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ABSTRACT

We present a powerful new algorithm that combines both spatial information (event locations and the point-spread
function) and spectral information (photon energies) to separate photons from overlapping sources. We use
Bayesian statistical methods to simultaneously infer the number of overlapping sources, to probabilistically
separate the photons among the sources, and to fit the parameters describing the individual sources. Using
the Bayesian joint posterior distribution, we are able to coherently quantify the uncertainties associated with
all these parameters. The advantages of combining spatial and spectral information are demonstrated through
a simulation study. The utility of the approach is then illustrated by analysis of observations of FK Aqr and
FL Aqr with the XMM-Newton Observatory and the central region of the Orion Nebula Cluster with the
Chandra X-ray Observatory.
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1. INTRODUCTION

When two or more sources are situated close enough to each
other that there is a substantial overlap of their point-spread
functions (PSFs), they pose a many-fold problem to astronom-
ical analysis. The first is to recognize that there is an overlap,
the second is to determine the number of distinct sources that
are involved, the third is to measure their relative intensities,
and the fourth is to separate them sufficiently to be able to carry
out useful secondary analyses like spectral fitting and
variability analysis. These problems are especially complicated
for high-energy photon detectors, since the data are firmly in
the Poisson regime, background is often a significant
component of the data, and the simplifying approximations
of a Gaussian process are usually inapplicable. Many
researchers have considered the simpler problem of a single
source contaminated by background in the low counts regime
(e.g., Kraft et al. 1991; Loredo 1992, pp. 275–297; van Dyk
et al. 2001; Park et al. 2006; Weisskopf et al. 2007; Laird
et al. 2009; Knoetig 2014; Primini & Kashyap 2014), and have
generally found that Poisson-likelihood based Bayesian
techniques are well suited to address this category of problems.

However, in the case of multiple sources, progress has been
slow, and the choices limited. One could construct approximate
measures of intensities of the component sources in the
Gaussian regime via matrix inversion (Kashyap et al. 1994), or
choose to minimize contamination by limiting the sizes of the
apertures to cover only the cores of the PSFs (Broos
et al. 2010), or carry out full-fledged 2D spatial modeling.
All these are approximate or computationally intensive
solutions. An important advance was made recently by Primini
& Kashyap (2014), who developed a fully Bayesian aperture
photometry method that simultaneously models the intensities
of the overlapping sources and the intensity of the background.
Their method can be applied to any counts image with multiple
overlapping sources, with a practical computational limit of up
to five sources. Despite this, most of the problems listed above
are still extant.

Typically, X-ray data are collected as lists of events, with
each event tagged by its location on the detector, its energy,4

and its arrival time. Binning the positions into images causes a
loss of information that could be alleviated by carrying out the
analysis on the unbinned event lists. In such a case, it becomes
feasible to disentangle individual events and allocate them
probabilistically to the several sources that comprise the data
set. In the following, we describe an algorithm that directly
addresses three of the four problems listed above: it
dynamically determines the number of overlapping sources,
measures their intensities, and pools individual events into
clusters for which follow-up spectral analysis can be carried
out. There are related approaches for longer wavelength data
originating from an unknown number of sources, for example,
Brewer et al. (2013) and Safarzadeh et al. (2014). The former
uses Gaussian process models to identify stellar oscillation
modes, and the latter uses simulated Herschel images based on
Hubble data to investigate a disentangling method. The
principal difference between these methods and our approach
is that they conduct analysis at the pixel level, whereas we
probabilistically assign individual photons to sources, a key
distinction when analyzing low-count X-ray data.

1.1. Statistical Approach

Here we use finite mixture distributions to model several
overlapping sources of photons in a high-energy image. Finite
mixture distributions are a useful class of statistical models for
data that are drawn from a mixture of several subpopulations;
these models are finite in that the (possibly unknown) number
of subpopulations is a finite positive integer. (See Titterington
et al. 1985 and McLachlan & Peel 2004 for comprehensive
discussion of finite mixture distributions, and, for example,
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4 The detector records the pulse height amplitude (PHA), which is roughly
proportional to the energy of the incoming photon. These values are often
reported as pulse-invariant (PI) gain-corrected PHAs. The distribution of PI for
a photon at a given energy is encoded in the detectorʼs Redistribution Matrix
Function (RMF). In the following, we use “energy” as a synonym for this
recorded PI, and clarify only if there is any ambiguity.
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Mukherjee et al. 1998 for a previous application in astronomy.)
We take a Bayesian perspective that allows joint inference for
the parameters that describe the photon sources (e.g., their
number, intensities, and locations), the basic shape of their
spectra, and the probability that any particular photon
originated from each source, given its recorded location and
energy.

Performing inference jointly on the image and spectra
improves the precision of the fitted parameters, and also
provides more coherent measures of uncertainty than would be
available if the spatial and spectral data were analyzed
separately. Furthermore, unlike other methods for overlapping
sources, our approach quantifies uncertainty about the number
of sources. Whether we are ultimately interested in spatial or
spectral aspects of sources, identifying the correct number of
sources is clearly fundamental. Consequently, a coherent
measure of the uncertainty associated with the fitted number
of sources is critical to the appropriate interpretation of the
fitted parameters of the individual sources.

In some applications inference for the number of sources
may seem unnecessary because the sources are clearly
identifiable. For instance, the XMM-Newton observation of
FK Aqr and FL Aqr analyzed in Section 6 has relatively weak
background noise, and the sources overlap only moderately. In
such cases, the main advantage of the proposed method is that
it precisely quantifies the uncertainties associated with the
positions, intensities and spectral shapes of the sources. As
already mentioned, finite mixture analysis also yields, for each
observed photon, the probability that it originated from each
inferred source (or the background). In this way we do not
deterministically assign photons to sources, but rather properly
assess the uncertainty of their origins. This is in contrast to
other methods, such as those based on source regions, which
deterministically assign photons to nearby sources, and there-
fore do not properly quantify uncertainties in fitted source
parameters.

There is a potential for overfitting in finite mixture models if
the number of sources is unknown. This is mitigated when
substantial prior information regarding the shape of the PSF or
the number of sources is available, or both. In practice, we have
detailed information about the PSF, and hence know exactly
what the distribution of the recorded photon locations should
be for each source. (For point sources this is trivial, but even
for extended sources one can easily convolve the source model
with the PSF.) Even if the PSF varies across the field, the shape
of the photon scatter is completely determined by the location
of the source. With this complete knowledge of the PSF, there
is only a small risk of overfitting, even with limited prior
information regarding the number of sources and their spectral
shapes. Indeed, our results do not strongly depend on the
choice of prior distribution for the number of sources (see
Section 5.1).

Our method is designed for analyzing images composed of
an unknown number of point sources that are contaminated
with background. However, it can be applied to extended
sources, with some modifications to account for spatial
variations in intensity and spectra. We also mention that the
success of our method depends partly on our ability to use
spectra to distinguish point sources from the background,
which is possible because a typical X-ray point source
spectrum is more peaked than the background. Because of
this, we are able to use basic models that capture the rough

spectral shape in order to exploit spectral information while
conserving computational resources. In the X-ray band, this
approach offers substantial improvements over analyses using
only spatial data without the cost of precisely modeling the
spectra. However, the utility of the method in other wavelength
bands will depend somewhat on the nature of the spectra
typical of those bands.
The remainder of the paper is organized into seven sections.

Section 2 develops the statistical model for isolated sources in
the context of high-energy data sets, and describes how these
models are combined in the case of multiple sources. Section 3
uses a motivating example to illustrate the method and the
benefits of incorporating spectral models for the sources. The
beginning of Section 4 gives a brief review of Bayesian
inference. The remainder of Section 4 describes the details of
the proposed Bayesian analysis and computational approach.
Section 5 presents two simulation studies. The first illustrates
that inference for the number of sources is insensitive to the
choice of prior distribution, and the second more thoroughly
studies the advantages of using the spectral data. Sections 6
and 7 present the results of our analysis of observations from
the XMM-Newton and Chandra X-Ray Observatory. The

Table 1
Symbols Used in This Work

Symbol Definition

x y( , )i i Location of photon i on the detector

Ei Energy (PI channel) of photon i

jm True location of source j (2D coordinates)

f
jm Point-spread Function centered at jm

ja Spectral shape parameter for source j (full model)

jg Spectral mean parameter for source j (full model)

jla Spectral shape parameter l for source j (extended full model)

jlg Spectral mean parameter l for source j (extended full model)

jlp Weight in [0, 1] of gamma component l in source j spectral
model (extended full model)

E E,min max Minimum and maximum detected energy (PI channel)
w j Relative intensity of source j (j = 0 for background)

K True number of sources (Ktrue for emphasis)
k A possible value of K
k Prior mean of K
si The true source of photon i (takes the values K0 ,..., , with 0

indicating background)
n j True number of photons detected from source j (j = 0 for

background)
n Total number of photons detected i.e., n

j
K

j0å =

jq Full model parameters for source j i.e., w{ , , , }j j j jm a g

KQ All full model source specific parameters i.e., { ,..., }K0q q
where w0 0q =

L L L, ,full sp ext Likelihood function of the full, spatial-only, and extended full
models, respectively

t( )y The value of generic parameter y in iteration t of the
algorithm

x y E s, , , Vectors of the corresponding photon specific variables (see
earlier table entries)

IA Indicator function equal to 1 if the event A occurs (e.g.,
K 3= ) and 0 otherwise

Note. Notation used only in a single section is defined where it appears and is
not included in this table.
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XMM observation is of the apparent visual binary FK Aqr and
FL Aqr, and the Chandra observation is of approximately 14
sources from near the center of the Orion nebula. We
summarize in Section 8 and computational details are in the
appendices. Our Bayesian Separation of Close Sources
(BASCS) software is available on GitHub at https://github.
com/astrostat/BASCS.

2. DATA AND STATISTICAL MODELS

2.1. Structure of the Data

High-energy detectors record directional coordinates x y( , )i i
and energy Ei for each detected photon, where i n1,...,=
indexes the photons. As mentioned, in practice, the PI channel
is used to quantify energy. We denote the full set of spatial and
spectral information for n detected photons by x y E( , , ). These
observed quantities are subject to the effects of the PSF and the
spectral Redistribution Matrix Function (RMF). We explicitly
account for PSF effects in our model, but model the observed
spectra, the convolution of the source spectra and the RMF.
This strategy does not allow us to fit source spectral models,
but does allow us to leverage spectral data to separate the
sources. Even though all the attributes are recorded digitally
and are binned quantities, we treat them as continuous variables
for simplicity, since this binning is at scales that heavily over-
sample the PSF.

Each photon is assumed to originate from one of several
point sources or the background, but its exact origin is
unknown. Furthermore, the number of point sources contribut-
ing photons to the data, their locations, intensities, and spectral
distributions are all unknown. We assume background is
distributed uniformly across the image, its strength and spectral
distribution are often not known.

