7: The first panel shows a TDC data set suffering from microlensing that results in
light curves with different long-term trends. The dashed lines denote fitted linear regression
lines. In the second panel, we shift light curve B by ∆̂MLE in the x-axis and subtract the
estimated third-order polynomial regression from light curve B (using the values of β that
maximize the profile likelihood at ∆̂MLE). The microlensing model finds matches between
the intrinsic fluctuations of the light curves after removing the relative microlensing trend
from light curve B.
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Figure 2.8: The profile log likelihood (left) and the profile likelihood (right) of ∆ over its
feasible range under the curve-shifted model (m = 0). We exponentiate log(Lprof(∆)), setting
the largest value of Lprof(∆) to one. The vertical red dashed line indicates the true time
delay. The profile likelihood near the true time delay (5.86 days) is overwhelmed by the
modes near margins.

values of ∆ indicated by three arrows in the second panel of Figure 2.8. In the first panel

of Figure 2.9, the two light curves shifted by the true time delay do not match for any shift

in magnitude. However, given the time delays at around −1,200 and 1,360 days, the two

light curves look well-connected as shown in the second and third panels. Thus, the profile

likelihood near the true time delay is overwhelmed by the values of the profile likelihood

near −1,200 and 1,360 days.

To correct this effect, we fit the microlensing model with a third-order polynomial regres-

sion (m = 3). Both log(Lprof(∆)) and Lprof(∆) are plotted in Figure 2.10. One mode clearly

Figure 2.9: We shift light curve B (blue) by the true time delay (5.86 days) in the first
panel, by −1,199.85 days in the second panel, and by 1363.35 days in the third panel. These
three time delays correspond to three arrows in the second panel of Figure 2.8. The shift
in magnitude used is the value of β0 that maximizes the profile likelihood given each time
delay. Without accounting for microlensing, the curve-shifted model fails because the light
curves do not match even at the true time delay. The curve-shifted model may produce large
modes near the margins because a small overlap between the tips of two light curves may
have the only similar fluctuation patterns detectable by shifting one of the light curves as
shown in the second and third panels.
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Figure 2.10: The profile log likelihood (first panel) and the profile likelihood (second panel) of
∆ over its feasible range under the microlensing model (m = 3). The profile likelihood shows
one mode near the true time delay (5.86 days). The third panel shows the marginal posterior
distribution of ∆ as a histogram of the MCMC samples with Lprof(∆) superimposed. The
vertical red dashed line indicates the true time delay.

dominates Lprof(∆) and ∆̂mean = 6.36 days. Using a uniform prior for ∆ over its feasible

range and σ2 ∼ IG(1, 2/107), we initialize three MCMC chains near 6.36 days. We check the

convergence with the Gelman-Rubin diagnostic statistic (GRD, Gelman and Rubin, 1992)

which equals 1.0007 for ∆. It took 14,457 seconds to map Lprof(∆) and 186 seconds on aver-

age for each MCMC chain. The profile likelihood and marginal posterior near the dominant

mode are almost identical and are consistent with the true value of ∆ as shown in the third

panel of Figure 2.10.

In the second panel of Figure 2.7, we shift light curve B by ∆̂MLE (x-axis) and subtract

the estimated polynomial regression (using the values of β that maximize Lprof(∆) evaluated

at ∆̂MLE). The microlensing model finds matches between the intrinsic fluctuations of the

light curves after removing the relative microlensing trend from light curve B.

We summarize the Bayesian and profile likelihood estimates for ∆ in Table 2.1. The true

Table 2.1: Estimates of ∆; the profile likelihood estimates, ∆̂mean and V̂ 0.5 are given
in the E(∆|x(t),y(t)) and SD ≡ SD(∆|x(t),y(t)) columns, where Error ≡ |∆true −
E(∆|x(t),y(t))| with ∆true indicating the true time delay (5.86 days), and χ ≡
Error/SD(∆|x(t),y(t)).

Method E(∆|Dobs) ∆̂MLE SD ∆true Error χ
Bayesian 6.34 0.28 5.86 0.48 1.71

Profile likelihood 6.36 6.35 0.28 5.86 0.50 1.76
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delay is within two posterior standard deviation (χ ≤ 1.76) of the posterior mean; similar

accuracy is obtained with the profile likelihood approximation.

2.5.2 A quadruply-lensed quasar simulation

The simulated data for a quadruply-lensed quasar are plotted in Figure 2.11 and are com-

posed of four light curves, A,B,C, and D; the median cadence is 6 days, the cadence

standard deviation is 1 day, and observations are made for 4 months in each of 10 years with

200 observations in total. The feasible range for each ∆ is [−3391.62, 3391.62].

With quadruply lensed data there are six time delay parameters, one for each pair of

light curves. Any three of these parameters determine the others and we focus on ∆AB,

∆AC, and ∆AD, where the subscripts index the two light curves being compared. This

pair-wise approach proceeds by applying the method developed for doubly-lensed data in

Section 2.5.1 to the pair of light curves corresponding to each of ∆AB, ∆AC, and ∆AD in turn

(Fassnacht et al., 1999).

A coherent model would consider all four time series data in one model simultaneously

(Hojjati et al., 2013; Tewes et al., 2013); four time series are generated from one underlying

true process and the three distinct time delays may have a posteriori correlations. By focusing

on pairwise comparisons of the four time series, we do not account for the correlations

between the time delays. Extending our model to simultaneously consider all of the data is

a topic for future research.

Figure 2.11: Simulated quadruply-lensed quasar data used in the TDC.
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Figure 2.12: The marginal posterior distributions of ∆AB (first panel), ∆AC (second panel),
and ∆AD (third panel) with Lprof(∆) superimposed. Vertical red dashed lines indicate blinded
true time delays.

We follow our default strategy to analyze these simulated data, using the microlensing

model (m = 3). After confirming a single dominating mode in the profile likelihood for each

time delay parameter, we initiate three MCMC chains near this mode; the GRD is 1.0000 for

∆AB, 1.0010 for ∆AC, and 1.0001 for ∆AD. The posterior distributions of ∆AB, ∆AC, and ∆AD

appear in Figure 2.12 with Lprof(∆) superimposed. The profile likelihood is almost identical

to the posterior distribution of each parameter and both estimate the true time delays well.

The average CPU time taken to map Lprof(∆) is about 73,000 seconds (averaging over the

three time delays). The average CPU time taken for each MCMC chain is about 200 seconds

(averaging over nine chains; three chains for each time delay). Our estimation results are

summarized in Table 2.2. The Bayesian estimates and profile likelihood approximations are

Table 2.2: Estimates of ∆AB, ∆AC, and ∆AD; the profile likelihood estimates, ∆̂mean and
V̂ 0.5 are given in the E(∆|x(t),y(t)) and SD ≡ SD(∆|x(t),y(t)) columns, where Error ≡
|∆true−E(∆|x(t),y(t))| with ∆true indicating the true time delay, i.e., ∆AB = 59.88, ∆AC =
23.87 and ∆AD = 51.14, and χ ≡ Error/SD(∆|x(t),y(t)).

Method E(∆|x(t),y(t)) ∆̂MLE SD ∆true Error χ

∆AB
Bayesian 59.21 0.52 59.88 0.67 1.29

Profile likelihood 59.21 59.38 0.51 59.88 0.67 1.31

∆AC
Bayesian 23.55 0.20 23.87 0.32 1.60

Profile likelihood 23.54 23.58 0.19 23.87 0.33 1.74

∆AD
Bayesian 51.03 0.39 51.14 0.11 0.28

Profile likelihood 51.03 51.08 0.38 51.14 0.11 0.29
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quite similar and both produce estimates within two standard deviations of the truth (all

χ ≤ 1.74).

2.5.3 Quasar Q0957+561

The first known gravitationally (doubly) lensed quasar Q0957+561 was discovered by Walsh

et al. (1979) who suggested that a strong gravitational lensing may have formed the two

images. Here we analyze the most recent observation of this quasar. This observation was

made by the United States Naval Observatory in 2008–2011 (Hainline et al., 2012). The data

were observed on 57 nights and are plotted in the first panel of Figure 2.13. The feasible

range for ∆ is [−1178.939, 1178.939].

Inspection of Lprof(∆) revealed one dominant mode. Using a uniform prior distribution

of ∆ over its range and σ2 ∼ IG(1, 2/107), we ran three MCMC chains near this mode;

the GRD for ∆ is 1.0001. The second panel of Figure 2.13 shows the marginal posterior

distribution of ∆ with Lprof(∆) superimposed. It took 1,243 seconds to map Lprof(∆) and

71 seconds on average for each MCMC chain.

In this case the dominant mode of ∆ has more complex structure as detected by both

Lprof(∆) and the MCMC sample, see the second panel of Figure 2.13. In the third panel of

Figure 2.13, we shift light curve B by ∆̂MLE (x-axis) and subtract the estimated third-order

Figure 2.13: Oobservations of Quasar Q0957+561 from Hainline et al. (2012) are plotted
in the first panel. The second panel exhibits the marginal posterior distributionof ∆ with
Lprof(∆) superimposed. We shift light curve B by ∆̂MLE (x-axis) and subtract the estimated

third-order polynomial regression (obtained by the profile likelihood at ∆̂MLE) in the third
panel. HJD indicates the Heliocentric Julian date.
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Table 2.3: Historical time delay estimates and standard errors (SE) for Q0957+561 (r-band).
Our work provides the posterior mean and standard deviation of ∆ and profile likelihood
approximations to them. Serra-Ricart et al. (1999), Oscoz et al. (1997, 2001) and Pelt et al.
(1996) used a bootstrapping method to calculate the SE.

Researchers Method Estimate SE
Pelt et al. (1996) Dispersion method 423 6

Oscoz et al. (1997)
Discrete cross-correlation

424 3
& Dispersion

Serra-Ricart et al. (1999)
Least square optimization

425 4
via auto-& cross-correlation

Oscoz et al. (2001)

Discrete correlation function (DCF) 426 5
Discrete auto-& cross-correlation 423 2

Z-transformed DCF 420 8
χ2-minimization 422 3

This work
Bayesian 423.73 2.02

Profile likelihood 423.21 2.81

polynomial regression. The fitted microlensing model matches the intrinsic fluctuations of

the two light curves.

Estimates based on different observations of Q0957+561 appear in Table 2.3. Although

the observations span different time periods, the resulting estimates, including ours, are

broadly consistent. Though the posterior mean and standard deviation may be difficult to

interpret with a multimodal posterior distribution, we include them for comparison.

2.5.4 Quasar J1029+2623

Inada et al. (2006) discovered the gravitationally lensed quasar J1029+2623 whose time

delay is the second largest yet observed. Though J1029+2623 has three images (A, B, and

C), Fohlmeister et al. (2013) merged B and C because C is indistinguishable from B due to

its faintness and proximity. They published its data (A, B+C) with 279 epochs monitored

at the Fred Lawrence Whipple observatory from January 2007 to June 2012. The first panel
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Figure 2.14: We plot the observations of Quasar J1029+2623 from Fohlmeister et al. (2013)
in the first panel. The second panel exhibits the marginal posterior distribution of ∆ with
Lprof(∆) superimposed. We shift light curve B + C by ∆̂MLE (x-axis) and subtract the

estimated third-order polynomial regression (obtained by the profile likelihood at ∆̂MLE) in
the last panel. HJD indicates the Heliocentric Julian date.

in Figure 2.14 shows these data. The feasible range of ∆ is [−2729.759, 2729.759].

