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Calibration Concordance Problem (Example: E0102)

Supernova remnant E0102

Four sources correspond to four spectral lines in E0102
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Measurements

Flux is the total amount of energy that crosses a unit area per unit time.

The flux of an astronomical source (F) depends on the luminosity of the
object (L) and its distance from the Earth (r), F = L/4πr 2.
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Observatory and Instruments
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Observatory and Instruments

Each of these instruments has a different photon collection efficiency –
Effective Area. Reflectivity and vignetting, among other effects, cause the
geometric area of a telescope to be reduced to a smaller “effective area”.
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Calibration Concordance Problem (Example: E0102)

Four spectral lines observed with 11 X-ray detectors

Main challenge – the data/instruments do not agree
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Introduction

Notation

N Instruments with true effective area Ai , 1 ≤ i ≤ N.

For each instrument i , we know estimated ai (≈ Ai ) but not Ai .

M Sources with fluxes Fj , 1 ≤ j ≤ M.

For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators.

Upper cases: parameter / estimand.
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Introduction

Calibration Concordance Problem

1 Astronomers’ Dilemma:

cij
ai
6=

ci ′j
ai ′

for i 6= i ′.

Different instruments give different estimated flux of the same object!

2 Scientific Question:

Are there systematic errors in ‘known’ effective areas?

Can we derive properly adjusted effective areas?

Can we unify estimates of the same flux with different instruments?
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Scientific and Statistical Models

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

Counts = Exposure× Effective Area× Flux,

Cij = TijAiFj , ⇔ log Cij = Bi + Gj ,

where log area = Bi = log Ai , log flux = Gj = log Fj ; let Tij = 1.

Statistical Model

log counts yij = log cij − αij = Bi + Gj + eij , eij
indep∼ N (0, σ2

ij);

where αij = −0.5σ2
ij to ensure E (cij) = Cij = AiFj .

Known Variances: σij known.

Unknown Variances: σij = σi unknown.
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance
indep∼ Gaussian distribution,

yij | Bi , Gj , σ
2
i

indep∼ N
(
Bi + Gj , σ

2
i

)
,

Bi
indep∼ N(bi , τ

2
i ),

Gj
indep∼ flat prior,

If variance unknown: σ2
i

indep∼ Inv-Gamma(dfg , βg ).

Setting the prior parameters.

1 bi = log ai , τi are given by astronomers.

2 dfg , βg are given based on the variability in data.
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – Stan package.

Highly correlated parameters, high-dim parameter space.

Yang Chen Calibration Concordance June 7, 2021 15 / 42



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – Stan package.

Highly correlated parameters, high-dim parameter space.

Yang Chen Calibration Concordance June 7, 2021 15 / 42



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – Stan package.

Highly correlated parameters, high-dim parameter space.

Yang Chen Calibration Concordance June 7, 2021 15 / 42



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – Stan package.

Highly correlated parameters, high-dim parameter space.

Yang Chen Calibration Concordance June 7, 2021 15 / 42



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – Stan package.

Highly correlated parameters, high-dim parameter space.

Yang Chen Calibration Concordance June 7, 2021 15 / 42



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – Stan package.

Highly correlated parameters, high-dim parameter space.

Yang Chen Calibration Concordance June 7, 2021 15 / 42



Concordance Model

Example Posterior Distributions
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Figure 1: Posterior histograms for the fractional variation of the effective area.
The data sets are (A) 2XMM data, hard band, XMM/pn, correlated τ values; (B)
2XMM data, hard band, XMM/MOS2, heterogeneous τ values; (C) XCAL data,
medium band, XMM/pn, correlated τ values; (D) XCAL data, soft band,
XMM/MOS1, τ = 0.05 for all instruments; (E) 1E0102 data, O lines,
Chandra/ACIS-S3, τ = 0.025 for all instruments; and (F) 1E0102 data, O lines,
Swift XRT/PC, τ = 0.05 for all instruments.
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model ⇒ Shrinkage estimators (weighted averages of evidence
from ’Prior’ and evidence from ’Data’).

(1) When fluxes and variances are known,

Original Scale

Âi = aWi
i

[
(c̃i· f̃

−1)eσ
2
i /2

]1−Wi

,

where

c̃i· =
∏
j

c
1/M
ij , f̃ =

∏
j

f
1/M
j

are geometric means.

Log-Scale

B̂i = Wibi + (1 −Wi )(ȳi· − Ḡ),

where

Ḡ =

∑
j gj

M
, ȳi· =

∑
j yij

M

are arithmatic means.

The ‘weights’, Wi =
τ−2
i

τ−2
i +Mσ−2

i

, represents the direct information in bi

relative to indirect information in fluxes.
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

B̂i = Wibi + (1−Wi )(ȳi · − Ḡi ), Ĝj = ȳ·j − B̄,

where Ḡi =
∑

j Ĝj

M , B̄ =
∑

i B̂iσ
−2
i∑

i σ
−2
i

, ȳi · =
∑

j yij
M , ȳ·j =

∑
i yijσ

−2
i∑

i σ
−2
i

.

(3) When variances are unknown, shrinkage estimator of variance,

σ̂2
i =

2

1 +
√

1 + S2
y ,i

S2
y ,i , S2

y ,i =
1

|Ji |+ α

∑
j∈Ji

(yij − B̂i − Ĝj)
2 + β


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Advantages of Our Approach Benefits of fitting the variances

Benefits of Fitting σ2
i

Tolerance to model/error model misspecification.