2.2. Prototype Model for a Single Source

To introduce notation and our model in the simplest case, we
first suppose that the data consist of photons from a single
source, with no background contamination. Statistical models
specify a distribution for the observed data conditional on a
number of typically unknown parameters; we discuss para-
meter fitting Section 4.3. In the current case, given the
unknown position of the source, the detected photons are
assumed to be dispersed according to a PSF. That is,

x y( , ) PSF centered at (1)i i m m~

for i n1,...,= , where ( , )x ym m m= is the unknown position of
the source.5 We use the same 2D King profile6 in all the
simulations and data analyses presented, see Read et al.
(2010)7 and King (1962). The King profile density, shown in
Figure 15 in Appendix C, has heavy tails and is essentially a
bivariate Cauchy distribution. Specific parameter values are
detailed in Appendix C. More generally, although our method
assumes that the PSF is known given m, it may vary with m.
Furthermore, the PSF may be any function which can be

quickly evaluated analytically or numerically. Even in cases
where computationally expensive evaluations are required our
method is feasible if the PSF is first tabulated.
An important feature of our overall approach is that it also

utilizes the spectral data to better assess the likely origin of
each photon (when background or more than one source is
present). With this end in mind, we propose a simple and
computationally practical model for the basic shape of the
source spectrum. In particular, we model photon energies using
a gamma distribution,8

E gamma, ( , ) (2)i a g a a g~

for i n1,...,= . Here, a and g are the unknown shape and mean
parameters used to describe the basic spectral distribution.9 The
gamma distribution allows flexible modeling of positive
quantities with right skewed distributions.10 We emphasize
that we aim to summarize the essential shape of the spectral
distribution, rather than to model the details of emission lines
and other spectral features. This is practical because for high-
energy missions, the effective areas are typically small at low
and high energies, with a broad peak in the middle; the
resulting counts spectrum is reasonably modeled by a single- or
double-component gamma distribution (particularly since we
ignore the RMF). Our goal is to identify sources and divide
photons among them, not to carry out detailed spectral analysis.
However, our algorithm allows for complex spectral models to
be built in if necessary. In addition, and computationally more
feasible, once the gamma model has fulfilled its role in
separating sources, a more sophisticated spectral model may
then be used to draw scientific conclusions about the spectral
distributions of the disentangled sources. This final stage will
be discussed in Section 7.2.

2.3. Prototype Model for Multiple Sources

In practice there are multiple sources and background
contamination, hence we introduce a finite mixture model. Let
K be a parameter denoting the number of sources and

( ,..., )K1m m m= be a K2 ´ matrix giving the source positions
i.e., ( , )j jx jym m m= , for j K1,...,= . If we knew the origin of
every photon then, we could model the spatial and spectral data
associated with each point source as we did in Section 2.2. We
thus introduce a new variable si which indicates the source
number associated with photon i. Each si takes on a value
between 1 and K , and we let s denote the vector s s( ,..., )n1 . Note
that si is never actually observed and thus is a latent variable. A
latent variable is essentially an unknown parameter which is
useful for modeling, but may not be of direct interest in itself.
Here, we have introduced si to simplify the model and to
facilitate the algorithms used for inference, which are described
in Section 4.3.

5 The notation x z F~∣ means that, the variable x has the distribution denoted
by F if z is fixed and known, and we say that x, given z, follows the distribution
F. Throughout, when we use this notation we mean that repeated realizations of
x are independent given z.
6 The beta2d model in CIAO/Sherpa.
7 http://xmm2.esac.esa.int/external/xmm sw cal/calib/rel notes/

8 A standard parameterization of the gamma ( , )a b distribution yields the
density f x x e x e x( ) , 0x x

( )
1

( )
1= = >b

a
a b a

g a
a

G
- -

G
- -a a

a
a
g . Here α and b a g=

are the shape and rate parameters, respectively.
9 We parameterize the gamma distribution using the shape and mean, instead
of the shape and rate, for interpretability and because computationally it is best
to avoid rates, which in our applications tend to be close to the parameter space
boundary at zero.
10 Indeed, the Exponential and Chi-squared distributions are special cases, and
a gamma can also closely resemble a (truncated) Gaussian distribution.
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As a parameter, si is also conditioned on in our spatial model,
which now becomes

( )x y s j( , ) , PSF centered at (3)i i i jm m= ~

for i n1,...,= . As an unknown parameter, si, plays a role
similar to μ; it is “given” in Equation (3). The spectral model
can also be straightforwardly generalized to the multiple source
case. We have

( )E s j gamma, , ( , ) (4)i j j i j j ja g a a g= ~

for i n1,...,= , where the parameters ja and jg usually differ
among the sources.

In addition to point sources, we must model the background.
To this end we extend the set of possible values of si to include
0. Throughout, symbols indexed by 0 refer to the background.
We assume that photons originating from the background are
uniformly distributed across the image,

( )x y s( , ) , 0 Uniform (5)i i im = ~

for i such that s 0i = . Instrument effects may cause the
background to be non-uniform, and a refinement would be to
model such effects.

The background spectrum is also assumed to be flat over the
energy range of the source spectra. That is, it is assumed to
have a uniform distribution on E E( , )min max , where Emin and
Emax are the minimum and maximum photon energy observed.
This is a good approximation because the background spectrum
is expected to be less peaked than that of a point source.

So far we have not considered the intensities of the different
sources and the background. Naturally there should be a
parameter for each source, and one for the background, to
specify the intensities. Let n j denote the number of photons
originating from source j, for j K0 ,...,= (with zero denoting
the background), mathematically,11 n Ij i

n
s j1 { }iå= = = . We can

realistically model n j as a Poisson variable with some mean mj,
for j K0 ,...,= . Because these Poisson means vary with
exposure time, however, the relative intensities, w m mj j j= å ,
are of more direct interest. Writing w w w( ,..., )K0= , and given
n, the Poisson model for n n( ,..., )K0 yields a Multinomial
model,12

n n w n K n w( ,..., ) , , Multinomal( ; ), (6)K0 ~

where w 1
j
K

j0å == . Under this parameterization, the relative

strengths of the sources and background can be succinctly
expressed by the vector w w w( ,..., )K0= without further
reference to n. Accordingly, all inference is performed given
n, because its value tells us nothing about the number of
sources or their parameters.

To complete our introduction of the model we derive the
likelihood function, which is the probability of the data
expressed as a function of the parameters. The likelihood tells
us what values of the parameters are supported by the data and
is a key component for principled statistical inference. Let j

be the set of photons originating from source j (including j = 0)
and let be the entire collection of observed photons.13 Also,
denote the value of the PSF centered at m and evaluated at
x y( , ) by f x y( , )m . Lastly, here and throughout, we let

w{ , , , }j j j j jq m a g= denote the parameters associated with
source j, for j K1,...,= . Similarly, for the background, we let

w0 0q = . We let KQ denote all the source (and background)
specific parameters i.e., { ,..., }K K0q qQ = . The remaining
parameters are K and s. As already discussed, we treat n as
fixed, and impose the constraint that the likelihood is zero
unless n n

j
K

j0å == . Combining the different parts of the
model yields the full model likelihood

L K p x y E K s n

f x y g E

( , ) ( , , , , , )

( , ) ( ), (7)
n K K

i
μ i i i

full

,si si si
0


Q º Q

µ a g
Î 

where

g E E e( )
( )

. (8)i
s

s s
i

E
,

1

si si

i
si

i
si

i

si si i si

a

g a
=

Ga g

a

a
a a g- -

The maximum energy Emax and the image area are assumed to
be known quantities, rather than parameters to be inferred.
They are therefore omitted from the likelihood, as are all terms
not involving the parameters. In later sections, we compare
analyses under the full model to analyses under the spatial-only
model that does not use the spectral information. The likelihood
of the spatial-only model is

( ) ( )L K p x y K s n f x y, , , , , ( , ).

(9)

n K K
i

i i
sp sp sp

si
0

Q º Q µ m
Î 

The notation w w{ ,..., ; ,..., }K K K
sp

0 1m mQ = represents the set of
spatial parameters. Note that, although w does not explicitly
appear in either likelihood, the data does nevertheless constrain
w in both cases. In particular, the likelihoods indicate probable
values of s which in turn indicate probable values of w.

Figure 1. Fitting gamma distributions to a counts spectrum. The histogram
shows the observed spectrum of the brightest of the Chandra sources in the
Orion field in Section 7.2 (from one iteration of our algorithm; see Section 4.3),
and the curves show gamma model fits. The solid line (green) is the extended
full model fit of the two-gamma spectral model and the dashed line (red) is the
maximum likelihood fit of the one-gamma model.

11 I is an indicator function that is zero if its argument is false and one
otherwise.
12 The Multinomial distribution mass function assigns the probability
n n n w w( ! ( ! !))K

n
K
n

0 0
K0  to the allocation given by n n( ,..., )K0 of

n n
i
K

i0å= = objects into K 1+ categories.

13 Mathematically, j is the set of photon indices associated with source j, that
is, i s j{ : }j i= = , for j K0,...,= , and n{1,..., }j

K
j0= ==⋃  .
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Conceptually, our method is to apply Bayes rule, briefly
reviewed in Section 4.1, to the likelihoods displayed in
Equations (7) and (9) to yield a distribution summarizing our
knowledge of the parameters given the data, i.e., the joint
posterior distribution.

2.4. Extensions of the Spectral Model

In some situations the gamma spectral model given by
Equation (4) is not sufficiently flexible to capture the spectral
shape of the observed sources. For example, Figure 1 shows the
observed spectrum of the brightest source in the Chandra
observation analyzed in Section 7. In particular, the histogram
shows the spectrum using one likely assignment of photons
produced during the iterations of our algorithm (see Sec-
tion 4.3). The dashed red curve shows the maximum likelihood
fit of the gamma distribution to the observed spectrum. The
gamma does not fit the distribution closely. This causes a
problem because inference based on the (misspecified) gamma
spectral model will suggest there are two sources instead of one
in order to better capture the spectral distribution of the source.

To solve this problem, we use a mixture of two gamma
distributions for a more general spectral model. That is,

( )E s j

gamma gamma

, , , , , ,

, , , (10)

i j j j j j j i

j j
j

j
j j

j

j

1 2 1 2 1 2

1 1
1

1
2 2

2

2

a a g g p p

p a
a

g
p a

a

g

=

~
æ

è
çççç

ö

ø

÷÷÷÷÷
+

æ

è
çççç

ö

ø

÷÷÷÷÷

for i n1,...,= , where the parameters jp and 1j j2 1p p= - are
the weights of the two gamma components. When this two
gamma mixture spectral model is substituted for the one
gamma spectral model in Equation (7) we obtain the following
extended full model likelihood

L K p x y E K s n

f x y π g E

( , ) ( , , , , , )

( , ) ( ) . (11)

n K K

i
μ i i

l
s l i

ext ext ext

1

2

,si
i sil sil

0

 å

Q º Q

µ
æ

è
çççç

ö

ø
÷÷÷÷a g

Î = 

The notation K
extQ denotes { ,..., }K0

ext extq q , where
w{ , , , , , , , }j j j j j j j j j

ext
1 2 1 2 1 2q m a a g g p p= gives the para-

meters associated with source j, for j K1 ,...,= , and

0
ext

0q q= . The solid green curve in Figure 1 shows the
extended full model fit of the gamma mixture spectral model.
In this example, the mixture of gammas quite closely fits the
observed spectrum and generally there did not appear to be
unwarranted splitting of sources into two in our numerical
studies using this model.

Even greater flexibility of the spectral model could be gained
by considering a mixture of more than two gammas, but this
was not necessary in our numerical studies. For the XMM data
of Section 6, the one-gamma spectral model is sufficient in that,
for both of the sources, the maximum likelihood fit of the one-
gamma and the two-gamma models resulted in essentially
identical fits when using a feasible allocation of photons. In the
interest of simplicity, we only use the extended full model
when necessary (i.e., in Section 7), and elsewhere use the full
model given in Equation (7).