We confirmed a dominant mode via Lprof(∆) and using a uniform prior distribution of

∆ over its range and σ2 ∼ IG(1, 2/107), we initiated three MCMC chains near this mode;

the GRD for ∆ is 1.0009. We display the marginal posterior distribution of ∆ in the second

panel of Figure 2.14 with Lprof(∆) superimposed. It took 33,683 seconds to map Lprof(∆)

and 311 seconds on average for each MCMC chain. The posterior distribution and the profile

likelihood are almost identical. In the third panel, we shift light curve B by ∆̂MLE (x-axis)

and subtract the estimated third-order polynomial regression. Again, the fitted microlensing

model finds a good match of the two light curves.

Table 2.4: Historical time delay estimates and 90% confidence intervals for J1029+2623.
Our work provides the posterior mean and 90% posterior interval of ∆ and profile likelihood
approximations to them. Fohlmeister et al. (2013) did not specify how they produced the
sampling distribution of ∆. Kumar et al. (2014) used a parametric bootstrapping method.

Researchers Method Estimate 90% Interval
Fohlmeister et al. (2013) χ2-minimization (AIC, BIC) 744 (734, 754)

Kumar, Stalin, and
Difference-smoothing 743.5 (734.6, 752.4)

Prabhu (2014)

This work
Bayesian 735.31 (733.08, 737.71)

Profile likelihood 733.11 (732.94, 738.44)
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Figure 2.15: The profile log likelihood (left) and the profile likelihood (right) of ∆ over its
feasible range under the microlensing model (m = 3). Although the profile likelihood shows
a dominant mode near 735 days, there are small modes near -2,000 and 1,800 days.

We compare our estimates in Table 2.4 with historical estimates that are based on the

same data. The Bayesian method uses 5% and 95% quantiles of the posterior samples of

∆ as the 90% posterior interval. To obtain the 90% interval estimate for ∆ via the profile

likelihood, we draw 50,000 samples of ∆ using the empirical CDF of the (normalized) profile

likelihood and choose their 5% and 95% quantiles.

The shape of the posterior distribution of ∆ is almost identical to that of the profile

likelihood in the second panel of Figure 2.14. However, the posterior mean of ∆ is larger

than the profile approximation, ∆̂mean, by about two days. This is because there are two

small modes near -2,000 and 1,800 days, see the second panel of Figure 2.15. Because the

mode near 735 days overwhelmed the other modes, it is reasonable to focus on the mode

near 735 days as the Bayesian result does. Overall, our point estimates are smaller than the

historical estimates by about ten days, though our 90% posterior intervals overlap with the

other historical 90% confidence intervals in Table 2.4.

2.6 Conclusion

Accurately estimating time delays among gravitationally lensed quasar images is a key to

making fundamental measurements of the current expansion rate of the Universe and dark

energy (Refsdal, 1964; Linder, 2011). The Large Synoptic Survey Telescope (LSST Science

Collaboration, 2009) will produce extensive time series data on thousands of multiply lensed
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quasars starting in 2022. Anticipating this era of astronomical Big Data, we have improved

the fully Bayesian model of Harva and Raychaudhury (2006) by leveraging recent advances

in astrophysical and statistical modeling. We have added an Orstein-Uhlenbeck process

to model the fluctuations in quasar light curves, a polynomial regression to account for

microlensing, and a profile-likelihood-guided Bayesian strategy.

There are several opportunities to build upon our work in future research. It is desirable

to implement more sophisticated methods of model selection such as information criteria to

choose the complexity of the microlensing trend. Though astrophysicists have used a cubic

polynomial trend for microlensing models for some quasars so far, it would be better to have a

fast and principled mechanism to determine the order given any data of gravitationally lensed

quasars. Another avenue for further improvement is to constrain the range of the time delay

by incorporating additional astrophysical information such as spatial positions of the images

relative to the lensing galaxy, and an astrophysical model for the mass distribution of the

lens. For quadruply-lensed quasar systems, constructing a Bayesian model to simultaneously

analyze the four light curves, would allow us to coherently estimate the relative time delays

without loss of information. Further improvements to the computational efficiency of our

profile likelihood and MCMC strategies will enhance their effectiveness for analyzing the

extensive time series datasets expected in the era of the LSST.
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Chapter 3

A Repelling-Attracting Metropolis

Algorithm for Multimodality

3.1 Introduction

Multimodal distributions are common in statistical applications. However, a Metropolis al-

gorithm, one of the most widely used Markov chain Monte Carlo (MCMC) methods, tends to

produce a Markov chain being stuck at one of the local modes for a long time when a target

distribution has several modes. A popular MCMC strategy for dealing with multimodality

is tempering. Tempering melts down the modes of a target density to create a flatter surface

and hence improved mixing. There are many temperature-based methods such as parallel

tempering (Geyer, 1991), simulated tempering (Geyer and Thompson, 1995), tempered tran-

sitions (Neal, 1996), and equi-energy sampler (Kou et al., 2006). Though powerful, these

methods typically require extensive tuning and tend to be computationally expensive.

We use a Metropolis algorithm as a building block to construct an alternative, easy-to-

implement and temperature-free multimodal sampler called a repelling-attracting Metropolis

(RAM) algorithm. This algorithm enables a Markov chain to jump between modes more

frequently than a Metropolis algorithm with less tuning than any tempering methods. The



RAM algorithm generates a proposal via forced downhill and forced uphill Metropolis tran-

sitions. The term forced emphasizes that neither Metropolis transition is allowed to stay at

its current state because we repeatedly make proposals until one is accepted. The forced

downhill Metropolis transition uses a reciprocal ratio of the target densities in its acceptance

probability. This encourages the intermediate proposal to prefer downward moves since a

lower density state has a higher chance of acceptance, hence local modes become repelling.

The subsequent forced uphill Metropolis transition generates a final proposal with a stan-

dard Metropolis ratio that makes local modes attracting. Together the downhill and uphill

transitions form a proposal for a Metropolis-Hastings (M-H) sample; a final accept-reject

step preserves the target stationary distribution. The final proposal has a higher chance to

be in a mode other than the one of the current state, as shown in Figure 3.1, and it is then

accepted or rejected in the usual way.

The scale of the proposal distributions, either a scalar or a matrix depending on dimen-

sionality, iterated within the downhill and uphill Metropolis transitions is the only tuning

parameter of this algorithm if the proposal distributions are Gaussian. It is easy to fine-tune

the proposal scale if the information about the locations of modes are known, but the RAM

algorithm does not necessarily need such information. As with other M-H samplers, the

normalizing constant of the target density need not be known. Consequently, it is always

possible to replace a Metropolis algorithm with the RAM algorithm to explore a multimodal

Figure 3.1: A repelling-attracting Metropolis algorithm is a Metropolis-Hastings algorithm
that generates a proposal x∗ given the current state x(i) by making a down-up movement in
density, i.e., repellling-attracting to local modes, via forced downhill and uphill Metropolis
transitions.
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distribution better because running the RAM algorithm does not require more information

than what is needed to run a Metropolis algorithm.

Although we can draw a sample using the down-up proposal rule, the acceptance prob-

ability of the final proposal contains a ratio of intractable integrals. We solve this problem

by introducing an auxiliary variable, using the idea of Møller et al. (2006). This auxil-

iary variable approach marginally preserves the target density and requires another forced

downhill Metropolis transition for the auxiliary variable. Thus, the RAM algorithm gen-

erates a proposal via three forced Metropolis transitions but accepts the proposal with an

easy-to-compute acceptance probability.

Using several numerical examples, we show a benefit of simply replacing a Metropolis

algorithm with the RAM algorithm in exploring a multimodal distribution. We also compare

the performance of the RAM algorithm to that of commonly-used tempering methods, e.g.,

parallel tempering, equi-energy sampler, and tempered transitions. In the first example,

we look into a high-dimensional behavior of the RAM algorithm compared to that of a

Metropolis algorithm in exploring a mixture of three d-dimensional Gaussian distributions

for d ∈ {3, 10, 20}. The target distribution in the second example is a mixture of 20 bivariate

Gaussian distributions with either equal-variance and equally-weighted modes or unequal-

variance and unequally-weighted modes (Kou et al., 2006). In this example, we show that

the mean squared error of moment estimates from the RAM algorithm is better than that of

both parallel tempering and equi-energy sampler. The last example is from our applied work

in astrophysics, which has motivated this research. Here, we show that the RAM algorithm

is better than tempered transitions in exploring a grossly multimodal distribution whose

modes are more than 600 standard deviations distant from each other.
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3.2 A repelling-attracting Metropolis algorithm

We briefly review the Metropolis-Hastings (M-H) algorithm. A transition kernel on Rd,

denoted by P (B | x), is the conditional probability distribution of transition from x ∈ Rd

to a point in a Borel set B in Rd; P (Rd | x) = 1 and P ({x} | x) need not be zero (Chib and

Greenberg, 1995). A proposal density given the current state x(i) is a conditional density

that generates a proposal x∗. We denote this proposal density by q(x∗ | x(i)) which must

satisfy
∫
q(x∗ | x(i))dx∗ = 1. With a target density denoted by π, either normalized or

unnormalized, a transition kernel of the M-H algorithm is defined as

P (dx∗ | x(i)) = q(x∗ | x(i))α(x∗ | x(i))dx∗ + δx(i)(dx∗){1− A(x(i))}, (3.1)

where α(x∗ | x(i)) is the probability of accepting the proposal x∗ as x(i+1), i.e.,

α(x∗ | x(i)) = min

{
1,

π(x∗)q(x(i) | x∗)
π(x(i))q(x∗ | x(i))

}
;

1− A(x(i)) is the probability of staying at x(i) and thus A(x(i)) is that of moving from x(i),

A(x(i)) =

∫
q(x∗ | x(i))α(x∗ | x(i))dx∗;

and the Dirac measure δx(i)(dx∗) is one if x(i) ∈ dx∗ and zero otherwise. If the proposal

density is symmetric, satisfying q(x∗ | x(i)) = q(x(i) | x∗), then the M-H algorithm reduces

to a Metropolis algorithm, whose acceptance probability is

α(x∗ | x(i)) = min

{
1,

π(x∗)

π(x(i))

}
. (3.2)

The RAM algorithm is essentially a M-H algorithm with a proposal density that is de-

signed to boost the down-up movement via two forced Metropolis transitions. The forced

Metropolis algorithm is the same as a standard Metropolis algorithm except that the forced

algorithm repeatedly makes proposals until one is accepted. Without a forced transition,

the final proposal x∗ could be the same as the current state x(i) after consecutive rejec-

tions in both the downhill and uphill Metropolis transitions, which is wasteful because the
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final proposal x∗ = x(i) is accepted for certain. Also, if the forced transitions were not in-

cluded, the final proposal would be generated via only one of the two Metropolis transitions

if the other were rejected. This would not be helpful for our purposes because it would

not induce a down-up movement. Moreover, a transition kernel of the forced Metropolis

algorithm is mathematically easier to handle than that of a Metropolis algorithm. This

is because the transition kernel of the forced Metropolis algorithm is no longer a mixture

of two distributions; the second mixture component for staying at the current state, e.g.,

δx(i)(dx∗){1− A(x(i))} in (3.1), disappears.