Pitfalls of assuming ‘known’ variances:

Overly optimistic ‘known variances’

⇒ overly narrow confidence intervals

⇒ possible false discoveries

‘known variances’ ≥ true variability

⇒ noninformative results
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Advantages of Our Approach Extentions to handle outliers

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

yij | Bi , Gj , ξij = − σ2

2ξij
+ Bi + Gj +

Zij√
ξij
,

Zij
indep∼ N(0, σ2),

Bi
indep∼ N(bi , τ

2
i ).

If ξij
indep∼ χ2

ν , i.e. independent chi-squared distributions, the error term

Zij/
√
ξij follows independent student-t distributions, i.e.

Zij√
ξij

indep∼ σ√
ν
tν .
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Results

Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.
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Results

Estimates of Bi = logAi (M = 2 each panel)

RGS1 MOS1 MOS2 pn ACIS-S3 ACIS-I3 HETG XIS0 XIS1 XIS2 XIS3 XRT-WT XRT-PC
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Adjusted so that default effective area, bi = log ai = 0.
95% posterior intervals (black:τ = 0.05; blue: τ = 0.025).
Some instruments systematically high, others low.
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Results

Prior Influence

Instrument Oxygen Neon
τ = 0.025 τ = 0.05 τ = 0.025 τ = 0.05

RGS1 0.570 0.205 0.063 0.016
MOS1 0.279 0.077 0.075 0.019
MOS2 0.355 0.065 0.077 0.017

pn 0.250 0.041 0.620 0.218
ACIS-S3 0.218 0.040 0.270 0.088
ACIS-I3 0.906 0.640 0.099 0.026
HETG 0.648 0.341 0.129 0.034
XIS0 0.180 0.051 0.069 0.018
XIS1 0.298 0.078 0.071 0.019
XIS2 0.463 0.140 0.063 0.016
XIS3 0.772 0.364 0.062 0.018

XRT-WT 0.726 0.278 0.154 0.026
XRT-PC 0.934 0.235 0.906 0.017

Table 1: Proportion of prior influence, as defined by 1−Wi , for E0102 data.
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Results

Numerical Results (2XMM)

2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).

Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS
detectors (pn, MOS1, and MOS2).

Three datasets: hard (2.5 - 10.0 keV), medium (1.5 - 2.5 keV) and
soft (0.5 - 1.5 keV) energy bands. The three instruments (pn, MOS1
and MOS2) measured 41, 41, and 42 sources respectively in hard,
medium, and soft bands. Faint sources.
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Results

Numerical Results (2XMM)

Figure 2: Adjustments of the log-scale Effective Areas for hard band (left),
medium band (middle) and soft band (right) of the 2XMM datasets.

Yang Chen Calibration Concordance June 7, 2021 30 / 42



Results

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newton
cross-calibration sample.

Observed in hard (n = 94), medium (n = 103), soft (n = 108) bands.

Pileup: Image data are clipped to eliminate the regions affected by
pileup, determined using epatplot.

Three detectors: MOS1, MOS2 and pn.

We fit our model and show results on

Sources: M=103 (in medium band).

The hard and soft bands data are fitted similarly – treating
hard/medium/soft band as three different data sets.
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Results

Numerical Results (XCAL): Calibration Concordance

pn MOS1 MOS2 τi =0. 025 τi =0. 05
−3.55

−3.50

−3.45

−3.40

−3.35

−3.30

−3.25

−3.20

−3.15
PKS2155-304

pn MOS1 MOS2 τi =0. 025 τi =0. 05
−4.3

−4.2

−4.1

−4.0

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4
3C120

pn MOS1 MOS2 τi =0. 025 τi =0. 05
−5.85

−5.80

−5.75

−5.70

−5.65

−5.60

−5.55

−5.50
MS0737.9+7441

pn MOS1 MOS2 τi =0. 025 τi =0. 05
−2.65

−2.60

−2.55

−2.50

−2.45

−2.40

−2.35

−2.30

−2.25
PKS2155-304

4 out of 103 Sources in medium band. y-axis: G (log flux); vertical bars
(left 3 in each panel): mean ± 2 s.d. based on observed fluxes, vertical

bars (right 2 in each panel): 95% posterior intervals based on our model.
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Results

Prior Influence

Data Name τi = 0.025 τi = 0.05
pn mos1 mos2 pn mos1 mos2

hard band 2XMM 0.093 0.075 0.082 0.025 0.020 0.022
medium band 2XMM 0.250 0.216 0.222 0.076 0.065 0.067

soft band 2XMM 0.093 0.075 0.069 0.025 0.020 0.018
hard band XCAL 0.010 0.019 0.031 0.003 0.005 0.008

medium band XCAL 0.023 0.016 0.028 0.006 0.004 0.007
soft band XCAL 0.021 0.011 0.007 0.005 0.003 0.002

Table 2: Proportion of prior influence.
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Extensions

Extensions to Account for Correlated Energy Bands

Heterogeneous Uncertainties in Effective Area Priors

Instrument specific fractional uncertainty τi

Correlations between Effective Area Priors

allow correlations between the effective areas in different energy
bands, which are taken as different “instruments” in the previous
setup, for each instrument

Correlations calculated based on Monte Carlo methods
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Extensions

Extensions to Account for Correlated Energy Bands
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Extensions

Extensions to Account for Correlated Energy Bands
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Extensions

Extensions to Account for Correlated Energy Bands
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Extensions

Extensions to Account for Correlated Energy Bands
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Summary

Statistics

1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & Stan.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of effective areas of each instrument.

2 Calibration concordance.
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