2.4.1. Detecting Spectral Model Inadequacy

A natural question is how one should decide if the source
spectral model is inadequate for our purpose of allocating
photons among the different sources (and background). There
are two potential indications of spectral model misspecification.
First, analysis may tend to divide bright sources into two. In
particular, when the algorithm (see Section 4.3) finds many
instances of sources very close together this indicates that the
spectral model is probably not adequate.14 A second indication
of inadequacy of the spectral model comes from considering
inference under the spatial-only model. We can inspect the
empirical distribution of the photons assigned to a source in
iterations of the spatial-only algorithm. If this empirical
distribution differs substantially from a gamma distribution
then it is unlikely that the one-gamma spectral model is
sufficiently flexible. Clearly, looking at the empirical spectral
distribution of a source under the spatial-only model is only
reliable if we can accurately assign photons based on spatial
data alone. Thus, when possible it is best to select a bright
source which is relatively isolated. In the presence of
uncertainty about the shape of the spectral distributions to
expect then it is usually sensible to use a mixture of at least two
gammas (or perform analysis several times using mixtures of
different numbers of gammas). In the presence of uncertainty
about the shape of the spectral distributions to expect then it is
usually sensible to use a mixture of at least two gammas (or
perform analysis several times using mixtures of different
numbers of gammas). One should be cautious of using a
spectral model that is too complicated15 because overfitting
may decrease the benefits of modeling the spectral data.

3. ILLUSTRATIVE EXAMPLE

To motivate our method we present a simple simulated data
example that illustrates the potential gains made possible by
using the full model instead of the spatial-only model. We
emphasize that this is a walk-through, designed to clarify the
conceptual foundations of the method. A detailed description of
our method is in Section 4. The simulated data consist of the
spatial and spectral details of photons detected from three weak
sources contaminated with background. The spatial data and
the spectral distributions used for simulation are shown in
Figure 2. The background average is 10 photons per unit
square, and the numbers of photons from each source are drawn
from Poisson distributions with means 100, 50, and 25,
respectively. Thus, the background is very strong and
contributes about 85% of the photons over the entire image,
and about 40%, 53%, and 66%, respectively, in the three source
regions. The true source positions are (1.5, 0), (0, 1), and
( 2, 0)- , and their source regions are approximately circles of
radius 1. All three sources have the same PSF, the 2D profile
density shown in Figure 15 in Appendix C. The source spectral
data is drawn from a gamma distribution plotted in Figure 2
(mean parameter 600 and shape parameter 3). In this simple
illustration, all the sources have the same theoretical spectral
distribution; however, this is not assumed in the fitted model,

14 Misspecification of the PSF, and specifically under-estimation of its width,
could have a similar effect.
15 We can avoid an overly complicated model by imposing parametric
constraints or utilizing substantial prior information to be sure only
scientifically plausible spectral shapes are allowed.
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which is based on the likelihood in Equation (7). The
theoretical background spectrum was uniform on (0, 5000).

We fit both the spatial-only and the full model to the
simulated data. The resulting posterior probability distributions
for K are shown in Figure 3. With the spatial data alone it is
difficult to detect the faintest source, and consequently the most
likely value of K is 2 rather than 3. The situation is much
improved when we include the spectral data. The advantage of
using the spectral information is due to a greater ability to
distinguish the sources from the background, owing to the
difference between the source spectra and the background
spectrum.

Modeling the spectral data also improves estimation of the
other parameters, even if we consider the fits based on K 3= .
(This is the correct value of K and is identified by the full
model but not the spatial-only model.) In Table 2, the first bold
column and the last column (not bold) show a summary of the
fitted parameters for K 3= under the full model and spatial-
only model, respectively. When we consider K 3= , the
greatest gains of using the full model are in estimating the
parameters of the faintest source because this source is the
hardest to distinguish from the background when using only
spatial data.

In practice, the advantage of using the spectral data for
estimating the source parameters is greater than is apparent
when we only consider K 3= . When confronted with the
summary of the fit of K under the spatial-only model (given in
the left panel of Figure 3), a researcher is likely to rely on the
parameter fits assuming K 2= . Thus, it is fair to compare the
K 3= fit under the full model with the K 2= fit under the
spatial-only model (i.e., the bold columns in Table 2). The
latter is clearly substantially worse than the former, because the
faint source goes undetected and has no fitted parameters.

The improvement in separation of the sources (and back-
ground) can be further understood from Table 3, which
summarizes the probability that each photon originated from
each source or the background, again under the optimistic
assumption that K 3= (see Section 4.3 for additional details).

The rows of the table indicate the true photon origin, and the
columns indicate the fitted origins. The table entries are the
average probabilities, across photons, of the different fitted
origins. Ideally the matrices would be identity matrices with
“1”s along the diagonal and “0”s elsewhere, but because of the
strength of the background many source photons are mixed up
in the background. For example, for a photon originating from
the leftmost source, the spatial-only model on average assigns
probabilities of 0.095 and 0.800 that it originated from the
correct source and the background, respectively, reflecting the
difficulty in detecting the location of this faint source. Under
the full model, the average probability of correct assignment is
increased to 0.358, a substantial improvement. Indeed, for each
of the three sources, nearly half as many photons are mixed up
with the background under the full model. Our improved ability
to correctly assign photons under the full model (relative to the
spatial-only model) naturally leads to improved estimation of
the parameters of the faint source, as illustrated in Table 2.
There is a similar effect for the other sources though it is less
pronounced because, being brighter, they are easier to detect
from the spatial data alone.

4. BAYESIAN MODEL FITTING

4.1. Bayesian Inference

The Bayesian perspective provides a coherent approach for
combining all available information to infer the unknown
model parameters KQ , K , and s. First, our knowledge (or lack
of knowledge) as to the likely values of the parameters before
seeing the current data is quantified using a prior distribution.
Once the data are observed, Bayes’ Theorem allows us to
combine the likelihood and the prior distribution to yield the
posterior distribution of the parameters. Recall, the likelihood
is the probability of the data given the parameters. The
posterior distribution expresses our updated knowledge of the
parameters after seeing the data. Bayes’ Theorem states that,
for generic data and parameter vector y, the posterior

Figure 2. Illustrative simulation setup. Locations of three weak sources are shown as red dots over a scatter plot (left), as also are the adopted counts spectra of the
sources and the background (right).
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distribution is

p
p p

p
( data)

(data ) ( )

(data)
, (12)y

y y
=

where p (data )y∣ is the likelihood function and p ( )y is the
prior distribution. The denominator p (data) is simply a
normalizing constant which ensures the posterior integrates to
one. In our case, the data is x y E( , , ) and under the full model

K s{ , , }Ky = Q so

( ) ( ) ( )
p K s x y E

p x y E K s p K s

p x y E
, , , ,

, , , , , ,

( , , )
.

(13)

K
K K

Q =
Q Q

Here, all probabilities are conditional on n but this is
suppressed. The likelihood p x y E K s( , , , , )KQ∣ is given in
Equation (7), and the prior distribution p K s( , , )KQ is
described in Section 4.2. Referring back to the illustrative
example in Section 3, the marginal posterior distribution of K ,

( )p K x y E p K s x y E d( , , ) , , , , , (14)
s

K Kòå= Q Q

is displayed in Figure 3. Given the number of unknown
parameters, it is not possible to plot their joint posterior
distribution, but we can derive and plot the marginal posterior
distribution of any one parameter, as in Equation (14) and
Figure 3.

4.2. Completing the Model Formulation: Prior Distributions

Following the Bayesian approach, we specify prior distribu-
tions for each of the unknown parameters. First, the positions
of the point sources are a priori assumed to be independently
and uniformly distributed across the image. That is,

Uniform (15)jm ~

for j K1 ,...,= . In principle, informative priors can be used if
prior information on source locations is available. For example,
we might set N ( , )j j j0 0

2m m s~ , where ( , )j j0 0m s , for

j K1 ,...,= , specifies knowledge of the source locations.16

Table 2
Fitted Parameters Under the Full and Spatial-only Models

Truth Full Model Spatial-only Model

k 3 3 2 3

P K k( data)= ∣ L 0.95 0.85 0.14

x1m 1.5 1.51 (1.41, 1.61) 1.43 (1.27, 1.58) 1.44 (1.29, 1.59)

y1m 0 −0.01 (−0.10, 0.09) 0.04 (−0.08, 0.17) 0.02 (−0.10, 0.14)

x2m 0 −0.08 (−0.20, 0.04) −0.09 (−0.28, 0.12) −0.03 (−0.22, 0.15)

y2m 1 1.11 (1.00, 1.23) 0.96 (0.80, 1.13) 0.99 (0.84, 1.15)

x3m −2 −1.96 (−2.17, −1.76) L L −1.37 (−2.40, 0.35)

y3m 0 0.06 (−0.15, 0.27) L L −0.24 (−1.44, 0.75)

w1 0.083 0.068 (0.057, 0.078) 0.063 (0.049, 0.076) 0.062 (0.049, 0.076)
w2 0.058 0.064 (0.053, 0.076) 0.055 (0.041, 0.068) 0.052 (0.039, 0.066)
w3 0.033 0.028 (0.019, 0.036) L L 0.017 (0.003, 0.030)
w0 0.826 0.841 (0.826, 0.855) 0.883 (0.866, 0.900) 0.868 (0.848, 0.887)

1g 600 536 (478, 592) L L L L

2g 600 735 (646, 820) L L L L

3g 600 634 (397, 826) L L L L

1a 3 3.92 (2.89, 4.97) L L L L

2a 3 2.94 (2.18, 3.69) L L L L

3a 3 2.76 (1.62, 3.82) L L L L

Note. The columns in bold give the fits that would likely be relied upon in practice for the two models. The intervals in parentheses indicate the 16% and 84%
posterior quantiles, i.e., Bayesian 1s equivalent intervals.

Table 3
Photon Allocation Proportions for the Spatial-only and Full Models

Average Allocation Probabilities

No. Photons Spatial-only Model Full Model

Source (True Intensity) in Simulation Background Right Middle Left Background Right Middle Left

Background (10/sq) 1001 0.917 0.037 0.033 0.013 0.940 0.022 0.026 0.012
Right (100) 84 0.566 0.354 0.068 0.012 0.318 0.557 0.113 0.012
Middle (70) 67 0.593 0.073 0.303 0.031 0.313 0.122 0.505 0.060
Left (40) 42 0.800 0.034 0.071 0.095 0.431 0.066 0.145 0.358

16 The notation N ( , )j j0 0
2m s denotes a Gaussian distribution with mean j0m

and variance j0
2s .
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Next, the vector w, that specifies relative intensities, is given
a Dirichlet17 prior distribution with parameter ( ,..., )l l . A
Dirichlet random variable is a probability vector, i.e., it is a
vector with non-negative entries that sum to one. We set 1l =
throughout. This choice is uniform on the probability vector,
but very slightly favors sources of equal size. Indeed, setting

1l = means the Dirichlet prior has as much information as a
single photon count added to each source (including a single
count added to the background).18 Regarding the realized
vector of source and background counts n n( ,..., )K0 , recall that
Equation (6) specifies a Multinomial distribution for
n n( ,..., )K0 , given w, n, and K . Since n n( ,..., )K0 is a function
of the parameter (or latent variable) s, Equation (6) is
effectively a prior distribution for s.19

External information about the number of sources is
amalgamated into a prior for K , which we assume to be
Poisson with mean parameter k.20 Under the Poisson prior, the
fitted value of K is relatively robust to the choice of k because
the PSF is completely specified.21 Indeed, we show in
Section 5.1 that the posterior mode for the number of sources
may correctly identify the true value of K , even when k is quite
different from K . Therefore, in practice it is adequate to use the
Poisson prior for K with k set to any reasonable guess of the
number of sources.