The forced downhill Metropolis transition generates an intermediate proposal x′ from

the current state x(i) using the reciprocal ratio of the target densities in its acceptance

probability,

αD
ε (x′ | x(i)) = min

{
1,

π(x(i)) + ε

π(x′) + ε

}
, (3.3)

where the superscript, D, indicates that the ratio has been flipped for a downward move;

the appearance of ε in (3.3) is discussed below. The reciprocal density ratio in (3.3) makes

local modes repelling rather than attracting: If the density of x′ is smaller than that of

x(i), x′ is accepted with probability one. The forced uphill Metropolis transition restores

the attractiveness of local modes as with the original Metropolis ratio which prefers upward

movement in density. The forced uphill Metropolis transition generates the final proposal

x∗ given x′, whose acceptance probability is

αU
ε (x∗ | x′) = min

{
1,

π(x∗) + ε

π(x′) + ε

}
, (3.4)

where the superscript, U, indicates that the acceptance probability prefers an upward move-

ment. The acceptance probability in (3.4) is the same as in (3.2) except that ε is added to

the numerator and denominator. This is done for numerical stability; both π(x′) and π(x∗)

can be nearly zero when both x′ and x∗ are in a flat valley between two distant modes. In

this case, adding ε prevents a ratio of zeros in the acceptance probability. However, ε may

affect the convergence rate of the sampler because a large value of ε that dominates π results
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in x∗ almost always being accepted, regardless of whether x∗ is an uphill move or not. To

minimize its impact on the acceptance probability in (3.4), ε must be small and our default

choice is ε = 10−308, a constant that R treats as positive (R Development Core Team, 2015);

R treats 1/10309 as zero. For a symmetry, we also use ε in the same way in the acceptance

probability of the downhill transition in (3.3), which leads to a symmetry of the acceptance

probability up to D and U, i.e.,

αD
ε (x′ | x(i)) = min

{
1,

π(x(i)) + ε

π(x′) + ε

}
= αU

ε (x(i) | x′), (3.5)

αU
ε (x∗ | x′) = min

{
1,

π(x∗) + ε

π(x′) + ε

}
= αD

ε (x′ | x∗). (3.6)

Thus, the RAM algorithm is a M-H algorithm with a down-up proposal density

qDU(x∗ | x(i)) =

∫
qD(x′ | x(i))qU(x∗ | x′)dx′, (3.7)

where qD and qU are the forced downhill and uphill transition kernel densities, respectively.

Specifically, the forced downhill kernel density is

qD(x′ | x(i)) =
q(x′ | x(i))αD

ε (x′ | x(i))

AD(x(i))
, (3.8)

AD(x(i)) =

∫
q(x′ | x(i))αD

ε (x′ | x(i))dx′,

where AD(x(i)) is the probability of accepting any single proposal from q(x′ | x(i)). Similarly,

the forced uphill kernel density is

qU(x∗ | x′) =
q(x∗ | x′)αU

ε (x∗ | x′)
AU(x′)

, (3.9)

AU(x′) =

∫
q(x∗ | x′)αU

ε (x∗ | x′)dx∗.

Consequently, the down-up proposal density in (3.7) satisfies
∫
qDU(x∗ | x(i))dx∗ = 1.

The conditional density q in (3.8) and (3.9) may be any symmetric density to simplify

RAM’s final acceptance probability, and it must have a positive probability of reaching out

all possible states for irreducibility. For instance, we can set q(a | b) = Nd(a | b,Σ), a d-

dimensional Gaussian density of a with mean b and variance-covariance matrix Σ, where Σ
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is the only tuning parameter that can be used to improve the mixing of the RAM algorithm.

A random-walk proposal can be made by setting Σ to a diagonal matrix and its simplest

form is Σ = σ2Id, where Id is a d × d identity matrix and σ is a proposal scale. Since

a random-walk proposal performs poorly as dimensionality increases, we improve RAM’s

high-dimensional behavior by setting Σ as follows:

Σ =

 S0 during a burn-in period,

S after a burn-in period,
(3.10)

where S0 is an initial d × d variance-covariance matrix set by users, e.g., S0 = σ2Id, and S

is a d× d sample variance-covariance matrix calculated from the samples drawn during the

burn-in period.

Given the proposal, the M-H acceptance ratio is

αDU(x∗ | x(i)) = min

{
1,

π(x∗)qDU(x(i) | x∗)
π(x(i))qDU(x∗ | x(i))

}
= min

{
1,

π(x∗)AD(x(i))

π(x(i))AD(x∗)

}
. (3.11)

The second equation in (3.11) holds because the symmetry of q, of αD
ε (x′ | x(i)) = αU

ε (x(i) | x′)

in (3.5), and of αU
ε (x∗ | x′) = αD

ε (x′ | x∗) in (3.6) implies the following relationship:

qDU(x∗ | x(i))AD(x(i)) =

∫
q(x′ | x(i))αD

ε (x′ | x(i))
q(x∗ | x′)αU

ε (x∗ | x′)
AU(x′)

dx′

=

∫
q(x(i) | x′)αU

ε (x(i) | x′)q(x
′ | x∗)αD

ε (x′ | x∗)
AU(x′)

dx′

= qDU(x(i) | x∗)AD(x∗).

Unfortunately, the acceptance probability in (3.11) is difficult to compute due to its ratio

of intractable normalizing constants of the forced downhill kernel densities, AD(x(i))/AD(x∗).

Møller et al. (2006) use an auxiliary variable approach to cancel out a ratio of intractable

normalizing constants of a target density. We follow this approach, but our case arises from

the intractable down-up proposal density, qDU, which is a conditional density unlike the

target density, π. We introduce an auxiliary variable in such a way that the marginal target

density for x remains π exactly. This auxiliary variable results in a term that cancels with

the intractable ratio.
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Specifically, let z ∈ Rd be an auxiliary variable that shares the same space with x, via

a conditional density πC(z | x) to be specified. We denote a joint proposal density that

proposes (z∗, x∗) given the current states (z(i), x(i)) by qJ(z∗, x∗ | z(i), x(i)) and assume that

it factors and can be simplified as

qJ(z∗, x∗ | z(i), x(i)) = q1(x∗ | z(i), x(i))q2(z∗ | x∗, z(i), x(i)) = q1(x∗ | x(i))q2(z∗ | x∗)

so that the M-H acceptance probability for the joint proposal is

αJ(z∗, x∗ | z(i), x(i)) = min

{
1,

π(x∗)πC(z∗ | x∗)qJ(z(i), x(i) | z∗, x∗)
π(x(i))πC(z(i) | x(i))qJ(z∗, x∗ | z(i), x(i))

}
= min

{
1,

π(x∗)πC(z∗ | x∗)q1(x(i) | x∗)q2(z(i) | x(i))

π(x(i))πC(z(i) | x(i))q1(x∗ | x(i))q2(z∗ | x∗)

}
. (3.12)

This acceptance probability may resemble that of a pseudo-marginal approach (Beaumont,

2003; Andrieu and Roberts, 2009) that focuses on an unbiased estimator for an intractable

target density. However, our auxiliary variable approach is different from a pseudo-marginal

approach because our problem arises from an intractable proposal density and a tractable

target density. From the pseudo-marginal perspective, the factorization of the joint target

density in (3.12), i.e., π(x, z) = π(x)πC(z | x), is not allowed because it leaves the intractable

target density π(x) in the acceptance probability again.

Suppose it is possible to draw a sample from q1 but difficult to evaluate q1. We can find

a function f such that q1(x(i) | x∗)/q1(x∗ | x(i)) = f(x(i))/f(x∗) because the ratio of two

(compatible) conditional densities is the ratio of two marginal densities. The function f may

or may not be computable and can be a normalizing constant of q1 but not necessarily. If

we can find a function q2 whose normalizing constant is proportional to f , then the joint

acceptance probability in (3.12) becomes free of the intractable quantities.

For the RAM algorithm, we set q1(x∗ | x(i)) = qDU(x∗ | x(i)) to propose a down-up

movement from x(i) to x∗, where qDU is specified in (3.7). In this case, f(x(i)) = AD(x(i))

which is the normalizing constant of the forced downhill kernel density qD in (3.8). To

eliminate this intractable normalizing constant, we choose q2(z∗ | x∗) = qD(z∗ | x∗). Møller
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et al. (2006) suggest choosing πC similar to q2 and thus we assume πC(z∗ | x∗) equals

q(z∗ | x∗). With these choices, the acceptance probability in (3.12) reduces to

αJ(z∗, x∗ | z(i), x(i)) = min

{
1,

π(x∗)q(z∗ | x∗)qDU(x(i) | x∗)qD(z(i) | x(i))

π(x(i))q(z(i) | x(i))qDU(x∗ | x(i))qD(z∗ | x∗)

}
= min

{
1,

π(x∗)q(z∗ | x∗)AD(x(i))q(z(i) | x(i))αD
ε (z(i) | x(i))/AD(x(i))

π(x(i))q(z(i) | x(i))AD(x∗)q(z∗ | x∗)αD
ε (z∗ | x∗)/AD(x∗)

}

= min

{
1,

π(x∗)αD
ε (z(i) | x(i))

π(x(i))αD
ε (z∗ | x∗)

}
= min

1,
π(x∗) min{1, π(x(i))+ε

π(z(i))+ε
}

π(x(i)) min{1, π(x∗)+ε
π(z∗)+ε

}

 . (3.13)

In (3.13), π(z(i)) is likely to be smaller than π(x(i)) because z(i) is generated by the forced

downhill transition. Similarly, π(z∗) is likely to be smaller than π(x∗). If z(i) and z∗ have

lower target densities than x(i) and x∗, respectively (a likely, but not required situation),

then the acceptance probability in (3.13) reduces to min{1, π(x∗)/π(x(i))}, the acceptance

probability of the Metropolis algorithm in (3.2). The proposed algorithm accepts the joint

proposal (z∗, x∗) as (z(i+1), x(i+1)) with the probability in (3.13) and sets (z(i+1), x(i+1)) to

(z(i), x(i)) otherwise.

Altogether, each iteration of the RAM algorithm is composed of four steps as shown in

Algorithm 1. The first three generate a proposal via three consecutive forced transitions;

Step 1 for the downward proposal x′ given x(i), Step 2 for the upward proposal x∗ given x′,

and Step 3 for the downward proposal z∗ given x∗. The last step determines whether the

joint proposal, (z∗, x∗), is accepted or not.

For computational efficiency, some density values in Algorithm 1 do not need to be

calculated repeatedly. For example, π(x′) in Step 2 is already evaluated during the forced

Algorithm 1. A repelling-attracting Metropolis algorithm.

Set initial values z(0) and x(0). For i = 0, 1, . . .

Step 1 : (↘) Resample x′ ∼ q(x′ | x(i)) and u1 ∼ Uniform(0, 1) until u1 < min
{

1, π(x(i))+ε
π(x′)+ε

}
.

Step 2: (↗) Resample x∗ ∼ q(x∗ | x′) and u2 ∼ Uniform(0, 1) until u2 < min
{

1, π(x∗)+ε
π(x′)+ε

}
.

Step 3: (↘) Resample z∗ ∼ q(z∗ | x∗) and u3 ∼ Uniform(0, 1) until u3 < min
{

1, π(x∗)+ε
π(z∗)+ε

}
.

Step 4: Set (z(i+1), x(i+1)) = (z∗, x∗) if u4 < min
{

1, π(x∗) min{1,(π(x(i))+ε)/(π(z(i))+ε)}
π(x(i)) min{1,(π(x∗)+ε)/(π(z∗)+ε)}

}
,

where u4 ∼ Uniform(0, 1), and set (z(i+1), x(i+1)) = (z(i), x(i)) otherwise.
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downhill step in Step 1. Thus, if we save the value of π(x′) in Step 1, then we do not need

to re-evaluate π(x′) in Step 2. Similarly, we need not re-evaluate π(x∗) in Step 3 if we save

its value in Step 2. Also, π(x∗) and π(z∗) in Step 4 are already evaluated in Step 2 and

Step 3, respectively, and thus they do not need to be re-calculated in Step 4. Lastly, since

the density of the previous state π(x(i)) is used both in Step 1 and Step 4, it is better to

evaluate and save this value before Step 1 begins.

