

A Statistical Approach to Stellar Archaeology

H. Lee, A. Zezas, and V. Kashyap

Harvard Smithsonian Center for Astrophysics

Aug. 1, 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Introduction

Likeliho

Distance

Application

Discussion

Color-Magnitude Diagram (CMD)

The CMD of our target data set.

Color Magnitude Diagram of NGC 346

Isochrones reveal physical informations from CMD (Temp, mass, [Fe/H], age, class, etc.)

- Realization of theoretical models (quite complicated).
- Depends on so many input parameters.
- Tables tell the location of a star in the diagram (color vs magnitude) at the given age, metalicity, mass, etc.

• A typical inverse problem in astronomy

How these isochrones look like on CMD?

Isochrones continued- How they look?

47 Tuc: 11.2 Gyr Old Globular Cluster

NGC 104 (47 Tuc)

B-V

CMD (data) and Isochrones (model) are available and we like to know the age distribution of stellar clusters in a statistical fashion.

(日)((同))(日)(日)(日)(日)

Statistical Modeling- Simplest

Bayes Rule: the age (τ) posterior distribution is proportional to the likelihood times a prior. For a single star,

$$p(\tau|M_i, C_i) \propto l_i(M_i, C_i|\tau)p(\tau),$$

where M_i is magnitude (M_v) and C_i color (B - V). Therefore,

$$p(\tau|\{M_i\},\{C_i\}) \propto p^n(\tau) \prod_{i=1}^n l_i(M_i,C_i|\tau)$$

We like to focus on the likelihood,

$$\prod_{i=1}^n l_i(M_i, C_i | \tau).$$

How can we estimate this likelihood?

Information Theory: K-L distance

The Kullback-Leibler distance is defined to be

$$D(f_{\tau}(x);g(x| au)) = \int \log f_{\tau}(x)f_{\tau}(x)dx - \int \log g(x| au)f_{\tau}(x)dx \ge 0$$

We do not know the true age density $f_{\tau}(x)$ but introducing $g(x|\tau)$ and maximizing $E_{\tau}[(\log g(X|\tau)]$ provides the best τ (age) for a given $g(x|\tau)$, where x is observed and its random variable is denoted by X.

$$\hat{ au} = rg\max_{ au \in \{ au_j\}} E_{ au}[\log g(X| au)]$$

To estimate $E_{\tau}[\log g(X|\tau)]$, we used the empirical mean of the log likelihood.

$$E_{\tau}[\log g(X|\tau)] = \frac{1}{n} \sum_{i=1}^{n} \log g(x_i|\tau) + \frac{b}{n},$$

where *b* is a bias term such as the penalty terms in AIC and BIC. We assume $\frac{b}{n} \rightarrow 0$. Finding τ that maximizes $\frac{1}{n} \sum_{i=1}^{n} \log g(x_i | \tau)$ leads to the best guess for the age of the stellar cluster.

・ロン ・ 「ア・ ・ ヨン・ ・ ヨン・ ・ ヨ

Then, what would be the likelihood?

We took **Multivariate Normal** to establish the likelihood based on additional informations from data:

- Errors on each observation (σ_i are known)
- Independence among color bands (U,B,V,I,R,etc)
- Multivariate Normal assumption is quite reasonable

For a star *i*, the recorded value is apparent magnitudes (v_i, b_i) , corrected by the appropriate distance modulus and the extinction laws (these corrections have their own uncertainties but we ignore at the moment).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Likelihood - continued

By denoting this corrected value as $(M_i, C_i) = x_i$, the likelihood of a star is

$$l_i(M_i, C_i | \tau) = \frac{1}{2\pi |\Sigma_i|^{1/2}} exp(-\frac{1}{2}(x_i - \mu_i)^T \Sigma_i^{-1}(x_i - \mu_i)),$$

where Σ_i is a covariance matrix for star *i* and $\mu_i = \mu_i(\tau, [Fe/H], mass, class)$ although the function μ_i is unknown. As indicated, the best tactic is maximizing the likelihood and this is achieved by finding μ_i that minimize the distance to x_i . Given τ_j (j = 1, ..., 91, Geneva models provide 91 age grids), $\mu_i(h_j)$ minimizes the distance to x_i .

(日)((同))(日)(日)(日)(日)

But how to minimize the distance?

(口) (同) (

Defining a point of min. distance

Finding a point of minimum distance, associated with a complicated curve, only represented by a set of points. \rightarrow piece-wise Euclidean distance

Likelihoo

Distance

Application

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Discussion

Applying the model selection method

Real Data Application:

NGC	[Fe/H]	$(m-M)_o$	E(B-V)	$Age^{1}(Gyr)$	Est. Age
104 (Tuc47)	0.004	13.33	0.04	$10.9{\pm}1.4$	11.22
188	0.02	11.17	0.09	6.3±0.8	5.0
2420	0.007	11.94	0.05	2.2±0.3	2.24
2682 (M67)	0.02	9.59	0.04	4.3±0.5	3.55
6791	0.050	12.96	0.15	$10.2{\pm}1.2$	8.71
7789	0.014	11.22	0.29	$1.80{\pm}0.3$	2.24

¹from Salaris et.al. (2004) Hyunsook Lee, Harvard Smithsonian Center for Astrophysics

(日) (同) (目) (日)

э

Log Likelihood Profiles of Some Stellar Clusters

log10(age)

Introduction

vation Met

Information

Likeliho

Distance

Application

Discussion

Age of NGC 346 - part of SMC

Isochrones (3000 - 15.5G yrs), [Fe/H]=0.01

Discussion

Log Likelihood Profiles of NGC 346 and SMC

likelihood profiles

Discussion

Discussion

The model selection by maximizing likelihoods is

- **empirical method:** the correctness of ages highly depends on data. (data processing affects results: e.g. foreground stars and covariance matrix).
- easy, quick, simple, heuristic, and diagnostic.

Requires a fine tuning: Extention to Bayesian approaches

• posterior distribution from marginalizing the initial mass function (IMF)

$$p(\tau|\{M_i\}, \{C_i\}) = \int p(\tau, m|\{M_i\}, \{C_i\}) dm$$

$$\propto \int \prod_{i=1}^n l_i(M_i, C_i|\tau, m) p(\tau, m) dm$$

 developing hierarchical models to incorporate not only IMF but metalicity, classes, completeness, and uncertainties, etc...

Thank you!

Please visit AstroStatistics blog at http://groundtruth.info/AstroStat/slog/

(日)