To complete the model specification, we must assign prior
distributions for the source spectral distribution parameters ja

and jg , for j K1 ,...,= . Typically there is sufficient data to
overwhelm these prior distributions. Thus, we are not overly
concerned with the exact form of these priors. For concrete-
ness, however, we mention that one set of priors we use is

gamma (2, 0.5)ja ~ and E EUniform( , )j min maxg ~ , for
j K1 ,...,= , where Emin is the minimum observed energy.22

To summarize, our prior distribution for the full model
parameters KQ , K and s is

( )p K s p s K w p w K p K

e w w
K

, , ( , , , , ) ( ) ( )

!
,

(16)

K

j

K

j
j

K

j
n

j

K

j

K

0

0.5

0 0

1

j j  

m a g

a
k

Q =

µ
æ

è

çççç

ö

ø

÷÷÷÷÷

æ

è

çççç

ö

ø

÷÷÷÷÷
a

l

=

-

= =

-

where m, a and g denote ( ,..., )K1m m , ( ,..., )K1a a , and
( ,..., )K1g g , respectively. The second term on the second line
of Equation (16) comes from the Multinomial prior distribution
for s. In the case of the extended full model given in
Equation (11), the priors for ,jl jla g , l 1, 2= , are the same as

those for ,j ja g , and the prior for j1p is a Beta(2, 2)

distribution,23 for j K1 ,...,= . (No prior for j2p is needed
because this parameter is determined by j1p , for j K1 ,...,= .)
The prior for the spatial model parameters is Equation (16)
without the first term.

4.3. Statistical Computation and Model Fitting

Given the likelihood in Equation (7) and the prior
distribution in Equation (16), we can apply Bayes’ Theorem
to obtain the posterior distribution of KQ , K and s (see
Equation (13)). The resulting posterior distribution is a
complicated function, which we summarize by the low-
dimensional marginal distributions as described in Section 4.1
and their means and standard deviations. These summaries are
used to estimate the model parameters and their error bars.
We accomplish the necessary numerical integration, e.g., as

in Equation (14), using Monte Carlo methods, a cornerstone of
statistical computing (Shao & Ibrahim 2000; Liu 2008;
Christian & Casella 2011, p. 49–66). The idea of Monte Carlo

Figure 3. Probability distribution of the number of sources based on the spatial-only model (left) and the full model (right). In this simulation, the true value is K = 3.

17 The Dirichlet probability density function is f p p( ,..., )K0

( ) p( ) ( )
i
K

i i
K

i i
K

i0 0 0
1iå  l l= G G l

= = =
- , for all pi such that p 1

i
K

i0å ==
and p 0i ⩾ for i K0 ,...,= , and is zero otherwise. Here, ( ,..., )K0l l is a
parameter, and Γ is the gamma function.
18 Suppose the source counts are observed to be n n( ,..., )K0 and follow a
Multinomial distribution with probability vector w. Then, assuming a priori
w Dirichlet( ,..., )K0l l~ , it can be shown that w n n( ,..., )K0∣

n nDirichlet( ,..., )K K0 0l l~ + + . Because jl is treated just like n j in this
posterior distribution, jl can be viewed as a “prior count” and we say the
Dirichlet prior is as informative as jl counts added to source j, for j K0 ,...,= .
19 The parameter w is called a hyper-parameter because it appears in the prior
distribution of s but is itself of interest and thus has its own prior distribution.
20 While other priors for K are possible, the Poisson is simple and only
moderately informative. Indeed, the equality of mean and variance captures the
typical level of prior information we expect, e.g., if we suspect 10 sources, then
an analysis yielding between 8 and 12 sources would seem quite reasonable,
but we are unlikely to consider, say, 100 sources as a realistic possibility. Even
less informative priors may sometimes be desirable, but it generally makes
sense to use any reliable prior information that is available to guard against
model misspecification. (Prior information about K also helps our algorithm to
converge slightly more quickly.)
21 If the PSF were not fully specified, it would be difficult to distinguish a few
sources with a wide PSF from many sources with a narrow PSF. Thus, the fitted
number of components of a general finite mixture model can be quite sensitive
to the choice of prior on this parameter. Accounting for misspecified PSFs or
uncertainties in their calibration is beyond the scope of this work (see Lee
et al. 2011 and Xu et al. 2014 for possible strategies).

22 More generally, if K is large and some of the sources are faint, it may be
beneficial to model the distribution of the spectral parameters across the
sources. This strategy is known as hierarchical modeling and is known to have
statistical advantages in terms of the estimates of the individual spectral
parameters. Such hierarchical spectral structures are left as a topic for
future work.
23 For , 0a b > , the Beta( , )a b distribution density is
f x x x( ) ( ( ) ( ) ( )) (1 )1 1a b a b= G + G G -a b- - for x [0, 1]Î , and is zero
otherwise. Here, Γ is the Gamma function.
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algorithms is to simulate values of the generic parameter y
from the posterior distribution in Equation (12) to obtain a
Monte Carlo sample { ,..., }T(1) ( )y y . For example, in Figure 3,
the height of the bin centered at k is the proportion of the
Monte Carlo draws with K t( ) equal to k, i.e.,

{ }P K k x y E
T

I( , , )
1

, (17)
t

T

K k
1

t( )å= »
=

=

for k K1 ,...,= .
A somewhat unusual feature of our model is that the number

of parameters is determined by the value of K , the unknown
number of sources. This necessarily conditional structure
means that it only makes sense to consider the posterior
distributions of the other parameters for a given inferred value
of K (Park et al. 2008 discuss a somewhat similar conditional
inference in the context of locating emission lines). For an
illustration of why this is so, consider the intensity w3 of the
“third” source in an image. The parameter w3 does not have the
same interpretation when there are three sources versus four,
because what is the “third” source in the first scenario may
combine two sources from the latter scenario. In fact, for K 2=
the parameter w3 does not even exist. In general, there is no
clear relationship between the parameters under scenarios with
different values of K . This prevents us from considering the
unconditional posterior distribution of, say, w3. Instead, we are
interested in posterior summaries given a particular value of K ,
such as p w K k x y E( , , , )3 =∣ . For example, the second row of
Table 2 provides an estimate of the posterior mean of w2
conditional on K 3= , under the full model,24

{ }

{ }
w k

w I

I
ˆ ( ) 0.080. (18)F

t
T t

K k

t
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K k
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1 2
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More generally, for each one-dimensional parameter τ, we
calculate the Monte Carlo estimate

{ }

{ }
k

I

I
ˆ ( ) . (19)

t
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1
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t
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å
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= =

In practice, we choose a value of k at which K has relatively
high posterior probability, such as the posterior mode, because
otherwise the parameters estimated are unlikely to correspond
to properties of real sources. (Indeed, our algorithm does not
accurately estimate parameters under unlikely values of K .)We
may decide to consider several different values if the posterior
of K is not concentrated on one value. This can be useful
despite the fact that, as we have mentioned, the number and
interpretation of the parameters is not consistent across values
of K .

The most popular method for obtaining the Monte Carlo
samples needed for estimates such as that in Equation (18) is
Markov chain Monte Carlo (MCMC). This an iterative
algorithm in which we generate a new value of the parameters

t( )y at each iteration by drawing from a distribution  that only
depends on t( 1)y - (and the data) and not earlier members of the
Monte Carlo sample. Continuing for T iterations we obtain a
sample { ,..., }T(1) ( )y y of correlated parameter values, which is

usually called an MCMC chain. Appropriate choice of 
ensures that the sample mimics the posterior distribution in the
sense that as T  ¥ the sample empirical distribution
approaches the posterior distribution. In implementation, a
draw from an appropriate  is typically achieved through two
steps: first a new value of the parameters *y is proposed, and
then this value is either accepted or rejected with some
probability.25 The Metropolis–Hastings algorithm (Metropolis
et al. 1953 and Hastings 1970) is an example of such an
algorithm. The reader is referred to Gelman et al. (2013) for
details, including discussion of efficient choices of  and
monitoring of convergence to the posterior distribution (which
is usually done by running multiple MCMC chains in parallel
and checking that their behavior is sufficiently similar based on
some criterion).
In standard MCMC algorithms the parameter space being

explored is fixed throughout. In our context this means the
number of sources would have to be known. We therefore turn
to reversible jump Markov chain Monte Carlo (RJMCMC)
algorithms (first introduced by Green 1995), which allow
configurations with differing numbers of sources to be
explored. There have been a number of uses of RJMCMC in
other astronomy contexts, for example, Umstätter et al. (2005),
Brewer & Stello (2009), Jasche & Wandelt (2013), and
Walmswell et al. (2013). In RJMCMC algorithms, so called
“jump” steps update the value of K , the name referring to a
jump between parameter spaces (or “models”). These steps are
performed by drawing K t( ) from a distribution only depending
on K s( , , )t t t t( 1) ( 1) ( 1) ( 1)y = Q- - - - , in the same spirit as
ordinary MCMC iterations. Feasible values of the parameters

t( )Q and s t( ) must simultaneously be drawn because their
dimension and interpretation change with K . It is this high
dimensional sampling that makes RJMCMC challenging. In
RJMCMC algorithms, K t( ) is only allowed to differ from K t( 1)-

by at most one. This constraint facilitates the proposal of
appropriate parameters t( )Q and s t( ); RJMCMC moves between
configurations by splitting, combining, creating or destroying
sources in the model. The standard RJMCMC algorithm for
Gaussian mixtures was introduced in Richardson & Green
(1997), and Wiper et al. (2001) illustrated RJMCMC for
gamma mixtures. Our BASCS software essentially combines
these two algorithms. Additional details are given in Appen-
dices A and B. For the analyses found in Sections 5 and 7 we
specify the number of iterations for which our RJMCMC
algorithm was run (which depended on the observed
convergence rate and run time). A single iteration of our
RJMCMC algorithm consists of one proposal to change K and
ten MCMC updates of the other parameters, i.e., the number of
MCMC iterations is ten times greater than the stated number of
RJMCMC iterations. In Section 6 we fix K and use MCMC,
and thus directly specify the number of MCMC iterations. Our
standard approach is to run ten RJMCMC (or MCMC) chains
to allow monitoring of convergence, but for simplicity the final
results are always computed using a single chain.
As discussed in Section 4.2, having detailed information

about the PSF means our estimates are insensitive to the prior
on K (see also Section 5.1). Knowledge of the PSF also aids
computation in that it limits the number of feasible

24 The superscript F in Equation (17) indicates that the Monte Carlo samples
were drawn from the posterior derived under the full model.

25 An appropriate choice of  and the corresponding rejection probability to
use, to ensure convergence of the sample empirical distribution to the posterior,
can be calculated by appealing to the “reversibility condition” (see texts on the
theory of Markov chain convergence e.g., Feller 1968).
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configurations, meaning the RJMCMC algorithm does not have
to jump across many values of K . This keeps the number of
iterations until approximate convergence comparatively low.
Thus, knowledge of the PSF means that, despite the difficulties
that are commonly thought to surround mixture models fit with
RJMCMC algorithms, our proposed approach is relatively
stable and robust. Nonetheless, when the number of sources is
clear, MCMC algorithms should be used because they are
computationally preferable to RJMCMC algorithms (see
Section 6 for an analysis using an MCMC algorithm). In
particular, MCMC algorithms are faster per iteration and fewer
iterations are needed to obtain enough samples for a given K
value of interest. One further challenge is moderate sensitivity
to the spectral model, which is the reason why in some
applications the gamma spectral model must be replaced by the
gamma mixture spectral model introduced in Section 2.4.