3.3 Numerical illustrations

We use a quad-core Intel Core i7 at 3.5 GHz and 16 GB of memory to run all the algorithms

in the following examples. Both Metropolis and RAM algorithms are implemented under

the same configuration, e.g., the same initial values and proposal scales, to show the benefit

of simply replacing the Metropolis algorithm with the RAM algorithm.

3.3.1 Example 1: High-dimensional and multimodal distributions

The target distribution is a mixture of three d-dimensional Gaussian distributions;

π(x) =
1

4
Nd(x | −20× 1d, Id) +

1

2
Nd(x | 0× 1d, Id) +

1

4
Nd(x | 10× 1d, Id), (3.14)

where x = (x1, x2, . . . , xd)
>, 1d is a vector of ones with length d, and Id is a d-dimensional

identity matrix. To increase difficulty, we assume that the leftmost mode at −20 × 1d

is unknown while the other two modes at 0 × 1d and 10 × 1d are known; the leftmost

unknown mode is twice more distant from the central mode than the rightmost one. Here we

investigate RAM’s high dimensional behavior compared to that of a Metropolis algorithm

in d ∈ {3, 10, 20}. For each dimension we implement RAM and Metropolis algorithms

initialized at z(0) = 0 × 1d (only for RAM) and x(0) = 0 × 1d with q(a | b) = Nd(a | b,Σ),

where Σ is defined in (3.10).

In high dimension, an initial random-walk proposal with S0 = σ2Id may result in a Markov

chain that never jumps between modes during the burn-in period. In this case, using the
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sample variance-covariance matrix S calculated from the burn-in samples being stuck at a

local mode is unlikely to expedite jumping between modes after the burn-in period. To help

a Markov chain visit at least the known modes during the burn-in period, we calculate S0

as follows. We first run two short Markov chains using a random-walk Metropolis algorithm

each of length 5,000 initialized at 0 × 1d and 10 × 1d, respectively, whose scale matrix is

σ2Id, to make each chain be stuck at the known modes. The scale σ of this random-walk

Metropolis algorithm is set to 2.38/
√
d for reasonable acceptance rate at around 0.3. Next,

we calculate a sample variance-covariance matrix using the combined 10,000 samples and set

it to the initial proposal scale matrix S0.

We run 20 chains each of length 100, 000, discarding the first 50,000 samples as burn-ins.

Because the RAM algorithm takes more CPU time than the Metropolis algorithm, we run

longer chains for the Metropolis algorithm (still discarding the first 50,000 samples). For a

fair comparison, we thin the longer chains to match the same sample size 50,000 each.

To evaluate each algorithm’s jumping ability, we use three numerical measures. The

first measure is the number of chains out of 20 that discover (visit) the unknown mode at

−20 × 1d, denoted by Ndiscover. The second measure is the second largest eigenvalue of the

transition matrix, denoted by λ2, based on the combined one million samples of the first

coordinate, x1. The reason for considering only the first coordinate is that we can say a

d-dimensional jump between modes occurs when a jump between modes occurs in the first

coordinate, considering the target distribution in (3.14). To construct a transition matrix, we

discretize the range of x1 into three regions, r1 = {x1 : x1 < −5}, r2 = {x1 : −5 ≤ x1 < 5},

and r3 = {x1 : 5 ≤ x1}. After constructing a 3 × 3 transition matrix based on r1, r2, and

r3, we calculate the second largest eigenvalue of this matrix, λ2, which is related to the

geometric convergence rate when the state-space is finite (Liu, 2008), i.e.,

‖ P n(· | x(0))− π(·) ‖TV ≤ cλn2 ,

where P n is an n-step kernel distribution starting at x(0), ‖ ‖TV is a total variation distance,

c is a constant, and |λ2| < 1. Thus, smaller λ2 indicates the distribution of the samples
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converges to the target distribution faster. Since λ2 is related to a geometric convergence

rate, even a small difference between two values of λ2 can make a huge difference in terms

of the convergence rate. The last measure is the number (proportion) of the jumps to the

other modes among all the accepted proposals.

We summarize all the sampling results in Table 3.1, including the length of each chain

before we discard the burn-in samples and thin each chain, mean CPU time averaged over

20 runs, acceptance rate, λ2, and Ndiscover; the last two are calculated after we discard the

burn-in samples and thin each chain for a fair comparison. The convergence rate of the RAM

algorithm in terms of λ2 is uniformly faster than that of the Metropolis algorithm, and the

former discovers the unknown mode at −20 × 1d better than the latter as dimensionality

increases.

Using the combined one million samples (20 chains each of length 50,000) of the first

coordinate x1 obtained by each algorithm, we draw their histograms in Figure 3.2. The

curves in the histograms represent the marginal target density of the first coordinate, i.e.,

π(x1) =
1

4
N1(x1 | −20, 1) +

1

2
N1(x1 | 0, 1) +

1

4
N1(x1 | 10, 1).

In dimension three, both algorithms recover the target distribution well. However, as dimen-

sionality increases, i.e., d ∈ {10, 20}, the Metropolis algorithm deteriorates more quickly than

Table 3.1: Each chain’s sample size before we discard the burn-in samples and thin each
chain, average CPU time in seconds, acceptance rate, the second largest eigenvalue of each
transition matrix (λ2), and the number of chains out of 20 that discover the unknown mode
at −20 × 1d (Ndiscover). Before we calculate λ2 and Ndiscover, we discard the first 50,000
samples as burn-ins and thin each chain to match the same sample size 50,000 for a fair
comparison.

d = 3 d = 10 d = 20
Metropolis RAM Metropolis RAM Metropolis RAM

Sample size 411,419 100,000 571,635 100,000 712,366 100,000
Average CPU time 211 210 312 312 422 422

Acceptance rate 0.086 0.168 0.022 0.030 0.042 0.024
λ2 0.9392 0.9330 0.9999 0.9886 1.0000 0.9994

Ndiscover 20 20 6 20 2 8
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Figure 3.2: Histograms of the combined one million samples of the first coordinate (x1)
obtained by each algorithm in each dimension (d). The curve in each histogram represents
the marginal target density function of x1.

the RAM algorithm in terms of restoring the target distribution because most Metropolis

chains do not discover the unknown mode at −20× 1d.

We also summarize the number of jumps to the other modes among all the accepted

proposals in Table 3.2. The number of accepted proposals of the Metropolis algorithm in

d = 20 is larger than than that in d = 10 because more chains in d = 20 explore the known

local modes without visiting the unknown mode. Clearly, RAM’s proportion of the accepted

proposals that jump to the other modes is uniformly higher than that of the Metropolis

algorithm in all dimensions.

Table 3.2: The number (#) and proportion of jumps to the other modes among the accepted
proposals. We use the combined one million samples to calculate these.

d = 3 d = 10 d = 20
Metropolis RAM Metropolis RAM Metropolis RAM

# of accepted moves 86,078 168,233 22,169 30,089 41,532 24,423
# of jumps to the other 23,352 75,321 2,236 13,530 346 1,647

Proportion 27.1% 44.8% 10.1% 45.0% 0.8% 6.7%

79



3.3.2 Example 2: A mixture of 20 bivariate Gaussian densities

For a comparison with other tempering methods, our second numerical illustration targets

a mixture of 20 bivariate Gaussian distributions, given in Kou et al. (2006),

π(x) ∝
20∑
j=1

wj
τ 2
j

exp

(
− 1

2τ 2
j

(x− µj)>(x− µj)
)
,

where x = (x1, x2)>. The 20 mean vectors, {µ1, . . . , µ20}, are specified in Kou et al. (2006)

and plotted in the first panel of Figure 3.3. Following Kou et al. (2006), we consider two

cases; in case (a), the modes are equally weighted and have equal variances, wj = 1/20 and

τ 2
j = 1/100, and in case (b) weights and variances are unequal, wj = 1/‖µj − (5, 5)>‖ and

τ 2
j = ‖µj − (5, 5)>‖/20. In case (b), modes near (5, 5) are more weighted and have smaller

variances. Contour plots of the target distributions in cases (a) and (b), respectively, appear

in Figure 3.3. Contour lines correspond to 1%, 10%, 50%, and 95% probability.

Kou et al. (2006) used this target distribution to compare the equi-energy sampler and

parallel tempering. We follow their simulation configurations by running the RAM algorithm

for 100,000 iterations, discarding the first 50,000 for each of the two cases, i.e., the number

of burn-ins, denoted by nburn, is 50,000. The RAM algorithm is initialized at random values

of x(0) and z(0) in the unit square, [0, 1] × [0, 1]. We set q(a | b) = N2(a | b,Σ), where Σ is

defined in (3.10); S0 = σ2I2 during the burn-in period and we calculate S, a sample variance-

Figure 3.3: The first panel exhibits the contour plot of the target density in Example 3,
case (a) and the second panel shows that of the target density in Example 3, case (b). The
plotted contours outline regimes with probability 1%, 10%, 50%, and 95% under π(x).
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covariance matrix, using the first nburn samples. We use an arbitrarily large proposal scale,

e.g., σ = 10, pretending that the locations of the modes are unknown. The acceptance rates

are 0.072 for case (a) and 0.293 for case (b).

Using the samples obtained by the RAM algorithm, we display the bivariate scatter plots

for 50,000 samples, the bivariate trace plots for the last 2,000 iterations for case (a) and the

last 1,000 iterations for case (b), and the autocorrelation functions for 50,000 samples of the

first coordinate x1 in Figure 3.4. The numbers of iterations used in the trace plots are the

same as those in Kou et al. (2006). These plots can be compared to those for the equi-energy

sampler and those for the parallel tempering provided in Kou et al. (2006).

To estimate moments, we again follow Kou et al. (2006) and run 20 independent chains

using the RAM algorithm. Table 3.3 summarizes the moment estimates for each case, where

results of the equi-energy sampler and parallel tempering are from Kou et al. (2006). The

ratios of the mean squared error (MSE) of both the equi-energy sampler and parallel temper-

Figure 3.4: Results of the repelling-attracting Metropolis algorithm. The first column dis-
plays bivariate scatter plots for 50,000 samples, the middle column displays the bivariate
trace plots for the last 2,000 samples for case (a) and the last 1,000 samples for case (b),
and the last column displays the autocorrelation functions for 50,000 samples of x1.

81



Table 3.3: Moment estimates for cases (a) and (b) of Example 1 based on 20 independent
chains, each of length 50,000, generated with the RAM algorithm, the equi-energy sampler
(EE), and parallel tempering (PT). Results for the latter two samplers are reproduced from
Kou et al. (2006). Estimates are the means over the 20 runs and standard deviations of the
20 runs are given in the parentheses next to estimates.

Case (a) Truth RAM EE PT
MSE ratio MSE ratio

(EE/RAM) (PT/RAM)
E(x1) 4.478 4.5081 (0.081) 4.5019 (0.107) 4.4185 (0.170) 1.61 4.34
E(x2) 4.905 4.8934 (0.097) 4.9439 (0.139) 4.8790 (0.283) 2.18 8.46
E(x21) 25.605 25.9153 (0.843) 25.9241 (1.098) 24.9856 (1.713) 1.62 4.11
E(x22) 33.920 33.8831 (0.952) 34.4763 (1.373) 33.5966 (2.867) 2.42 9.17

Case (b) Truth RAM EE PT
MSE ratio MSE ratio

(EE/RAM) (PT/RAM)
E(x1) 4.688 4.693 (0.028) 4.699 (0.072) 4.709 (0.116) 6.56 17.18
E(x2) 5.030 5.029 (0.031) 5.037 (0.086) 5.001 (0.134) 7.74 19.54
E(x21) 25.558 25.742 (0.310) 25.693 (0.739) 25.813 (1.122) 4.34 10.19
E(x22) 31.378 31.487 (0.347) 31.433 (0.839) 31.105 (1.186) 5.34 11.20

ing to that of the RAM algorithm are greater than one, meaning that the RAM algorithm

performs uniformly better than both in terms of MSE. The improvement is particularly

striking for case (b) with unequal weights and variances.

