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Motivation

A road map for light curve classification

Context

See: Richards et al. (2011) arXiv:1101.1959
Bloom & Richards (2011) arXiv:1104.3142
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Motivation: Automated Learning on Light Curves

Need machine learned classification of light curves for:

1 detection and discovery of events in real time, condensing
a data deluge into a trickle of astrophysical goodness

2 optimal allocation of (expensive!) follow-up resources,
often in real time

3 construction of pure & complete samples of, e.g.,
Type Ia Supernovae (expansion history of Universe),
RR Lyrae Variable Stars (structure of Milky Way),
Eclipsing star systems (stellar mass, radius, age, distance)

4 outlier detection to find objects from new or rare classes
Bhattacharyya et al. (2011) in prep.: semi-supervised anomaly detection

Discovery on massive data streams is not assured!
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Example: Optimal Resource Allocation

Problem statement

Given limited follow-up
time, maximize the
time spent on
high-redshift GRBs

Based only on
early-time metrics

Classification drives
resource allocation

RATE-GRBz: web tool
for GRB follow-up

Classification Efficiency
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Machine-Learned Classification
of Light Curves

with Josh Bloom, Dan Starr, Nat Butler, Darren
Homrighausen, Chad Schafer, Peter Freeman, Dovi Poznanski

Bloom & Richards (2011) arXiv:1104.3142 - Overview of ML LC Class.
Richards et al. (2011) arXiv:1101.1959 - VarStar Classification
Richards et al. (2011) arXiv:1103.6034 - SN Typing
Bloom, et al. (2011) arXiv:1106.5491 - Classification for PTF
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Light Curve Features

Domain knowledge drives choice of features

Periodic Metrics

Use generalized Lomb-Scargle
method to find frequencies,
amplitudes, phase offsets of
fundamental freqs and
harmonics

Variability Metrics

- Stetson indices
- damped random walk
QSO model of Butler & Bloom 2011

- point-to-point metrics

Shape Analysis

- marginals: std, skewness,
kurtosis, ratios of quantiles
- Low-D embeddings of LCs
(e.g., diffusion map, LLE)

Context Features
e.g., distance to nearest
galaxy, type of nearest
galaxy, location in the
ecliptic plane, SDSS, etc.
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Diffusion Map for Photometric SN Typing

Diffusion map – non-linear
method to uncover
low-dimensional structure in
data (Lafon & Lee 2006)

I Map each light curve, x,
into m-dimensional
diffusion space
x 7→ {ψ1(x), ..., ψm(x)}

I Features for classification
are the diffusion map
coordinates

Richards et al. (2011)
arXiv:1103.6034
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From Features to Classification

Classification:

We describe each light curve with a vector of features, x

Goal: Using known labels y1, ..., yn, estimate model f̂ (x) to predict class
probabilities for new light curves

Class-wise distribution of features
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Classification: Decision Trees

Classification: Learn model f̂ (x) that maps a feature vector
x to a vector of class probabilities.

Classification Trees:
I Binary partitions of feature space

I Each split minimizes node impurity

I Within each node, model class
probabilities, f̂ (x), as constant

Hastie, Tibshirani, Friedman (2009)

Advantages:

1 Able to capture complex
interactions

2 Robust to outliers

3 Handle multi-class
problems

4 Immune to irrelevant
features

5 Cope with missing values

6 Computationally efficient
& scalable
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Classification: Ensemble Methods

Drawback of Classification Trees

Classification trees are usually unbiased if grown deep enough,
but have high variance

Note: Expected classification error is variance plus bias-squared

I Bagging averages trees from bootstrapped versions of x
I Boosting averages a series of trees, iteratively

up-weighting mis-classified data

I Random Forest averages B de-correlated,
bootstrapped trees, f̂RF = 1

B

∑B
i=1 f̂i .

Var(f̂RF) = ρVar(f̂i) +
1− ρ
B

Var(f̂i)

where ρ is the correlation between trees, f̂i .
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Classification: Structured Classification

Idea: Let class taxonomy guide classifier

HSC: Hierarchical single-label
classification.

I Fit separate classifier at
each non-terminal node.

HMC: Hierarchical multi-label
classification.

I Fit one classifier, where
L(y , f̂ (x)) ∝ wdepth

0
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Classification of Hipparcos + OGLE VarStars

Cross-validated classification error rates
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Classification for Palomar Transient Factory

Law et al. (2009, PASP, 121, 1395)
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Classification for Palomar Transient Factory

Is this detection a real astrophysical
source?

New Reference Subtraction

Negahban, et al. (2011), in prep.

PTF obtains 1.5M
detections per
night
Only 0.1% are real
astrophysical
sources!

RF RB2 Classifier

Obtain ∼ 15%
missed detection
rate at 99% purity

Recently discovered

SN2011fe, the most

nearby SN found in

the last ∼40 years
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Classification for Palomar Transient Factory

Classification of newly discovered
sources at time of discovery!
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Automated
classifier drives
follow-up!

Bloom et al. (2011) arXiv:1106.5491
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Sample Selection Bias in Light
Curve Classification
with Dan Starr, Adam Miller, Nat Butler, James Long, John
Rice, Josh Bloom (UC Berkeley), Henrik Brink & Berian
James (DARK)

Richards et al. (2011), arXiv:1106.2832
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Sample Selection Bias

In astronomical problems, the training (labeled) and testing (unlabeled)

sets are often generated from different distributions.

Left: Training set
Right: Testing set

This problem is referred
to as Sample Selection
Bias or Covariate Shift.

SN Challenge Data
Kessler et al. (2010)

arXiv:1008.1024
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Sample Selection Bias: VarStar Classification

Black: Training set (OGLE+Hipparcos, see Debosscher et al. 2007)

Red: Testing set (All Sky Automated Survey, ASAS; Pojmanski 2002)
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Sample Selection Bias in Astronomy Datasets

Training sets in astronomy are biased:

1 Populations of well-studied objects are inherently biased
toward brighter/nearby sources with better quality data

2 Available training data are typically from older, lower
quality detectors

3 Each survey has different characteristics, aims, cadences...

4 Training data are often generated from idealized models

This can cause significant problems for off-the-shelf
supervised methods:

1 Poor model selection – risk minimization (e.g., by
cross-validation) is performed with respect to PTrain(x, y)

2 Regions of feature space ignored by the training data –
catastrophically bad extrapolation
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Methods: Active Learning (AL)

Active Learning: Identify and manually label the
testing set data that would most help future
iterations of the classifier

Key: In astronomy, we often have the ability to selectively
follow up on sources:

I Spectroscopic study

I Query other databases; cross-match

I “Look at” the data; Citizen Science projects

Pool-based, batch-mode Active Learning: On each AL
iteration, select a batch of objects from the entire testing set
for manual labeling via a query function
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Results: All Sky Automated Survey (ASAS)

Performance metrics of classifier vs. AL iteration:
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Summary

I Machine learning is crucial for time-domain surveys
I Methods & algorithms that handle large data rates
I Statistical guarantees on performance
I Reproducible and transparent!
I Both astrophysical insight and machine learning

expertise are essential elements in this endeavor!

I Some of our ongoing research for LC analysis

1 Period estimation methods.
2 Techniques to automatically extract low-D structure:

LLE, diffusion map, etc.
3 Structured classification to exploit taxonomy
4 Active learning to overcome sample selection bias
5 Noisification & de-noisification approaches to analyze

low S/N data (Long et al., in prep)
6 Semi-supervised anomaly detection
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