5. SIMULATION STUDIES

Simulated data are used to assess two important aspects of
our method: (i) the sensitivity of the fit for K on its prior
distribution; and (ii) the performance of the method under a
range of different source and background parameters. In the
second case, of particular interest is the comparison of
inference for the parameters under the spatial-only model and
full models (given in Equations (7) and (9)).

5.1. Sensitivity to Prior Distribution on K

To illustrate robustness to the prior on K , we simulated data
for a one-source (K 1true = ) and a ten-source (K 10true = )
reality and drew inference for the number of sources under
three different settings of the prior mean k (1, 3, and 10). Ten
data sets were simulated under each reality, each consisting of
images of 20 by 20 spatial units and spectral data (simulated
under the single gamma spectral model). We randomly placed
the sources in the central 18 by 18 region of the image,
avoiding the edges so that source photons are largely contained
within the image. The mean number of photons mj from source
j was chosen randomly from the interval 100 to 500, for

j K1 ,...,= . The mean total number of photons from the
background in each data set, m0, was set to 400, an average of 1
photon per unit square. The number of photons from source j
(or the background) was then simulated from a Poisson
distribution with mean mj, for j K0 ,...,= . Spatial coordinates
for the photons were chosen by sampling from the PSF (or the
Uniform distribution in the case of the background). We used
the King profile density for the PSF; the same PSF is used for
analysis of the data sets in Sections 6 and 7.
To complete the data sets, we simulated spectral data under

the single gamma spectral model (and from a Uniform
distribution in the case of the background). We drew the
spectral distribution parameters ja (shape) and j ja g (rate),

j K1 ,...,= , from the Gaussian distributions N (3, 0. 2 )2 and
N (0.005, 0.001 )2 , respectively, truncating both distributions to
be strictly positive. The resulting spectral parameters are
similar to those fitted for the XMM data set in Section 6. An
example simulated data set is shown in the left panel of
Figure 4. The right panel shows the true spectral distributions
for the same data set.
For each of the 20 simulated data sets, ten RJMCMC chains

were run to assess convergence, but for simplicity only one
chain per data set was used in the final analysis.26 The chains
were run for 200,000 RJMCMC iterations, the first 100,000 of
which formed the convergence period (or burnin) and were
discarded. For each data set, the posterior probability of being
in state K k= was calculated, using Equation (17), for all
feasible values of k. Figure 5 summarizes the inference for K
under the ten-source (K 10true = , left panels) and one-source
(K 1true = , right panels) realities, for 1, 3k = and 10 (top,
middle and bottom panels, respectively). Recall that k is the
prior mean number of sources. The 25% and 75% quantiles of
the posterior probabilities across the ten data sets are indicated
for each value of K .

Figure 4. Simulated data set for the 10 source case. The simulated spatial counts distribution (left) and the adopted spectra for each source and the background (right)
are shown. The true locations of the 10 sources are marked by large (red) dots in the left plot.

26 For the purposes of convergence diagnostics, we initialized each chain by
randomly choosing between 1 and 20 sources and then deterministically
spreading them out around the edge of the image space.
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Figure 5 shows that, for the ten-source reality, the posterior
probability is concentrated around K= 9–11, regardless of
which of the three values of k is used. Indeed, the prior
probability of ten sources specified by the prior with 10k = is
nearly 1.25 million times that of the probability specified by the
prior with 1k = . Despite the difference in the prior probability
as a function of k, the posterior probabilities of K 10= are
quite consistent; the average (across simulations) differs by
only about 0.1 (comparing 1k = with 10k = , see Figure 5).
In other words, there is about a 1.25 multiplicative increase in
the posterior probability of ten sources when the prior mean is
changed from 1k = to 10k = . This modest difference in
posterior probability is acceptable as it is unlikely that prior
information would allocate the truth 1.25 million to one odds.

There are appreciable differences among the simulated data
sets as indicated by the quantiles in Figure 5. This is to be
expected because the source positions and intensities are
chosen randomly. Some of the simulated data sets have two
sources very close to each other, making it hard to determine
that they are distinct. In some cases, it is possible to separate
these very close sources based on the spectral data (using the
full model), i.e., if the spectral data appear to come from two

gamma distributions rather than one. However, in other cases it
is difficult to separate such nearby sources, even with the
spectral data. Indeed, checks confirmed that data sets with
sizeable posterior probability at K 9= under the full model
include overlapping sources that cannot be separated by eye
and have similar spectral distributions. Posterior probability at
K values of 11 and above appear because chance clusters of
photons are sometimes mistaken for separate sources. The
precise location of these “ghost” sources, however, is highly
erratic across RJMCMC iterations. There is limited evidence
for them in the data and thus wide error bars for their
“locations” in the posterior distribution.
Inference is also robust to the choice of k under the one-

source reality (K 1true = ). The posterior mode is clearly K 1=
for all three values of k. Owing to the skewness of the Poisson
density, the difference in prior probability of K 1= across the
different k values is less dramatic than that for K 10= . When

1k = the a priori probability of K 1= is around 800 times that
when 10k = . Consequently, the difference in posterior
probabilities is also less noticeable. Indeed, the qualitative
difference in the posteriors under 1k = and 10k = is
marginal, see Figure 5.

Figure 5. Average posterior probabilities of plausible values of K across ten data sets. Left plots show posteriors for the ten-source reality (K 10true = ) with prior
mean values of 1, 3, 10k = from top to bottom. Right plots show posteriors for the one-source reality (K 1true = ) with 1, 3, 10k = . In each plot, the 25% and 75%
quantiles across the 10 data sets are indicated by the vertical error bars for each value of K .
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Our key conclusion is that the posterior probability of the
true number of sources K seems insensitive to the prior
probability assigned to K , at least when using the Poisson prior.
Consequently, the value of k only needs to be in the region of
the true number of sources in order for the fit for K to be
reasonable. These conclusions match our intuition that
knowing the precise PSF statistically constrains the mixture
model sufficiently for the data to drive the fitted values of the
parameters. Our simulations are representative of typical data
sets, but establishing similar conclusions for smaller datsets
may require more studies. A data set could also be larger than
those in our simulations, but as k (and K ) increases, greater
Poisson variance means that the absolute deviation of k from
the true number of sources has progressively less influence on
posterior inferences. (Intuitively, it is more reasonable to
a priori suspect 101 sources when there are 110, than to suspect
1 when there are 10.) In our context, prior information typically
consists of previous observations, possibly from a different
wavelength band. Therefore, it can be assumed that the
information is quite reliable and gross prior “misspecification”
is unlikely. Clearly, priors other than the Poisson distribution
can be considered if a more diffuse prior distribution is desired.

5.2. Utility of the Spectral Model

Here we investigate the performance of our model and
methods for a range of background intensities, source
separations and relative source intensities. We compare the
performance of the spatial-only and full models. For simplicity,
we simulated data for a two-source (K 2true = ) reality. In each
simulation, the number of photons from the background and
the number from each source were drawn from Poisson
distributions with respective means m m m, ,0 1 2. We set
m 10002 = and m m r1 2= , for r 1, 2, 5, 10, 50= . We refer
to r as the relative intensity of the two sources. To set m0 and
quantify the strength of the simulated background in an
astronomically meaningful way we define a source region in
terms of the PSF. Specifically, we again use the King profile
PSF and define the source region as the region with PSF greater
than 10% of its maximum. (The King profile density has no
finite moments). We next define q to be the probability that a
photon from a source falls within its source region and set the
background per source region to be m bqm0 2= , for
b 0.001, 0.01, 0.1, 1= . That is, the mean number of back-
ground photons in the faint source region was varied between
1 1000 and 1 times the mean number of photons from the faint
source falling in the same region. As we shall discuss and
unsurprisingly, the faint source was difficult to locate in data
sets that were simulated with b 1= and less so for those
simulated with b 0.001= . Finally, the separation of the two
sources was set to be 0.5, 1, 1.5, or 2 distance units. These
separations can be interpreted using the fact that our source
regions are approximately circles of radius 1.

Spectral data was also simulated for source and background
photons. An aim of this simulation study aims is to investigate
how much using the spectral data improves the fitted
parameters. Since sources can only be distinguished by their
spectra if their spectra are different, we used different spectra
for the two simulated sources; specifically we set 31a = ,

6001g = , 62a = , and 15002g = .
In summary, our simulation study consists of a 5 4 4´ ´

grid of configuration settings (r 1, 2, 3, 5, 10, 50= ; b =
0.001, 0.01, 0.1, 1; and source separations of 0.5, 1, 1.5, 2).

One hundred data sets were simulated for each of the resulting
80 configurations, and analyzed using first the spatial-only
model and then the full model. In particular, for each data set
our algorithm was run for 20,000 RJMCMC iterations, the first
10,000 of which formed the convergence period (or burnin)
and were discarded.27 The median posterior probability of two
sources is shown in Figure 6 for each of the different
simulation settings. The left and the right panels correspond
to the spatial-only and full models, respectively. We use the
median posterior probability across the 100 simulated data sets
because in a few simulations the faint source is unusually bright
or unusually faint, which noticeably effects the mean posterior
probability of two sources. Nevertheless, summaries based on
the mean posterior probability are qualitatively very similar,
albeit with slightly more noise. We have organized the results
by background intensity because in practical applications
background is often well determined.
In images simulated with relative intensity 50 the posterior

probability of two sources tends to be low. This is because
r 50= corresponds to a faint source intensity of m 202 = ,
while the brighter source has intensity m 10001 = . Thus, the
faint source is typically not bright enough to be distinguished
from noise; its photons can be adequately explained as a
random cluster formed of photons from the brighter source or
the background. In this case the posterior probability peaks
sharply at K 1= . The spatial-only model is more likely to
mistake a cluster of background photons for a faint source and
therefore, in the case of r 50= and small source separation,
typically gives slightly higher posterior probabilities of two
sources than the full model (but the probabilities are still very
small). For less extreme relative intensities, using the full
model increases the posterior probability of two sources. The
improvement is particularly noticeable for relative intensities 5
and 10, regardless of the background strength. The spectral
distribution of source counts reduces the plausibility that the
faint source is just a cluster of photons from the background or
the bright source. When both sources are bright and reasonably
separated both the spatial-only and full models give high
posterior probability at K 2= .28

To fit the source parameters, we fix K at its posterior mode
value and use Equation (19). Although the fitted parameters of
the bright source are always accurate, those for the faint source
may be poor, especially if the posterior mode of K is at 1 or if
“ghost” sources have appreciable posterior probability. The
accuracy of the faint sourceʼs fitted parameters essentially
follows the pattern seen in Figure 6. When the real faint source
is very weak or located too close to the bright source, then a
fitted second source (when the posterior mode of K is greater
than 1) is likely to be a “ghost” consisting mainly of a cluster of
photons from the background or the bright source. In which

27 This is a relatively small number of RJMCMC iterations, but since our
simulated data sets were quite small images each including only two sources,
we found it to be sufficient.
28 One curiosity, present in the left panels of Figure 6 (spatial-only model), is
that when both of the sources are reasonably bright, greater median posterior
probability of two sources is obtained when the background is stronger. This
phenomenon occurs because, in the presence of strong background, deviations
between the PSF and the observed counts are difficult to detect, whereas, with
weak background, such deviations may be attributed to spurious additional
sources. (Indeed, the posterior probability of K 3= is typically greater at low
background levels than at high background levels.) When the full model is
used this effect is diminished. The curiosity is not qualitatively important
because the bright sources are well identified in all cases. Clearly weaker
background is preferred as it improves the chance of detecting (real) faint
sources.
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case, its fitted parameters bear little resemblance to those of the
true faint source. This is illustrated in Figure 7, which shows
the mean (conditional on K 2= ) posterior locations of the two
sources for all 100 data sets under each configuration of
simulation settings. Crosses indicate the true locations of the
sources. The mean posterior locations of the bright source (red
dots) are not always visible in the plots because they are often
in the middle of the red crosses. The location of the bright
source becomes slightly harder to fit as the intensity of the faint
source increases. (This is at least partly because the

background intensity is proportional to the faint source
intensity.) The size of the dots indicate the posterior probability
of two sources.
The full model again yields more accurate fits. The fitted

locations of the faint source (blue dots) center around its true
location (blue crosses) for r 10⩽ , even when the source
separation is small. For the spatial-only model there is more
scatter. Under both models, when r 50= we can see that many
of the fitted faint source locations correspond to spurious
clusters of photons surrounding the bright source. As the