However, we emphasize that this comparison does not take into account the CPU time,

because the simulation configurations of Kou et al. (2006) does not account for different CPU

time required by the equi-energy sampler or that required by the parallel tempering. The

RAM algorithm, however, takes an average of 1,426 seconds in case (a) and 1,204 seconds

in case (b), averaging over 20 independent runs.

3.3.3 Example 4: Time delay estimation problem

Our last numerical illustration targets a grossly multi-modal distribution whose modes are

600 standard deviations away from each other. This multi-modal distribution arises from

an applied astrophysical project in Chapter 2 that originally motivated the RAM algorithm.

Quasars are highly luminous astronomical sources in the distant Universe. If there is a

massive galaxy between a quasar and the Earth, the gravitational field of the intervening
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galaxy may act as a strong lens, bending the light rays emitted by the quasar. From our

vantage points, two (or more) images of the quasar may appear in slightly different locations

on the sky. This effect is known as strong gravitational lensing (Schneider et al., 2006).

Because the light corresponding to the two images may take different routes to the Earth,

their travel times may also differ. This difference is called a time delay. If we construct a time

series of the brightness of each image, temporal features appear shifted in time between the

two or more images because of the time delay. Accurate time delay estimation is important

because it is, for example, used to calculate the current expansion rate of the Universe, i.e.,

the Hubble constant (Refsdal, 1964).

Figure 3.5 displays two irregularly-observed time series of the brightness of doubly-lensed

quasar Q0957+561 (Hainline et al., 2012); the two time series are labeled A and B. Bright-

ness is reported on a magnitude scale where smaller values correspond to brighter images. Let

x(t) ≡ {x(t1), . . . , x(tn)} and y(t) ≡ {y(t1), . . . , y(tn)} denote the n observed magnitudes in

time series A and B, respectively. Let δ(t) ≡ {δ(t1), . . . , δ(tn)} and η(t) ≡ {η(t1), . . . , η(tn)}

represent the n known standard deviations of the measurement errors for x(t) and y(t),

respectively. There are 57 observations in the time series of Q0957+561, i.e., n = 57.

We assume that for each observed time series there is an unobserved underlying brightness

curve. Let X(t) ≡ {X(t1), . . . , X(tn)} denote the latent magnitudes for time series A and

Y (t) ≡ {Y (t1), . . . , Y (tn)} denote those for time series B. We assume that one of the latent

brightness curves is a shifted version of the other, i.e.,

Y (tj) = X(tj −∆) + β0, (3.15)

where ∆ is the unknown time delay and β0 is an unknown magnitude offset. This is called

a curve-shifted model.

Each observed magnitude is assumed to be independent Gaussian conditioning on its
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Figure 3.5: Two observed time series of doubly-lensed quasar Q0957+561 (Hainline et al.,
2012). Time series A is denoted by squares and time series B is denoted by circles. Magni-
tude is an astronomical measure of brightness. Both time series are plotted with an offset
(constant) in magnitude, but this does not affect the time delay estimation. Here we shifted
time series B by 0.4 magnitude in the y-axis to display two time series in the same plot.
The convention in astrophysics is to plot the magnitude inversely so that smaller magnitudes
(brighter image) appear on the top and larger ones (fainter image) on the bottom.

latent magnitude,

x(tj) | X(tj) ∼ Normal
(
X(tj), δ

2(tj)
)
,

y(tj) | Y (tj) ∼ Normal
(
Y (tj), η

2(tj)
)
. (3.16)

Using the model in (3.15), we can express (3.16) as

y(tj) | X(tj −∆),∆, β0 ∼ Normal
(
X(tj −∆) + β0, η

2(tj)
)
.

We assume that the latent magnitudes follow an Ornstein-Uhlenbeck process (Kelly et al.,

2009). The solution of a stochastic differential equation of the Ornstein-Uhlenbeck process

yields the sampling distribution of the time-sorted latent magnitudes X(t∆), where t∆ ≡

(t∆1 , . . . , t
∆
2n)> is the sorted 2n times among the n observation times, t, and the n time-delay-

shifted observation times, t−∆. Specifically,

X(t∆1 ) | ∆, θ ∼ Normal

(
µ,

τφ2

2

)
, and for j = 2, 3, . . . , 2n,

X(t∆j ) | X(t∆j−1),∆, θ ∼ Normal

(
µ+ aj

(
X(t∆j−1)− µ

)
,
τφ2

2
(1− a2

j)

)
,

where θ ≡ (µ, φ2, τ)> and aj = exp(−(t∆j − t∆j−1)/τ).
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A Bayesian analysis requires prior distributions on the several parameters; ∆ follows

a Uniform[t1 − tn, tn − t1] = [−1178.939, 1178.939], β0 follows a Uniform[−60, 60], µ fol-

lows a Uniform[−30, 30], φ2 follows an inverse-Gamma(1, 2/107), and τ follows an inverse-

Gamma(1, 1), where a density function of v ∼ inverse-Gamma(a, b) is proportional to

v−a−1 exp(−b/v). Further details and motivation for this model, including the choice of

prior distributions, are given in Chapter 2.

To sample from the joint posterior density function, π(X(t∆),∆, β0, θ | x(t), y(t)), we

adopt a Metropolis-Hastings within Gibbs sampler (MHwG, Tierney, 1994b) composed of

three steps as shown in Algorithm 2 below. We suppress conditioning on x(t) and y(t) in all

three steps here and elsewhere. The factorization in Step 1 means that we first sample ∆

given β0 and θ, and then sample X(t∆) given ∆, β0, and θ. See Appendix B for details of

the necessary complete conditional distributions.

Because the marginal posterior distribution of the time delay is often multimodal, we

compare a Metropolis algorithm and tempered transitions (Neal, 1996) with a RAM algo-

rithm to sample ∆ from π(∆ | β0, θ) in Step 1 of Algorithm 2.

At each iteration, the tempered transitions ascend (heating) the temperature ladder to

explore a flatter surface where the modes are melted down, and then descend (cooling) the

ladder, accepting the last candidate with a modified acceptance probability to maintain the

stationary distribution. Specifically, suppose πj(∆) ∝ {π(∆ | β(i−1)
0 , θ(i−1))}1/Tj , where Tj is

the temperature at rung j of the temperature ladder, for j = 1, . . . , J). The target density

is π0(∆) with T0 = 1 and the ladder has J rungs with T0 = 1 < T1 < · · · < TJ . At

Algorithm 2. A Metropolis-Hastings within Gibbs sampler for the time delay model.

Set initial values ∆(0), X(0)(t∆
(0)

), β
(0)
0 , and θ(0). For i = 1, 2, . . .

Step 1: Draw
(
X(i)(t∆

(i)
),∆(i)

)
∼ π

(
X(t∆),∆ | β(i−1)

0 , θ(i−1)
)

= π
(
X(t∆) | ∆, β(i−1)

0 , θ(i−1)
)
π
(

∆ | β(i−1)
0 , θ(i−1)

)
.

Step 2: Draw β
(i)
0 ∼ π

(
β0 | θ(i−1), X(i)(t∆

(i)
),∆(i)

)
.

Step 3: Draw θ(i) ∼ π
(
θ | X(i)(t∆

(i)
),∆(i), β

(i)
0

)
.
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the beginning of iteration i, we generate ∆̂1 from Normal(∆(i−1), σ2
1), and accept it with

probability min(1, π1(∆̂1)/π1(∆(i−1))) and set ∆̂1 = ∆(i−1) otherwise. Next, we generate ∆̂2

from Normal(∆̂1, σ
2
2), and accept it with probability min(1, π2(∆̂2)/π2(∆̂1)) and set ∆̂2 =

∆̂1 otherwise. We repeat this process until we reach the top of the temperature ladder,

collecting ∆̂1, . . . , ∆̂J . At the top, we generate ∆̌J−1 from Normal(∆̂J , σ
2
J), and accept it

with probability min(1, πJ−1(∆̌J−1)/πJ−1(∆̂J)) and set ∆̌J−1 = ∆̂J otherwise. We repeat

this process until we reach the bottom of the temperature ladder, collecting ∆̌J−1, . . . , ∆̌0.

We set ∆(i) = ∆̌0 with probability

min

{
1,

π1(∆(i−1))

π0(∆(i−1))
× · · · × πJ(∆̂J−1)

πJ−1(∆̂J−1)

πJ−1(∆̌J−1)

πJ(∆̌J−1)
× · · · × π0(∆̌0)

π1(∆̌0)

}
and set ∆(i) = ∆(i−1) otherwise.

To sample ∆ from π(∆ | β0, θ) via the RAM algorithm, we additionally keep track of the

auxiliary variable during the run, i.e., {z(i), i = 0, 1, 2, . . .}. At iteration i, we sequentially

draw ∆′ ∼ qD(∆′ | ∆(i−1)), ∆∗ ∼ qU(∆∗ | ∆′), and z∗ ∼ qD(z∗ | ∆∗). We set (z(i),∆(i))

to (z∗,∆∗) with probability αJ(z∗,∆∗ | z(i−1),∆(i−1)) given in (3.13), and set (z(i),∆(i))

to (z(i−1),∆(i−1)) otherwise. Because {z(i), i = 0, 1, 2, . . .} are introduced solely to enable

sampling ∆ from π(∆ | β0, θ), only ∆(i) is used to sample X(t∆), β0, and θ for the following

steps in Algorithm 2, and z(i) is used to draw ∆(i+1) at the next iteration.

We fit the time delay model using the MHwG sampler equipped with a Metropolis al-

gorithm, tempered transitions, or a RAM algorithm. In each case, we independently run

five chains each of length 150,000, discarding the first 50,000. All algorithms are initial-

ized at the same point; z(0) = 0 (only for RAM), β
(0)
0 =

∑n
j=1{y(tj) − x(tj)}/n = −0.113,

µ(0) =
∑n

j=1 x(tj)/n = 2.658, φ(0) = 0.01, τ (0) = 200, and X(0)(t∆
(0)

) is a vector of x(t) and

y(t − ∆(0)) − β(0)
0 that are sorted in time. When it comes to the initial value of the time

delay, ∆(0), we spread five initial values, {-1000, -500, 0, 500, 1000}, across the five chains

as is commonly done to check the multimodal behavior of ∆.

For Metropolis and RAM algorithms, we set q(a | b) = N1(a | b,Σ), where Σ is defined

in (3.10). Because we do not know the information about the locations of the modes, we
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set an arbitrarily large initial proposal scale σ = 500 (S0 = σ2) during the burn-in period,

about a quarter of the length of the entire range of ∆. After the burn-in period, we calculate

a sample standard deviation from all the posterior samples of ∆ drawn during the burn-in

period and set it to σ (S = σ2).

Tempered transitions require several tuning parameters, i.e., the number of rungs of the

temperature ladder, the temperature of each rung, and the proposal scales. Setting these

parameters can be challenging in practice (Behrens et al., 2012). To fit the Q0957+561

data, we set five rungs (J = 5) with corresponding temperature Tj = 4j and proposal scale

σj = σ × 1.2j−1 for j = 1, . . . , 5. The common proposal scale on each rung σ plays the

same role as that in the Metropolis and RAM algorithms, and thus we set σ = 500 as an

arbitrarily large initial proposal scale. After the burn-in period, we calculate the sample

standard deviation of the posterior samples of ∆ and set it to σ.

Considering the different CPU time taken for each algorithm, we run longer chains of the

MHwG equipped with the Metropolis and RAM algorithms and thin these chains to match

the same sample size 100,000 for each chain. Table 3.4 summarizes all the sampling results

including the sample size of each chain before we discard the burn-in samples and thin each

chain, average CPU time over five runs, acceptance rate for ∆, and the number of jumps

between two distant modes near 400 days and 1,100 days, respectively (Njumps).

For all algorithms, two chains out of five have discovered the mode near 400 days and

Table 3.4: Each chain’s sample size before we discard the 50,000 burn-in samples and thin
each chain, average CPU time over five runs in seconds, acceptance rate for ∆, and the num-
ber of jumps between the grossly distant modes near 400 days and 1,100 days, respectively
(Njumps). Before calculating Njumps, we discard the first 50,000 samples as burn-ins and thin
each chain to match the same sample size 100,000 for a fair comparison.

Sample size Average CPU time Acceptance rate Njumps

Tempered transitions 150,000 3,058 0.203 17
Metropolis 1,776,813 3,060 0.228 26

RAM 492,216 3,057 0.292 72
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Figure 3.6: The histograms and trace plots of 200,000 samples of ∆, based on the two chains
that have discovered the mode near 400 days, obtained by tempered transitions (TT) appear
in the first column, those obtained by the Metropolis algorithm appear in the second column,
and those obtained by the RAM algorithm in the third column.

the other three chains have been stuck at the modes near 1,100 days. In these two chains,

the numbers of jumps between the modes for tempered transitions are {11, 6}, summing to

17. Similarly, the numbers of jumps for the Metropolis algorithm are {10, 16}, summing to

26, and those for the RAM algorithm are {23, 49}, summing to 72. This means that the

total number of jumps per unit CPU time for the RAM algorithm is 2.77 times larger than

that for the Metropolis algorithm and 4.24 times larger than that for tempered transitions.

3.4 Conclusion

A Metropolis algorithm is widely used due to its simplicity, though it is known to be inappro-

priate for exploring a multimodal distribution. To improve its ability to explore a multimodal

distribution, we propose a repelling-attracting Metropolis (RAM) algorithm that can be im-

plemented with a single tuning parameter like a Metropolis algorithm. Thus, the RAM

algorithm can be an immediate alternative when users realize their Metropolis algorithm

does not explore a multimodal distribution well. Its simple implementation can be appeal-
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ing to both statisticians and practitioners because most temperature-based methods may

require significant human time for tuning, especially for non-experts.

We do not believe, however, that the RAM algorithm will always perform more favorably

than the tempering-based methods, and more work needs to be done to extend its applica-

bility. In particular, we need to compare the theoretical convergence rate of our algorithm to

others, though the intractable down-up proposal density can be a challenge for this purpose.

Also, different ways to encourage a down-up movement in density may exist, e.g., mixing

anti-Langevin and Langevin algorithms as suggested by Christian P. Robert or tempering

with negative and positive temperature levels as suggested by Art B. Owen. Another av-

enue for further improvement would be allowing an asymmetric density function q so that

a downhill move reaches out further than an uphill move does. Furthermore, it may be

possible to generalize our method to handle a case where π itself is intractable. Applying

this down-up idea to finding a global optimum of a multimodal density function is another

possible extension as the tempering idea is used for a statistical annealing. We leave these

for future research.
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Appendix A

Proofs of Theorem, Lemma, and

Corollary in Chapter 1

A.1 Proof of Lemma 1.3.1

If group j is interior (1 ≤ yj ≤ nj − 1, nj ≥ 2), we can derive an upper bound for the Beta-

Binomial probability mass function of interior group j with respect to r and β as follows.

All bounds in this proof are up to a constant multiple. With notation qEj = 1− pEj ,

πobs(yj | r,β) ∝
B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rq
E
j )

(A.1)

=
B(1 + rpEj , 1 + rqEj )

B(rpEj , rq
E
j )

B(yj + rpEj , nj − yj + rqEj )

B(1 + rpEj , 1 + rqEj )
(A.2)

=
rpEj q

E
j

1 + r

B(yj + rpEj , nj − yj + rqEj )

B(1 + rpEj , 1 + rqEj )
(A.3)

=
rpEj q

E
j

1 + r

∫ 1

0
vyj−1+rpEj (1− v)nj−yj−1+rqEj dv∫ 1

0
vrp

E
j (1− v)rq

E
j dv

≤
rpEj q

E
j

1 + r
. (A.4)

The ratio of the two beta functions in (A.4) is less than or equal to one because the integrand

of the beta function in the numerator is less than or equal to the integrand of the beta function

in the denominator, considering that 0 ≤ yj − 1 ≤ nj − 2 and 0 ≤ nj − yj − 1 ≤ nj − 2.
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A lower bound for the ratio of the two beta functions in (A.1) is

B(yj + rpEj , nj − yj + r(1− pEj ))

B(rpEj , r(1− pEj ))
(A.5)

=
(yj − 1 + rpEj ) · · · (1 + rpEj )rpEj (nj − yj − 1 + rqEj ) · · · (1 + rqEj )rqEj

(nj − 1 + r)(nj − 2 + r) · · · (1 + r)r
(A.6)

≥
r2pEj q

E
j

(nj − 1 + r)(nj − 2 + r) · · · (1 + r)r
≥

rpEj q
E
j

(nmax + r)nj−1
≥

rpEj q
E
j

(1 + r)nj−1
(A.7)

where nmax ≡ max{n1, . . . , nk}. The first inequality in (A.7) holds because each factor

(except rpEj and rqEj ) in the numerator of (A.6) is greater than or equal to one. The third

inequality holds up to a constant multiple, 1/n
nj−1
j , because (nmax + r)/(1 + r) ≤ nj.

If group j is extreme with all successes (yj = nj ≥ 1), the upper bound for the Beta-

Binomial probability mass function of group j with respect to r and β is

πobs(yj = nj | r,β) ∝
B(nj + rpEj , rq

E
j )

B(rpEj , rq
E
j )

≤
B(1 + rpEj , rq

E
j )

B(rpEj , rq
E
j )

= pEj . (A.8)

The inequality holds because the integrand of the beta function in the numerator becomes

the largest when nj = 1. The lower bound for the Beta-Binomial probability mass function

of this extreme group with respect to r and β is

B(nj + rpEj , rq
E
j )

B(rpEj , rq
E
j )

=
(nj − 1 + rpEj )(nj − 2 + rpEj ) · · · (1 + rpEj )pEj

(nj − 1 + r)(nj − 2 + r) · · · (1 + r)
≥ (pEj )nj . (A.9)

The inequality holds because the ratio of the two beta functions in (A.9) is a decreasing

function of r, and thus the lower bound is achieved as r goes to infinity.

Similarly, when group j is extreme with all failures (yj = 0, nj ≥ 1), we can bound the

ratio of the two beta functions of this extreme group by

(qEj )nj <
B(rpEj , nj + rqEj )

B(rpEj , rq
E
j )

< qEj . (A.10)

A.2 Proof of Theorem 1.3.1

Because the r part of the upper bound for L(r,β) in Lemma 1.3.2, i.e., rk/(1+ r)k, is always

less than one, an upper bound for πhyp.post(r,β | y), up to a normalizing constant, factors
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into a function of r and a function of β as follows:

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) < f(r)×
k∏
j=1

pEj q
E
j . (A.11)

The integration of f(r) with respect to r is finite because it is a proper hyper-prior PDF.

The integration of
∏k

j=1 p
E
j q

E
j with respect to β is finite if and only if the covariate matrix of

all groups, X, is of full rank m. To show the sufficient condition, let us choose m sub-groups,

whose index set is denoted by Wsub, such that the m×m covariate matrix of the sub-groups

is still of full rank m. Then,

k∏
j=1

pEj q
E
j <

∏
j∈Wsub

pEj q
E
j =

∏
j∈Wsub

exp(x>j β)

[1 + exp(x>j β)]2
. (A.12)

The integration of this upper bound in (A.12) with respect to β factors into m separate

integrations after linear transformations, hj = x>j β for all j ∈ Wsub, whose Jacobian is a

constant:∫
Rm

∏
j∈Wsub

exp(x>j β)

[1 + exp(x>j β)]2
dβ ∝

∫ ∞
−∞
· · ·
∫ ∞
−∞

∏
j∈Wsub

exp(hj)

[1 + exp(hj)]2
dhj = 1. (A.13)

Each integration on the right hand side leads to one because each integrand is a proper

density function of the standard logistic distribution with respect to hj.

Next, we show that if the rank of X is not of full rank m, then the integration of the

β part of the lower bound for L(r,β) in Lemma 1.3.2, i.e.,
∏k

j=1 p
E
j q

E
j , cannot be finite.

Without loss of generality, let us assume that the rank of X is m − 1 and that the last

column of X can be expressed as a linear function of the first m − 1 columns. Due to the

singularity of X, we can always find m − 1 linear functions, ti(βi, βm), i = 1, 2, . . . ,m − 1,

such that x>j β = xj1t1(β1, βm) + xj2t2(β2, βm) + · · ·+ xj,m−1tm−1(βm−1, βm). As a result, the

integration of
∏k

j=1 p
E
j q

E
j with respect to β is infinity after a linear transformation from β

to (β∗1 = t1(β1, βm), β∗2 = t2(β2, βm), . . . , β∗m−1 = tm−1(βm−1, βm), βm)>, whose Jacobian is

one. For notational simplicity, we use two (m− 1)× 1 vectors, x∗j ≡ (x1, x2, . . . , xm−1)> and

β∗ = (β∗1 , β
∗
2 , . . . , β

∗
m−1)>:∫

Rm

k∏
j=1

exp(x>j β)

[1 + exp(x>j β)]2
dβ =

∫
Rm−1

k∏
j=1

exp(x∗Tj β
∗)

[1 + exp(x∗Tj β
∗)]2

dβ∗ ×
∫
R

dβm, (A.14)
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where
∫
R
dβm =∞.

A.3 Proof of Corollary 1.3.1

Regarding the sufficient conditions for posterior propriety, an upper bound for L(r,β) up to

a constant multiplication is

L(r,β) ∝
k∏
j=1

B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rq
E
j )

<
∏
j∈Wy

B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rq
E
j )

(A.15)

=
∏
j∈Wy

rpEj q
E
j

1 + r

B(yj + rpEj , nj − yj + rqEj )

B(1 + rpEj , 1 + rqEj )
≤
rky
∏

j∈Wy
pEj q

E
j

(1 + r)ky
. (A.16)

The inequality in (A.15) holds because the upper bound for the ratio of two beta functions

for extreme group j is either pEj (< 1) in (A.8) or qEj (< 1) in (A.10). The inequality in

(A.16) holds because the integrand of the beta function in the numerator is less than or

equal to the integrand of the beta function in the denominator.

The upper bound for L(r,β) in (A.16) would be the same as the upper bound for L(r,β) in

Lemma 1.3.2 if we removed all extreme groups from the data and treated the interior groups

as a new data set (ky = k). Thus, if the joint posterior density function πhyp.post(r,β | y)

is proper with the new data set of ky interior groups based on Theorem 1.3.1, 1.3.2, or

1.3.3, then posterior propriety with the original data with all interior and all extreme groups

combined (1 ≤ ky ≤ k − 1) also holds. In other words, the extreme groups do not affect the

sufficient condition for posterior propriety no matter how many of them are in the data as

long as there exists at least one interior group in the data.