Figure 6. Exploring the sensitivity of our algorithm to source separation, relative strengths, and background level. The median posterior probability of K 2= across
the 100 simulations is shown; K 2true = in all cases. The results from the spatial-only model (left column) and the full model (right column) are both shown. Red
indicates probabilities less than 0.1, and white indicates probabilities greater than 0.5. (Intermediate colors indicate probabilities between 0.1 and 0.5.)
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separation increases some of the fitted faint source locations are
halfway between the true locations of the two sources. This
occurs when the posterior distribution of the faint source x-
coordinate is bimodal, a spurious cluster of photons and the real
faint source both being supported as possible second sources.
In an actual analysis this bimodal behavior would be apparent
from inspection of the posterior draws of the source location.
For r = 50 and large separation, the full model sometimes
accurately fits the faint source location, but the spatial-only
model never does. The behavior of the other fitted parameters

follows the same pattern illustrated in Figure 7 because the
fitted source locations indicate how well photons are allocated
to the correct source. This is confirmed by inspecting tables of
the mean (or median) squared error of each parameter (not
shown).
The number of Monte Carlo samples used in estimating the

mean posterior locations (conditional on K 2= ) is determined
by the posterior probability of two sources, and thus is
indicated by the size of the dots. Very small dots may have
non-negligible Monte Carlo error, i.e., the true posterior mean

Figure 7. Sensitivity of location determination as a function of source separation, relative strength, and background level. The simulation is the same as that in
Figure 6. Mean posterior locations of two sources for each of 100 simulations, under the spatial-only model (top 20 plots) and the full model (bottom 20 plots). Red
and blue dots give the mean posterior locations for each simulation of the bright and faint sources, respectively. The large “X”s of corresponding color indicate the true
locations. The diameters of the dots are proportional to the posterior probabilities of two sources. The relative background, relative source intensity, and source
separation are indicated by b, r, and d, respectively.
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location (conditional on K 2= ) may be somewhat inaccurately
approximated. This is because applying Equation (18) for each
parameter does not accurately compute the mean of
p K x y E( , , , )KQ ∣ for values of K that have low posterior
probability.29 However, in practice, when the number of
sources is unknown, it makes sense to only consider values of
K with relatively high posterior probability. Furthermore, one
typically checks the level of Monte Carlo error for the values of
K of interest, by running multiple chains. Large variation in the
parameter estimates across the chains indicates high Monte
Carlo error. In which case, one should run the chains longer in
order to obtain a larger Monte Carlo sample.

6. APPLICATION I: XMM DATA SET

We now apply the spatial-only and full models to an XMM
observation (obs_id 0151450101) of the apparent visual
binary FK Aqr and FL Aqr. The data consist of the spatial
and spectral information of around 540,000 photons detected
during a 47 ks exposure. The spatial data is displayed in
Figure 8 as both an image (left) and a scatter plot (right), and
the spectrum is plotted in Figure 9. The moderate overlap of the
sources and high counts make this a good test of our model. In
particular, we expect that the spatial-only model and full model
analyses to be similar (for the spatial parameters) because of
the large amount of spatial information. Furthermore, since the
data clearly indicate two sources, we can concentrate on
verifying that our model yields sensible posterior inference
using standard MCMC. (This gives draws from the joint
posterior for a fixed number of sources and therefore results in
inference that is simpler to interpret than inference resulting
from RJMCMC.) Use of the more complicated RJMCMC
analysis is reserved for the Chandra data set in Section 7
because there is non-negligible uncertainty in K for that
data set.

In the image shown on the left of Figure 8 the sources
seem to have faint “spokes.” Approaches for modeling
these features are suggested in Read et al. (2010) and Read
& Saxton (2012)30, but we use the unaltered King profile
PSF for simplicity. As mentioned in Section 2.1, the spatial
data are binned when recorded on the observatory LCD
screen. However, the bins are small in comparison to the
XMM PSF so our use of a model that treats the data as
unbinned is reasonable. (See Section 8 for further
discussion.)
For the spatial-only model and the full model, ten MCMC

chains (with K fixed at 2) were run for 20,000 MCMC
iterations, the first 10,000 of which formed the convergence
period (or burnin) and were discarded.31 The large amount of
data means that the source locations are precisely fit by both
models, as can be seen in Table 4. However, the posterior mean

Figure 8. Visual binary FK and FL Aqr observed with XMM-Newton (FK is the brighter source at bottom). The XMM obs_id is 0151450101. Shown is a counts
image with 10″ bins and arbitrary origin (left), and a scatter plot of a subset of 6000 events over a 5 ks subexposure (right).

Figure 9. Histogram of the spectral data in the XMM observation of FK Aqr
and FL Aqr. Plotted are 1000 spectra for the bright (solid black lines) and faint
(dashed red lines) sources, each corresponds to a posterior sample of the
spectral parameters. (The posterior variance is small on this scale.) The
background spectra is shown by the dotted green line.

29 We could instead fix K 2= and run a standard MCMC algorithm to obtain
a large enough posterior sample to accurately fit the mean posterior locations.
We do not pursue this strategy because the fitted parameters that are conditional
on unlikely values of K are of little practical use.

30 http://xmm2.esac.esa.int/external/xmm sw cal/calib/rel notes/
31 Note that, since we used standard MCMC and there are only two bright
sources, the number of MCMC iterations until convergence was relatively
small.
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of the relative intensity of the background is about 20% lower
for the full model. This is presumably due to a greater ability to
separate source and background counts with the additional
information given by the spectral data. In particular, photons
from the sources can be found across the entire image so there
is a tendency to over-estimate the background intensity without
some non-spatial way of distinguishing its photons from those
of the sources.

Until now, it has not been possible to distinguish the spectral
distributions of these two sources. Conventional fitting of the
spectra extracted from non-overlapping source regions give
statistically indistinguishable results, with identical column
density N 1.0 1.6H » - (10 cm )20 2- , double temperature com-
ponents kT 0.25 0.261 » - (keV), kT 0.78 0.822 » - (keV), and
metallicities Z 0.12 0.14» - . This remarkable coincidence
could be attributed to strong contamination of FL Aqr by
photons from FK Aqr. Our algorithm, which eliminates such
contamination, can answer the question of how similar the two
sources are. Of course, a comparison of the source spectra
shapes is only possible using the full model. Figure 9 shows

1000 spectra sampled from the posterior distribution32 for the
bright (black solid lines) and faint (red dashed lines) sources;
for each source, all 1000 spectra are very similar and so appear
as a single curve. We observe that the bright source spectra are
very similar to the faint source spectra, which is consistent with
the difficulty in distinguishing the spectral distributions of the
two sources in previous analyses.
Although the overall shapes of the two spectral are similar

(Figure 9), we can distinguish them by examining the
parameters of their underlying gamma distribution. Figure 10
plots the posterior distributions of these parameters for the two
sources and shows that they clearly differ. We have plotted the
shape and rate parameters, because the shape and variance
differ more than the mean. The posterior distributions in
Figure 10 indicate that there is very little uncertainty in the
spectral parameters; the intervals in Table 4 convey a similar
message. This precision is obtained because of the large
amount of data combined with the fact that our method
properly accounts for uncertainty in photon origins and jointly
fits spectral and spatial parameters. Although our analysis is
only physically accurate to the extent that the source spectra
can reasonably be modeled with gamma distributions, it
nevertheless provides evidence that the spectra do differ in
some way. More detailed conclusions would be possible with a
physics-based spectral model that accounts for emission lines
and other spectral features. A possible extension of this work is
to replace the gamma spectral model with a more complete
model. A computationally less intensive approach is described
in Section 7.2.

7. APPLICATION II: CHANDRA DATA SET

We analyze a Chandra observation of the Orion Nebula
Cluster using the spatial-only model and the extended full
model given in Equation (10). The extended full model is used
because the full model is not sufficiently flexible to capture the
shape of the source spectra, as explained in Section 2.4. The
specific data set we analyze is a subset of ObsID 1522 that
omits the central source, a region where the PSF is distorted

Table 4
Posterior Means Under the Spatial-only Model and the Full Model

Spatial-only Model Full Model

x1m 120.974 (120.973, 120.975) 120.973 (120.973, 120.974)

y1m 124.873 (124.873, 124.874) 124.873 (124.872, 124.874)

x2m 121.396 (121.394, 121.398) 121.397 (121.395, 121.399)

y2m 127.319 (127.317, 127.321) 127.326 (127.324, 127.328)

w1 0.717 (0.716, 0.718) 0.732 (0.731, 0.732)
w2 0.182 (0.181, 0.182) 0.189 (0.189, 0.190)
w0 0.102 (0.101, 0.102) 0.079 (0.079, 0.079)

1g L L 664.86 (664.43, 665.30)

2g L L 662.78 (661.78, 663.87)

1a L L 3.205 (3.199, 3.211)

2a L L 3.131 (3.118, 3.144)

Note. The parenthetic intervals are1s error bars computed using 16% and 84%
posterior quantiles.

Figure 10. Posterior distributions of the parameters of the gamma distributions used to model the spectra of FK Aqr and FL Aqr. The posterior distributions of the
shape and rate parameters are shown in the left and right panels, respectively.

32 To reduce correlation, every 10th sample of the original 10,000 stored
MCMC samples of the spectral parameters was used.

16

The Astrophysical Journal, 808:137 (24pp), 2015 August 1 Jones, Kashyap, & van Dyk



due to strong pile-up (Figure 11). The data include events that
occurred within the first 20 ks of the observation, of which
there are 14,000» .

7.1. Analysis Using the Spatial-only and Extended Full Models

For both models, ten RJMCMC chains were run for 150,000
RJMCMC iterations, the first 100,000 of which formed the
convergence period (or burnin) and were discarded. The
posterior distribution of the number of sources, under the
spatial and extended full models, is displayed in Figure 12. The
mode of both posteriors is at 14. However, the spatial-only
model shows slightly more uncertainty, and some support for
15 sources.