For the necessary conditions for posterior propriety, we will show that if a new data set

with all the extreme groups removed does not meet the conditions for posterior propriety

based on Theorem 1.3.1, 1.3.2, or 1.3.3, then πhyp.post(r,β | y) is still improper even after we

add extreme groups into the new data.

Because a lower bound for the Beta-Binomial probability mass function for extreme

group j is either (pEj )nj in (A.9) or (qEj )nj in (A.10), the extra product term for extreme
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groups to the lower bound for the likelihood function based only on interior groups is∏
i∈W c

y
(pEi )niI{yi=ni}(qEi )niI{yi=0} .

Specifically, let us consider a proper hyper-prior PDF for r, f(r), and an improper flat

hyper-prior PDF for β, g(β) ∝ dβ as in Theorem 1.3.1. Suppose we removed all the extreme

groups in the data. If the rank of Xy is not of full rank, e.g., rank(Xy) = m− 1, then we see

the term
∫
R
dβm in (A.14). This term does not disappear even after we add all the extreme

groups to the data because multiplying
∏

i∈W c
y
(pEi )niI{yi=ni}(qEi )niI{yi=0} by the first integrand

in (A.14) cannot make the term,
∫
R
dβm, disappear. It means that πhyp.post(r,β | y) is still

improper.

Next, we consider f(r) ∝ dr/ru+1 for positive u and a proper hyper-prior PDF on β,

g(β), as in Theorem 1.3.2. Because contribution of extreme groups to the lower bound for

the likelihood function, i.e.,
∏

i∈W c
y
(pEi )niI{yi=ni}(qEi )niI{yi=0} , is free of r, if ky is smaller than

u+ 1, then πhyp.post(r,β | y) is still improper even after we add all the extreme groups into

the data.

If the data of interior groups do not meet the condition for posterior propriety specified

in Theorem 1.3.3, then adding the extreme groups cannot change the result of posterior

propriety. This is because Theorem 1.3.3 is an improper mixture of Theorem 1.3.1 and

1.3.2 and we already showed that extreme groups can be ignored in determining posterior

propriety in Theorem 1.3.1 and 1.3.2.

A.4 Proof of Theorem 1.3.4

Considering the upper bound of the likelihood function in (1.16) when all groups are extreme

(ky = 0), the upper bound of πhyp.post(r,β | y) up to a constant multiple is

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) ≤ f(r)
k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0} . (A.17)
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The integration of f(r) with respect to r is finite because f(r) is proper. The integration of

the β part in (A.17), i.e.,
k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0} , (A.18)

with respect to β is finite if there exists a finite value of β that maximizes (A.18). This is

because (A.18) is essentially a likelihood function of a logistic regression in (1.8) in that the

powers in (A.18) are either one or zero with I{yj=0} = 1− I{yj=nj}. Thus, we can use the fact

that the posterior distribution of β with its constant prior (Lebesque measure) in a logistic

regression is proper if there exists a finite MLE of β (Albert and Anderson, 1984; Speckman

et al., 2009). (Jacobsen (1989) shows that the MLE of a logistic regression is unique if it

exists.) Consequently, the integration of (A.18) with respect to β is finite if there exists a

finite value of β that maximizes (A.18).

The lower bound of πhyp.post(r,β | y) up to a constant multiple can be derived from the

lower bound of the likelihood function in (1.16), i.e.,

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) ≥ f(r)
k∏
j=1

[
(pEj )

I{yj=nj}(qEj )
I{yj=0}

]nj

. (A.19)

The integration of the β part in (A.19) with respect to β can be bounded from below by∫
Rm

k∏
j=1

[
(pEj )

I{yj=nj}(qEj )
I{yj=0}

]nj

dβ ≥
∫

Rm

[
k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0}

]nmax

dβ

≥

[∫
Rm

k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0}dβ

]nmax

, (A.20)

where the first inequality holds because of the largest power nmax ≡ max(n1, n2, . . . , nk) and

the second inequality holds via Jensen’s inequality because the power function is convex.

The integrand in (A.20) is the same as (A.18). This indicates that the integration in (A.20)

is not finite (and thus πhyp.post(r,β | y) is improper) if a finite value of β that maximizes

(A.18) does not exist (Albert and Anderson, 1984; Speckman et al., 2009).
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A.5 Proof of Theorem 1.3.5

First, we show that the integration of (A.18) with respect to β is finite if (i) there are at least

m clusters of groups whose covariate values are the same within each cluster and different

between clusters, and (ii) in each cluster there are at least one group of all successes and

at least one group of all failures. We define ci as the index set of cluster i, e.g., ci = {2, 5}

means that groups 2 and 5 are in cluster i. Then we can bound (A.18) with groups only in

the m clusters as follows.

k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0} ≤
∏

j∈{ci,i=1,2,...,m}

(pEj )
I{yj=nj}(qEj )

I{yj=0} ≤
m∏
i=1

pEciq
E
ci
, (A.21)

where pEci = 1 − qEci = exp(x>ciβ)/{1 + exp(x>ciβ)} is the same expected random effect for

all groups in cluster i and xci is the same covariate vector for all groups in cluster i. The

first equality holds because some groups may not be included in one of m clusters. The

second inequality holds for two reasons. First, groups in the same cluster share the same

covariate values, meaning that every group in cluster i has the same expected random effect,

pEci = 1 − qEci . Second, in each cluster there are at least one group with all successes and

at least one group with all failures, indicating that in cluster i, pEciq
E
ci

is the largest value of∏
j∈ci(p

E
j )

I{yj=nj}(qEj )
I{yj=0} . The integration of the upper bound in (A.21) is finite with a

linear transformation, hi = x>ciβ, as follows:∫
Rm

m∏
i=1

pEciq
E
ci
dβ ∝

∫ ∞
−∞
· · ·
∫ ∞
−∞

m∏
i=1

exp(hi)

[1 + exp(hi)]2
dhi = 1. (A.22)

The last equality holds because exp(hi)/[1 + exp(hi)]
2 is a PDF of a standard Logistic

distribution with respect to hi.

These conditions also become necessary conditions when x>j β = β1 for all j. In this case,

the conditions simply reduce to having at least one group with all successes and at least one

group with all failures. Let us use notation pEj = pE = 1− qE = exp(β1)/(1 + exp(β1)). If all

the extreme groups have only successes (yj = nj for all j), then we can bound πhyp.post(r, β1 |
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y) from below using the lower bound in (1.16) up to a normalizing constant as follows:

πhyp.post(r, β1 | y) ∝ f(r)g(β1)L(r, β1) ≥ f(r)(pE)
∑k

j=1 nj . (A.23)

The integration of this lower bound in (A.23) with respect to β1 is not finite because pE

converges to one as β1 approaches infinity. Similarly, πhyp.post(r, β1 | y) is improper if all the

extreme groups have only failures (yj = 0 for all j).
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Appendix B

Details on conditional distributions

for the Gibbs sampler, profile

likelihood, and sensitivity analysis in

Chapter 2

B.1 Conditional distributions of X(·)

We define a combined light curve z(·) as follows. The observed magnitude at time t∆j is

denoted by z(t∆j ), which is either x(tj) or y(tj −∆) −w>m(tj −∆)β depending on whether

t∆j is one of t or one of t−∆. The observed measurement error is denoted by ξ(t∆j ), which is

either δ(tj) for x(tj) or η(tj) for y(tj−∆)−w>m(tj−∆)β. We also define z′(t∆j ) as the centered

observed magnitude at time t∆j , which is either x(tj) − µ or y(tj −∆) −w>m(tj −∆)β − µ

for j = 1, 2, . . . , 2n. We introduce the centered latent magnitudes X ′(t∆) = X(t∆)− µ for

notational simplicity. Also, let “< t∆j ” denote the set {t∆i : i = 1, 2, . . . , j − 1} and “> t∆j ”

denote {t∆i : i = j + 1, j + 2, . . . , 2n}. We sample p(X ′(t∆) | ∆,β, µ, σ2, τ,x(t),y(t))

by sequentially sampling from its complete conditional distributions, and return X ′(t∆) to

the non-centered latent magnitudes, i.e., X(t∆) = X ′(t∆) + µ at the end of sampling. To



save space, we suppress conditioning on ∆,β, µ, σ2, τ,x(t),y(t). The complete conditional

distributions are given by

X ′(t∆1 ) |X′(> t∆1 ) ∼ N
[
(1−B∆

1 )z′(t∆1 ) +B∆
1 a2X

′(t∆2 ), (1−B∆
1 )ξ2(t∆1 )

]
, (B.1)

where B∆
1 = ξ2(t∆1 ) / [ξ2(t∆1 ) + τσ2(1− a2

2)/2]. For j = 2, 3, . . . , 2n− 1,

X ′(t∆j ) |X′(< t∆j ),X′(> t∆j ) (B.2)

∼N

[
(1−B∆

j )z′(t∆j ) +B∆
j

(
(1−Bj)

X ′(t∆j+1)

aj+1
+BjajX

′(t∆j−1)

)
, (1−B∆

j )ξ2(t∆j )

]
,

where B∆
j = ξ2(t∆j )

/[
ξ2(t∆j ) + τσ2

2

(1−a2
j )(1−a2

j+1)

1−a2
ja

2
j+1

]
and Bj =

1−a2
j+1

1−a2
ja

2
j+1

. Lastly,

X ′(t∆2n) |X′(< t∆2n) ∼ N
[
(1−B∆

2n)z′(t∆2n) +B∆
2na2nX

′(t∆2n−1), (1−B∆
2n)ξ2(t∆2n)

]
, (B.3)

where B∆
2n = ξ2(t∆2n)/[ξ2(t∆2n) + τσ2(1− a2

2n)/2] and aj = exp(−(t∆j − t∆j−1)/τ).

B.2 The likelihood function of parameters.

We use the same notation for the observed data as is defined in Appendix B.1, i.e., z′(t∆j ) and

ξ(t∆j ). Let Dj = {z′(t∆1 ), z′(t∆2 ), . . . , z′(t∆j )}. For j = 1, 2, . . . , 2n, the posterior predictive

density functions of z′(t∆j ) with X(t∆) integrated out are

z′(t∆1 ) ∼ N
[
0, ξ(t∆1 )2 + τσ2/2

]
, (B.4)

z′(t∆j ) | Dj−1 ∼ N
[
ajµj−1, ξ(t

∆
j )2 + a2

jΩj−1 + τσ2(1− a2
j)/2

]
, (B.5)

where µ1 = (1 − B1)z′(t∆1 ), µj = (1 − Bj)z
′(t∆j ) + Bjajµj−1, Ωj = (1 − Bj)ξ(t

∆
j )2, B1 =

ξ(t∆1 )2/[ξ(t∆1 )2 + τσ2/2], Bj = ξ(t∆j )2/[ξ(t∆j )2 + a2
jΩj−1 + τσ2(1 − a2

j)/2]. The likelihood

function of (∆,β, µ, σ2, τ) is the product of the Gaussian densities as follows.

L(∆,β, µ, σ2, τ) ∝ p(z′(t∆1 ))×
2n∏
j=2

p(z′(t∆j ) | Dj−1). (B.6)

Given the values of (β, µ, σ2, τ), L(∆,β, µ, σ2, τ) is proportional to the marginalized con-

ditional posterior density p(∆ | β, µ, σ2, τ,x(t),y(t)) for ∆ ∈ [u1, u2] and is zero elsewhere.
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B.3 Metropolis-Hastings within Gibbs sampler

We specify the steps of the DA MHwG sampler, (2.14)-(2.17), with x(t) and y(t) suppressed

in the condition. We sample β from its Gaussian conditional posterior distribution as follows.

With a n by n diagonal matrix V whose diagonal elements are η2(t),

β | µ, σ, τ,X(t∆),∆ ∼ Nm+1

[
J−1Wm(t− ∆)>V −1u, J−1

]
, (B.7)

where J ≡W>
m(t− ∆)V −1Wm(t− ∆) + 10−5Im+1 and u ≡ y(t)−X(t− ∆).

We sample µ from a truncated Gaussian conditional posterior distribution whose support

is [−30, 30]; with aj = exp(−(t∆j − t∆j−1)/τ),

µ | σ2, τ,X(t∆),∆,β ∼ (B.8)

N

X(t∆1 ) +
∑2n

j=2

X(t∆j )−ajX(t∆j−1)

1+aj

1 +
∑2n

j=2
1−aj
1+aj

,
τσ2/2

1 +
∑n

j=2
1−aj
1+aj

.
The parameter σ2 has an inverse-Gamma conditional posterior distribution; with its prior

distribution p(σ2) ∝ exp(−bσ/σ2)/(σ2)2 · I{σ2>0},

σ2 | µ, τ,X(t∆),∆,β ∼ (B.9)

IG

(
n+ 1, bσ +

(X(t∆1 )− µ)2

τ
+

2n∑
j=2

[
(X(t∆j )− µ)− aj(X(t∆j−1)− µ)

]2
τ(1− a2

j)

)
.

The conditional posterior density function of τ is known up to a normalizing constant;

with its prior distribution p(τ) ∝ exp(−1/τ)/τ 2 · I{τ>0},

p(τ | µ, σ2,X(t∆),∆,β) ∝ (B.10)

exp

(
− 1
τ
− (X(t∆1 )−µ)2

τσ2 −
∑2n

j=2

[
(X(t∆j )−µ)−aj(X(t∆j−1)−µ)

]2
τσ2(1−a2

j )

)
τn+2 ·

∏2n
j=2(1− a2

j)
1/2

· I{τ>0}.

To sample τ from (B.10), we use a M-H step with a Gaussian proposal density N[log(τ), φ2]

on a logarithmic scale where φ is a proposal scale tuned to produce reasonable acceptance

rate.

100



To implement the ASIS, we need a conditional posterior distribution for β given K(t∆)

used in (2.26). Let K ′(t∆) ≡ K(t∆) − µ, B be a 2n by (m + 1) matrix whose jth row is

(wm(t∆j )− aj ×wm(t∆j−1))>, L be a 2n by 2n diagonal matrix whose jth diagonal element is

τσ2(1− a2
j)/2, b be a 2n by 1 vector whose j th element is K ′(t∆j )− ajK ′(t∆j−1), and finally

A ≡ B>L−1B + 10−5I(m+ 1). Then,

β | µ, σ2, τ,K ′(t∆),∆,x(t),y(t) ∼ Nm+1

[
A−1B>L−1b, A−1

]
. (B.11)

B.4 Profile likelihood approximately proportional to

the marginal posterior

We show that Lprof(∆) is approximately proportional to p(∆ | x(t),y(t)). Let ν ≡

(β>,θ>)>. Then,

p(∆ | x(t),y(t)) =

∫
L(∆,ν)p(∆,ν)dν = k

∫
L(∆,ν)p(ν | ∆)dν, (B.12)

where k is a normalizing constant of the uniform prior distribution for ∆. We put a Jeffreys’

prior on ν given ∆, i.e., p(ν | ∆) ∝ |I∆(ν)|0.5dν, where I∆(ν) is Fisher information defined

as −E
[
∂2 log(L(∆,ν))/∂νν>

]
. The resulting p(∆ | x(t),y(t)) is a Jeffreys-integrated

marginal likelihood with its uniform prior (Berger et al., 1999). If we can approximate

l(∆,ν) ≡ log(L(∆,ν)) with respect to ν by a second-order Taylor’s series, e.g., under

standard asymptotic arguments, then

l(∆,ν) ≈ l(∆, ν̂∆)− (ν − ν̂∆)>[−l′′(∆, ν̂∆)](ν − ν̂∆)/2, (B.13)

where ν̂∆ = arg maxν l(∆,ν), and l′′(∆, ν̂∆) ≡ ∂2l(∆,ν)/∂νν>|ν=ν̂∆
, which results in

L(∆,ν) ≈ exp
(
l(∆, ν̂∆)− (ν − ν̂∆)>[−l′′(∆, ν̂∆)](ν − ν̂∆)/2

)
. (B.14)

Using this, we approximate the marginal posterior density function of ∆ by

p(∆ |x(t),y(t)) ≈ k × L(∆, ν̂∆) (B.15)

×
∫

exp

(
− (ν − ν̂∆)>[−l′′(∆, ν̂∆)](ν − ν̂∆)/2

)
|I∆(ν)|0.5dν.
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If we replace the Fisher information in (B.15), i.e., I∆(ν), with the observed information,

−l′′∆(ν̂∆), under standard asymptotic arguments, then the integral in (B.15) leads to (2π)2

because the integrand becomes a multivariate Gaussian density up to (2π)−2. Finally,

p(∆ | x(t),y(t)) ≈ k × (2π)2 × L(∆, ν̂∆) = k × (2π)2 × Lprof(∆) ∝ Lprof(∆). (B.16)

B.5 Sensitivity analyses

To see the influence of prior distributions of τ and σ2 on the posterior distribution of ∆, we

conduct sensitivity analyses, varying the scale and shape parameters of their inverse-Gamma

(IG) prior distributions.

As an example, we generate 80 observations based on (∆, β0, µ, σ
2, τ) = (50, 2, 0, 0.032,

100). The median observation cadence is 3 days and the measurement errors have a constant

standard deviation of 0.005 magnitude.

When it comes to fitting the Bayesian model, we assume for simplicity that ∆ ∼ Unif[0,

100] a priori. We run three Markov chains, each of which has 10,000 iterations after 10,000

burn-ins. The initial values of ∆ for the three chains are 20, 50, and 80, and those of (µ, σ, τ)

are (0, 0.01, 200) the same for every chain. The initial value of β0 is the average of y(t)

minus that of x(t). The initial proposal scales, ψ and φ, are 10 and 3 days, respectively.

B.5.1 Sensitivity analysis of the prior distribution of τ

We look into the sensitivity of the posterior distribution of ∆ to the shape parameter of the

IG prior distribution of τ . We denote the shape parameter by aτ and fix the scale parameter

at 1. A reasonably small value of the scale parameter does not make any differences in

the resultant posterior distribution of τ , not to mention that of ∆, because the conditional

posterior density of τ in Appendix B.10 has exponential functions of τ in the exponent,

which dominates the scale parameter. We fix the IG(1, bσ) prior distribution for σ2, where

bσ = 8× 10−6 mag2 per day as explained in Appendix B.5.2.
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Figure B.1 shows the result of sensitivity analysis varying aτ , the half of the degree

of freedom in the corresponding inverse-χ2 distribution; 0.1, 1, 10, 40, and 80 from the

first column. Each column shows the posterior distribution of ∆ (first row), that of log(τ)

(second row), and a scatter plot of posterior samples of log(σ) over those of log(τ) (third

row) obtained under each shape parameter. The dashed red lines indicate the generative

true values.

The first four posterior distributions of ∆ catch the generative value of ∆ near the mode.

However, when we assume too much information in the prior distribution by setting aτ to 80

(= n), the posterior distribution of ∆ in the last column becomes flat. A large aτ concentrates

the prior density on O-U processes with mean-reversion timescales τ much shorter than the

observational cadence. A large value of aτ moves the prior mode, 1/(1+aτ ), close to zero and

a large degree of freedom (2 ∗ aτ ) for the prior distribution strongly influences the posterior

of τ . Hence, the underlying light curves X(t∆) governed by these O-U processes with small

Figure B.1: Each column shows posterior distribution of ∆ (first row), that of log(τ) (second
row), and a scatter plot of log(σ) over log(τ) (third row) obtained under a certain aτ equal
to 0.1, 1, 10, 40, and 80 from the first column. The true values of (∆, log(σ), log(τ)) are (50,
-3.5, 4.6) represented by the dashed red lines on each plot. The posterior distribution of the
time delay is robust to the shape parameter (aτ ) as long as it is reasonably small.

103



τ will effectively appear as white noise time series. The model will then be ineffective at

constraining the time delay because this requires matching serially correlated fluctuation

patterns in the light curves. The second row in Figure B.1 shows that as aτ increases, the

mode of the posterior distribution of log(τ) gets smaller with a shorter right tail, getting

farther away from the generative true value of log(τ) = 4.6. When the mode of log(τ) reaches

−5 (τ = exp(−5) = 0.007 << 3-day observation cadence), the posterior distributions of ∆

becomes flat.

B.5.2 Sensitivity analysis of the prior distribution of σ2

We check the sensitivity of the posterior distribution of ∆ to the scale parameter bσ of the

IG(1, bσ) prior distribution of σ2. The effect of the unit shape parameter is negligible because

the resultant shape parameter of the IG conditional posterior distribution of σ2 in (B.9) is

n + 1 in which n plays a dominant role in controlling the right tail behavior. We fix the

IG(1, 1) prior distribution for τ as explained in the previous section.

We display the result of the sensitivity analysis in Figure B.2, where the values of bσ are

increasing from 0.001 to 10 from the first column. As the soft lower bound (= bσ/2) increases

from the left, the posterior distribution of the time delay becomes flatter. This is because the

true value of σ2 (= 0.032) is less than the soft lower bound. For example, when bσ = 10 in

the last column, the IG(1, 10) prior distribution of σ2 exponentially cuts off the probability

density in the region to left of the mode, 5 mag2 per day, which includes the true value of

σ2 (= 0.032). Because the true σ2 is much smaller than the soft lower bound, it is hard for

the posterior distribution of σ2 to move towards the true σ2 by overcoming the exponential

cut-off as the sample size is small. Also, due to the negative correlation between the posterior

samples of τ and σ2 as shown in the scatter plots, the larger the posterior sample of σ2 is, the

smaller the posterior sample of τ is. As the posterior samples of τ become smaller than the

observational cadence, the posterior latent light curve X(t∆) effectively becomes a white

noise sequence. In this case, it is difficult to constrain the time delay.

104



Figure B.2: Each column shows posterior distribution of ∆ (first row), that of log(σ) (second
row), and a scatter plot of log(τ) over log(σ) (third row) obtained under a certain scale
parameter bσ equal to 0.001, 0.01, 0.1, 1, and 10 from the first column. The true values of
(∆, log(σ), log(τ)) are (50, -3.5, 4.6) represented by the dashed red lines on each plot. The
posterior distributions of parameters recover the true values as the scale parameter (soft
lower bound) decreases.

The second row of Figure B.2 shows that as the soft lower bound decreases from the right,

the posterior distribution of log(σ) moves towards the true value of log(σ) = −3.5 and starts

containing it near the mode from the second column (bσ = 0.01). The posterior distributions

obtained under a value of bσ smaller than 0.001 do not make noticeable differences, though

not shown here. The small soft lower bound also helps the posterior samples of the other

parameters cover their true values near the modes. For reference, although it may depend

on data, the results became insensitive to the scale bσ as the number of observations was

more than 400.
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