As mentioned in Section 4, K determines the number and
meaning of the other model parameters and therefore we must
condition on a value of K to draw meaningful inferences for
them from the RJMCMC output. Figure 11 shows 90%
posterior credible regions (blue) for the locations of the sources
under the two models, given K 14= . Each credible region
shows an area which has 0.9 posterior probability (given
K 14= ) of containing the location of the relevant source, i.e.,
an integral of the posterior distribution of the source location
(given K 14= ) over this area would evaluate to 0.9. The
credible regions look to be similar under the two models. The
estimated relative intensities also appear in Figure 11 and are

also similar, but are slightly lower under the spatial-only model
for most sources. This is due to a higher estimate of the relative
background intensity under the spatial-only model (0.0053
versus 0.0006 under the extended full model33). Table 5 gives
the the posterior mean fit of the source locations and relative
intensities under the extended full model for K 14= . The
detected sources are also matched to the source catalog from
the Chandra Orion Ultradeep Project (COUP; Getman
et al. 2005).
Other observations of Orion suggest that the source circled

(in green) in the right panel of Figure 11 is a genuine source.
Its location is more uncertain than other sources because it is
more difficult to detect. Indeed, with an estimated intensity

Figure 11. Chandra observation of a crowded field near the center of the Orion Nebula Cluster. This field is approximately 25 25 ´  in size, and is centered at
(R.A., decl.)=(5:35:15.4,-05:23:04.68). Shown in blue are approximate 90% posterior credible regions for source locations, under the spatial-only model (left),
and the extended full model (right). The figures next to the regions indicate the estimated relative intensities. The credible region of the source with the largest
location uncertainty is circled in green (right panel). The red rectangular box encloses two overlapping sources (right panel) for which we carry out a detailed
follow-up spectral analysis (Section 7.2).

Figure 12. Number of sources detected in the analysis of the Chandra observation in Figure 11. Posterior of K based on the spatial-only model (left) and the extended
full model (right).

33 The background is likely inaccurately estimated by both models because the
King profile PSF that we use is an approximation to the Chandra PSF; the
latter is more concentrated at its center. Thus, in our analysis, too many photons
are allocated to the wings of the sources, deflating the background. That our
analysis has still found genuine sources illustrates that it is nottoo sensitive to
the PSF, at least in the case of specifying overly heavy wings. If instead the
raytraced PSF (ChaRT: http://cxc.cfa.harvard.edu/chart/) is used, then the
estimate of the background is higher because this PSF has lighter wings than
the King profile. The lighter wings also lead to the detection of four additional
faint sources: one has an optical counterpart, one does not, and two cannot be
confirmed optically because they are close to a bright source. Further
investigation of these sources and modeling possible variations in the PSF are
topics for future work. For example, temporal information can potentially be
used as a diagnostic to assess whether any of the detected weak sources are in
fact due to fluctuations in the PSFs of the bright sources.
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between 13 and 25 counts, this source is at the edge of
detectability of local detection methods, particularly since the
estimate of the local background in such methods would be
high due to contamination from nearby bright sources. Thus,
we expect that more basic approaches would either have failed
to find this source, or would only find it by rendering their
detection threshold to a point where spurious detections
became problematic. Indeed, the reason the spatial-only model
gives non-negligible weight to 15 sources (see Figure 12) is
that it tends to split sources into two. The problem is that a
single empirical PSF may exhibit chance variations that appear
to be evidence for multiple PSFs. The spatial-only model also
mistakes clusters of background photons for sources. The
locations and spectra of these spurious sources show consider-
able posterior variability. Although any particular instance has
low probability, there are multiple instances that together create
erroneous support for an additional source. The main advantage
of using the spectral information, in this example, is that it
mitigates these issues, leading to a greater certainty that there
are really 14 sources. Additionally, under the extended full
model, the standard deviations of the parameters are almost
invariably slightly smaller.

7.2. Spectral Analysis of the Disentangled Sources

The extended full model only captures the basic shape of the
source spectra and we now illustrate how detailed follow-up
spectral analysis can incorporate probabilistic event allocations.
We perform this analysis for the two overlapping sources that are
enclosed in the red box in the right panel of Figure 11 (COUP
sources #732 and #744; Getman et al. 2005). Their estimated
relative intensities are 0.3459 and 0.0741 under the extended full
model. This is a good example to test the probabilistic event
allocations, since the sources are close together (separation

1. 7»  ), each have sufficient counts for a useful spectral fit
( 4350» and 910» counts between 0.5 7- keV for the bright and
faint sources, respectively), and one source is substantially
weaker than the other.

As described in Section 2.3, si indicates the source (or
background) number associated with photon i. These are
unknown parameters (or latent variables) that are updated at
each iteration of the RJMCMC sampler. The variability in si

indicates the uncertainty in the source of photon i (due to the
PSF and uncertainty in the source parameters). We can account
for this uncertainty by conducting many spectral analyses, each
according to a sampled photon allocation (i.e., sampled values
of si), and combining the results. We focus on photons with
spatial location in the red box in Figure 11 (right panel) and to
values of si sampled conditional on K 14= . Since we are only
interested in COUP sources #732 and #744 we ignore any
photons that are attributed to one of the other sources (in a
given allocation). (The photons in the red box in Figure 11 are
attributed to one of the other sources only rarely.)
Based on the photon allocations, we construct a sample of

1000 simulated spectral data sets for both sources, constructed
from photon allocations based on every 10th iteration of the
RJMCMC algorithm that sets K 14= (up to the 10,000th
RJMCMC iteration that sets K 14= ). The variability in the
source counts across the 1000 iterations is 17 for both the
bright and faint sources. The specific photons that are allocated
to each source also varies, even when the total source counts do
not. Each individual spectrum is fit with an absorbed single
temperature thermal model (xsphabs*xsapec in CIAO/
Sherpa v4.6) fitting the absorption column (NH), temperature
(kT), metallicity (Z), and normalization. A pile-up correction is
needed for all spectra for the bright source since the measured
count rate of 0.7 counts frame−1 is higher than the threshold at
which pile-up becomes significant ( 0.3» counts frame−1). We
use the jdpileup model in Sherpa, fitting the grade
migration parameter α and the pile-up strength parameter f
(Davis 2001). We call the entire collection of spectral fits the
disentangled analysis.
For comparison, we also carry out a spectral analysis of the

sources based on a naïve allocation of photons that collects
events from within 1″ of the fitted location of each source and
assumes that there is no contamination from the other source.
The only difference in the spectral model for the naïve and
disentangled analyses is in how the effective areas are defined.
In the case of the naïve analysis, a correction is made post-facto
to the normalization based on how much of the source is
expected to be included within the 1″ source photons extraction
radius. In the disentangled analysis, the assumed extraction

Table 5
Extended Full Model Fit for the Chandra Observation in Figure 11

COUP # jxm jym Relative Intensity (%)

732 4054.42 (4054.41, 4054.43) 4149.45 (4149.44, 4149.46) 34.59 (34.16, 35.03)
745 4052.83 (4052.81, 4052.84) 4140.67 (4140.66, 4140.68) 28.11 (27.71, 28.51)
689 4069.93 (4069.91, 4069.94) 4175.93 (4175.91, 4175.94) 14.10 (13.79, 14.40)
724 4058.57 (4058.56, 4058.59) 4176.73 (4176.71, 4176.74) 11.43 (11.16, 11.71)
744 4051.53 (4051.50, 4051.55) 4147.57 (4147.55, 4147.60) 7.41 (7.14, 7.68)
765 4045.40 (4045.35, 4045.46) 4181.20 (4181.15, 4181.25) 1.42 (1.32, 1.53)
649 4088.16 (4088.08, 4088.24) 4165.95 (4165.87, 4166.03) 0.57 (0.50, 0.63)
766 4045.36 (4045.27, 4045.45) 4155.18 (4155.10, 4155.25) 0.77 (0.68, 0.87)
788 4043.48 (4043.36, 4043.61) 4155.74 (4155.64, 4155.84) 0.56 (0.47, 0.64)
682 4072.11 (4072.01, 4072.21) 4181.12 (4181.03, 4181.22) 0.46 (0.39, 0.52)
640 4091.73 (4091.53, 4091.92) 4137.42 (4137.26, 4137.59) 0.13 (0.10, 0.16)
664 4081.43 (4081.22, 4081.63) 4159.41 (4159.21, 4159.61) 0.11 (0.08, 0.14)
665 4082.84 (4082.67, 4083.02) 4137.28 (4137.14, 4137.43) 0.15 (0.12, 0.19)
779 4044.39 (4043.86, 4044.60) 4140.72 (4140.43, 4140.90) 0.14 (0.09, 0.18)
Background L L L L 0.06 (0.01, 0.10)

Note. Posterior mean locations and relative intensities (as percentages), with 68% intervals indicated.
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radius for the spectra with allocated events is set to be 2. 5 and
the subsequent correction is negligible.

The results of the spectral fits to the disentangled spectra are
shown as histograms of best-fit values for NH, kT, Z, and model
flux computed for each of the 1000 spectra, see Figure 13. In
several cases, a bimodal distribution is apparent. This suggests
that a multi-temperature component spectrum would be a better
fit. The separation of the modes, however, is generally too
small to be picked up by typical multi-temperature model fits.
Not shown are the pile-up parameters for the bright source,
which are consistent between the naïve and disentangled
analyses ( f( , ) (0.6, 0.93)a = for naïve, and (0.53, 0.89) for
the disentangled spectra), though the former indicates that the
pile-up strength is slightly higher. This is to be expected, since
the naïve analysis is carried out for photons in the core of the
PSF, where naturally pile-up is most significant. The disen-
tangled spectra include photons from the wings, thus reducing
the strength of pile-up effects and decreasing the correction
needed to the source flux by about 60%.

The spread in the histograms in Figure 13 indicates the
uncertainty in the best-fit values due to uncertainty in the
allocation of photons. The best-fit values from the
naïve calculation are shown as solid red vertical lines. The
dashed red vertical lines give 68% intervals indicating the
statistical errors, due to randomness in the photons emitted and
detected, under the naïve analysis. These statistical errors do
not account for uncertainty in the photon allocations. The

histograms, on the other hand, represent only errors due to
uncertainty in the photon allocations, but do not account for
statistical errors (due to randomness in photon emission and
detection). Because the two sources of error are independent,
and because we expect the statistical errors for the disentangled
analyses to be similar to those for the naïve analysis, the total
errors could be represented by a perturbation of the histograms
with σ equal to the statistical errors from the naïve analysis. For
these data, with the exception of flux (panels (g) and (h) of
Figure 13), the statistical errors dominate the errors due to
uncertainty in the photon allocation. Despite this, the disen-
tangled analysis provides reasonable evidence that the absorp-
tion column of the faint source (panels (b) of Figure 13) and
the flux of the two sources (panels (g) and (h) of Figure 13) are
different from the best-fit values under the naïve analysis.
The variability of the true parameters around each of the best

fit values recorded in the histograms is expected to be similar to
that indicated for the naïve fit. However, we did not calculate
these uncertainties because of the large computational cost. For
these data, with the exception of flux (panels (g) and (h) of
Figure 13), the variability in the true spectral parameters
around the best fit values is likely larger than the uncertainty in
the best fit values (due to the uncertainty in the allocation of
photons). Despite this, the disentangled analysis provides
reasonable evidence that the absorption column of the faint
source (panel (b) of Figure 13) and the flux of the two sources

Figure 13. Detailed spectral analysis of overlapping COUP sources #732 and #744. Best-fit values of absorption column ((a), (b)), temperature ((c), (d)), metallicity
((e), (f)), and flux ((g), (h)) for the disentangled analysis, for each of 1000 allocations of the photons are shown as histograms. Panels (a), (c), (e), and (g)
correspond to the bright source and panels (b), (d), (f), and (h) correspond to the fainter source. The naïve analysis best-fit values and their 68% intervals are shown
by the solid and dashed red vertical lines, respectively. The width of the histograms only account for uncertainty due to the allocation of photons, and not additional
statistical error, which is well described by the intervals shown for the naïve analysis.
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(panels (g) and (h) of Figure 13) are different to the
naïve analysis best-fit values.

Overall, the naïve analysis best-fit values for the fainter
source are in greater disagreement with the disentangled
analysis than those for the bright source. This is to be
expected, since in the naïve analysis, the contamination of the
fainter source by the brighter source is larger. Our algorithm
effectively removes this contamination. This causes the spectral
fit parameter values to change and the measured source flux of
the fainter source to decrease. In summary, the observed
changes to the spectral model parameters are as would be
expected when contamination is reduced and the data quality is
improved.

8. SUMMARY

We have developed a Bayesian statistical method that
models spatial and spectral information from overlapping
sources and the background, and jointly estimates all individual
source parameters. The key contributions of our approach are
the use of spectral information to improve spatial separation,
coherent quantification of uncertainty, including that of the
number of sources, and the probabilistic assignment of photons
to the different sources. Our simulation studies show that using
spectral information improves the detection of both faint and
closely overlapping sources and increases the accuracy with
which source parameters are inferred.

We have analyzed data from two sets of overlapping sources
observed with XMM and Chandra. Traditional analysis of
XMM observations of FK and FL Aqr, thought to be a visual
binary, show that their spectra are not distinguishable. Our
analysis confirms that the spectra are indeed similar, but
nonetheless shows that they are separable. We have also carried
out detailed spectral analysis on disentangled photons from a
pair of close sources from near the center of the Orion Nebula
Cluster observed with Chandra. We find that the spectral
parameters change significantly after contamination is
removed.

The data we have considered consists of event-level
observations. In the more usual case of spatially binned data,
the PSF could be updated to take account of the binning. If the
spatial pixels are larger, the importance of spectral data is
greater, because it is harder to spatially distinguish sources
from each other and the background. Clearly however,
unbinned data is preferred when available, and our method
has the ability to use all the information in such data. Similar
comments apply when the spectral data are grouped.

As with other detection procedures, an important question is
how to combine information from multiple observations. Since
our approach gives the posterior distribution of all the
parameters, this can be used as the prior distribution in
subsequent analyses. Thus, under the Bayesian framework it is
straightforward to analyze the available observations sequen-
tially, which is convenient in that different PSFs, for example,
can be used for each analysis. This is critical if the observations
are recorded by different observatories.

Another advantage of the Bayesian framework is that more
complex models can straightforwardly be built in. For example,
using a location or spectral dependent PSF would require only
minimal changes to the method and code. Another extension is
to include the different temporal signatures of overlapping
sources to further separate them. Future work will focus on
these and related issues as well as computational scalability.
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APPENDIX A
SPLIT AND COMBINE PROPOSALS IN RJMCMC

The purpose of this appendix is to detail our implementation
of split-combine moves in the BASCS code. We assume the
reader is familiar with MCMC and RJCMC algorithms. Those
unfamiliar with MCMC we refer to Gelman et al. (2013) and
the appendix of Xu et al. (2014). Those unfamiliar with
RJMCMC we refer to Richardson & Green (1997) and Green
(1995). The basic properties of the algorithm follow from the
reversibility condition and the theory of Markov chain
convergence dealt with in many probability and stochastic
processes books, for example Feller (1968).
We concentrate on the split proposals used in BASCS

because they are more complex than the combine proposals. In
particular, we detail the steps of a split proposal in BASCS for
the extended full model (the most complex case considered).
The corresponding combine proposals are straightforwardly
obtained by solving the equations appearing in our split
proposal scheme for the parameters of the combined source
(i.e., the parameters of the yet to split source). Conditions that
are required of newly split sources must also be satisfied when
sources are combined. Following the algorithm is a short
description of the reasons that its novel features are necessary
in the current context.
Let ( , )j jx jym m m= be the location of the source the

algorithm is attempting to split. Throughout this appendix,
the parameters for the two newly proposed sources formed by
a split will be subscripted as in the main parts of the paper
except that a 1 will appear after the subscript j to indicate the
first newly proposed source, and similarly a 2 will indicate
the second newly proposed source, e.g., j x1m will denote the
x-coordinate of the first newly proposed source formed by a
split. The newly proposed sources are ordered so that
min( , ) min( , )j j j j11 12 21 22g g g g⩽ , i.e., the smallest gamma
distribution mean of the spectral model for the first newly
proposed source is smaller than that of the second newly
proposed source. For the full model the ordering used is

j j1 2g g⩽ , and for the spatial-only model it is j x j x1 2m m⩽ .
These orderings are solely for the purposes of proposals; the
label switching problem is discussed separately in
Appendix B. A split proposal is performed as follows:

Step 1: Spectral parameters proposal: draw u Uniform(0, 1)~ .
(a) If u 0.5> , simulate u Beta(2, 2)1 ~ , t v v, ,2 3 ~

Uniform(0, 1) and v v gamma, (5, 5)4 5 ~ . For
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and wj j j1r p= , wj j j11 1 1r p= , wj j j12 2 2r p= ,
w (1 )j j j2r p= - , w (1 )j j j12 1 1r p= - , and
w (1 )j j j22 2 2r p= - . The split proposal is immediately

rejected if j1p is not between ( )min 1,
u

j

1

p
and

( )max 0,
u

u

1j 1

1

p + -
, or j j21 22g g> , or any of j11g , j21g ,

j12g , j22g are outside the range of the spectral data E .

(b) If u 0.5⩽ , simulate , Beta(10, 1)j j1 2p p ~ ,
v v, Uniform(0, 1)2 3 ~ , and v v, Beta(1, 5)4 5 ~ .
Then set u j1 p= , j j11 1g g= , j j21 2g g= , j j11 1a a= ,

j j21 2a a= , and

( )v E (32)j j j12 1 2 max 1g g g= + -

( )v E (33)j j j22 2 3 max 2g g g= + -

v20 (34)j12 4a =

v20 . (35)j22 5a =

Step 2: Spatial parameters proposal: simulate u Beta(2, 2)1 ~ ,
u S Beta(2, 2)2 2~ , and u S Beta(2, 2)3 3~ (where S2
and S3 are independent random signs) and set

w w u (36)j j1 1=

( )w w u1 (37)j j2 1= -
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In our algorithm 1s = (tuning parameter).
Step 3: If ( ) ( ) ( )j x j x j y j y j x j x1

2
1

2
1 2

2m m m m m m- + - < - +¢ ¢

( )j y j y1 2
2m m- for some j K j{1 ,..., } { }¢ Î , then the

split proposal is rejected. We also reject the split
proposal if the proposed source locations are outside
the convex hull of the spatial data x y( , ).

Step 4: To update s to s′ randomly assign photon i to the first
newly proposed source with probability
p p p p( )i i i i1 1 2= + , and otherwise to the second
newly proposed source, for each i jÎ  . Here

( )p w f x y π g E( , ) ( ), (42)il jl μ μ i i
r

jlr i,
1

2

,jl jl sjlr sjlr1 2
å= a g
=

for l 1, 2= . We denote the probability of the
particular allocation realized by Palloc.

Step 5: Simulate u Uniform(0, 1)split ~ and accept the pro-
posed split if u Amin{1, }split < where
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Here, the notation bS R, and gS R, denotes the S RBeta( , )
and gamma S R( , ) densities, respectively, and
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where D μ μ μ μ( , ) ( , )t t t x t y t x t y, 21 2 1 1 2 2
= -∣∣ ∣∣ .

The Jacobian Ja∣ ∣ is the determinant of a 16 16´ block
matrix. The determinant of the upper-left 6 6´ block is
w u u( (1 ))j

2
1 1s - , and this is multiplied by the determinant of

the lower-right block which is calculated numerically.
The Jacobian Jb∣ ∣ is E E w20 ( )( )j j j

2
max 1 max 2

2g g s- -
u u( (1 ))1 1- .

There are two features of BASCS that are not explicitly
dealt with in standard approaches. The first is that the
distributions we split and combine are themselves mixture
distributions. The second is that BASCS randomly chooses
from two proposal schemes for the spectral parameters in
Step 1 because a single approach does not address all the
possibilities. The approach in Step 1(a) splits each gamma
distribution in the current sourceʼs spectral model into two,
thus forming two new spectral models for the newly
proposed sources. The key aspect of this approach is that
the new spectral models are designed to both be similar to
the original. This makes sense in a situation where two
similar sources have been mistaken for one. The approach
in Step 1(b) is designed to split one true source into two,
with each newly proposed source accounting for one
gamma component of the true spectral model. Thus, the
two new source spectral models each typically have nearly
all their weight on a single gamma, which is almost
invariably the first component in the extended full spectral
model (we sort the gammas by their means, in increasing
order). Of course, we do not want to split a true source, but
this split proposal is necessary in order to allow the reverse
combine proposal, because the reversibility condition must
be satisfied.

APPENDIX B
LABEL SWITCHING

A computational challenge is that the enumeration, or
labelling, of individual sources changes stochastically during
the iterations of an RJMCMC algorithm (and even during the
iterations of an MCMC algorithm for a mixture model with a
known number of components). For example, Figure 14
shows the value of x5m at each iteration of our algorithm
(after convergence) before and after the labelling has been
corrected (the data are from the simulation study involving
ten sources described in Section 5.1, and in particular, x5m is
the x-coordinate of the fifth source). Clearly, some such
correction will be necessary in order for estimates such as
that in Equation (17) to be meaningful.
We implemented two approaches to relabelling and, in our

real data analyses, they gave essentially identical results. The
first method was to impose a hard constraint. In one dimension
a hard constraint typically involves ordering the component
locations, but it is not clear how best to impose such a
constraint in two dimensions. As most of the source positions
were precisely fitted, we simply ran the RJMCMC algorithm
until convergence and then selected a posterior draw of the
positions and weights to use as a reference. Running the
algorithm again (or continuing the initial run), at each iteration
we labelled the current source closest to the brightest reference
source as source one, then we looked for the source closest to
the second brightest reference source, and so on. As in the one-
dimensional case, this approach has the limitation that artificial
“boundary” effects may be introduced when the posteriors of
two source positions overlap. These effects indicate that the
real posterior uncertainty has not been correctly recovered
(unless there is some real information to support a hard
constraint in our prior). However, in our real data analyses
there was no evidence of such boundaries because, for probable
values of K , all the source positions were precisely fitted and
there was little overlap between the posteriors of source
positions. In the case of the Chandra observation and K 14= ,
the fact that the posteriors of the source locations are non-
overlapping can be seen from Figure 11.

Figure 14. Trace plot of the parameter x5m from a simulation with ten sources (Section 5.1) before (left) and after (right) relabelling.
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We also implemented the approach suggested by Cron &
West (2011), by modifying their publicly available code to
work for our model. This method also uses a reference and is
based on a loss function. At iteration t, the most likely
assignment of each photon is computed treating the current
parameter values as the true parameters, and then again treating
the reference parameters as the true parameters. If, assuming
the current parameter values, photon i is most likely to have
originated from component two, but another origin is most
likely when assuming the reference parameter values, then we
say there is a mismatch in allocation of photon i. The method
used by Cron & West (2011) is to choose the relabeling that
minimizes the number of mismatches at iteration t, and then
proceed to the next iteration. This second approach is
substantially more computationally expensive than the first.
Therefore we use the first approach online and apply the second
only if there are potential “boundary” effects (neither method is
affected by the initial labels and therefore no problems are
caused by applying both).

APPENDIX C
KING PROFILE

The functional form of the 2D King profile is

( )( )
f d

C

d d
( )

1 0
2

=
+

h

where

d x y

x y y x

( , , )

( cos sin ) ( cos sin ) (1 ) .2 2 2

w

w w w w= + + - - 

The constant C is determined numerically. The particular
parameters we use for the 2D King profile are as follows; off-
axis angle θ = 0 arcmin, core radius d0 = 0.6 arcsec, power-
law slope h = 1.5, ellipticity ϵ = 0.00574. The resulting
probability density is displayed in Figure 15.
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