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|
Calibration Concordance Problem (Example: E0102)

@ Supernova remnant E0102

@ Four sources correspond to four spectral lines in E0102
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N
Measurements

Flux is the total amount of energy that crosses a unit area per unit time.

Flux at
distance r
Flux F is the amaunt Star with F= Lidar?
of energy crossing luminosity L A=~
unit area in unit time ﬂ)(‘j‘;—"‘:"

incident photons

unit area oriented
perpendicular to surface area of
direction of photons sphere 4xr?

The flux of an astronomical source (F) depends on the luminosity of the
object (L) and its distance from the Earth (r), F = L/4nr?.
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Observatory and Instruments

Current X-ray Observatory

USA: Chandra X-ray Observatory Europe: XMM-Newton
High angular resolution (~0.5) High throughput (large effective area)
And
*Rossi X-ray Timing Explorer
*Swift 5
*INTEGRAL etc. 2
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Observatory and Instruments

CHANDRA “°

X-RAY DBSERVATORY

CHANDRA INSTRUMENTS AND CALIBRATION
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Yang Chen

Observatory and Instruments

CHANDRA

X-RAY DBSERVATORY

CHANDRA INSTRUMENTS AND CALIBRATION
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Each of these instruments has a different photon collection efficiency —
Effective Area. Reflectivity and vignetting, among other effects, cause the
geometric area of a telescope to be reduced to a smaller “effective area”
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Calibration Concordance Problem (Example: E0102)

OVII black

OVIII red NeX blue DePasquale(SAO)
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RGS1 RG§2 HETG-MEG ACIS‘—S\S MOS1 MqS? pn XI‘SO XIS1 X.RT AVG
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Paul Plucinsky 3 IACHEC April 2011
@ Four spectral lines observed with 11 X-ray detectors
@ Main challenge — the data/instruments do not agree
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Outline
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Introduction

@ Introduction
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Introduction

Notation

@ NN Instruments with true effective area A;, 1 < i < N.

e For each instrument i, we know estimated a; (& A;) but not A;.
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Introduction

Notation

@ NN Instruments with true effective area A;, 1 < i < N.

e For each instrument i, we know estimated a; (& A;) but not A;.
@ M Sources with fluxes Fj, 1 < j < M.

o For each source j, F;j is unknown.
@ Photon counts cj: from measuring flux F; with instrument /.

@ Lower cases: data / estimators.

Upper cases: parameter / estimand.
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Introduction

Calibration Concordance Problem

@ Astronomers' Dilemma:

i , it o .,
i;ﬁ'—ufor/#/’.

a; aj’

Different instruments give different estimated flux of the same object!
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Introduction

Calibration Concordance Problem

@ Astronomers’ Dilemma:
Cji Cjri Lo
AL fori £
aj aj’

Different instruments give different estimated flux of the same object!

@ Scientific Question:

o Are there systematic errors in ‘known’ effective areas?
o Can we derive properly adjusted effective areas?

e Can we unify estimates of the same flux with different instruments?
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Scientific and Statistical Models

© Scientific and Statistical Models
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
C,'j = T,'jA,'Fj, = |0g C,'j = B; + Gj,

where log area = B; = log A;, log flux = Gj = log Fj; let T;; = 1.
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
C,'j = T,'jA,'Fj, = |Og C,'j = B; + Gj,

where log area = B; = log A;, log flux = Gj = log Fj; let T;; = 1.

Statistical Model
log counts yj;; = log ¢jj — ajj = Bi + Gj + ejj, €j e N(O,a,-zj);
where ajj = —0.50,-2j to ensure E(c;j) = Cj = AiF;.
e Known Variances: o/; known.

@ Unknown Variances: o;; = o; unknown.

v
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Concordance Model

© Concordance Model
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

. indep . L. .
log counts |area &flux &variance ~~" Gaussian distribution,

ind
Yij ’ Biv Gj7 01'2 mrvcp N(BI+GJ7 01'2)7
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

indep
~J

log counts |area &flux &variance Gaussian distribution,

ind
Yij ’ Biv Gj7 01'2 mrvcp N(BI+GJ7 01'2)7

ind

B; P N(b,’, 7-1'2)7
ind

G; "SSP flat prior,
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance
yii | Bi, Gj, 01‘2

B

Gj

2

If variance unknown: o7}

Setting the prior parameters.

indep
~J
indep
~J
indep
~Y
indep
~Y

indep
~J

Q b; = logaj, 7; are given by astronomers.
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Gaussian distribution,
N(B,‘ + Gj, 0,2),
N(b,‘, 7—1'2)7

flat prior,
Inv-Gamma(dfg, Bg).
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance
yii | Bi, Gj, 01‘2

B

Gj

If variance unknown: o7

Setting the prior parameters.

indep
~J
indep
~J
indep
~Y
indep
~Y

indep
~J

Q b; = logaj, 7; are given by astronomers.

Gaussian distribution,
N(B,- + Gj, 0,-2),
N(b;, 77),

flat prior,

Inv-Gamma(dfg, Bg).

@ dfg, B¢ are given based on the variability in data.
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
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Concordance Model
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
@ Gibbs Sampling: update parameters one-at-a-time.
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
@ Gibbs Sampling: update parameters one-at-a-time.

@ Block Gibbs Sampling: update vectors of parameters.

o The joint distribution of the B; and G; is Gaussian.

@ Hamiltonian Monte Carlo (HMC) — Stan package.

e Highly correlated parameters, high-dim parameter space.
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Concordance Model

Example Posterior Distributions

® ® ©
008 000 005 a5 000 o0 o 00 004 002 000 002 004 00

Figure 1: Posterior histograms for the fractional variation of the effective area.
The data sets are (A) 2XMM data, hard band, XMM/pn, correlated 7 values; (B)
2XMM data, hard band, XMM/MOS2, heterogeneous 7 values; (C) XCAL data,
medium band, XMM/pn, correlated 7 values; (D) XCAL data, soft band,
XMM/MOS1, 7 = 0.05 for all instruments; (E) 1E0102 data, O lines,
Chandra/ACIS-S3, 7 = 0.025 for all instruments; and (F) 1E0102 data, O lines,
Swift XRT/PC, 7 = 0.05 for all instruments.
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Advantages of Our Approach

@ Advantages of Our Approach
@ Multiplicative Shrinkages
@ Benefits of fitting the variances
@ Extentions to handle outliers
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators (weighted averages of evidence
from 'Prior’ and evidence from 'Data’).

Calibration Concordance June 7, 2021 19 / 42



Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators (weighted averages of evidence

from 'Prior’ and evidence from 'Data’).

(1) When fluxes and variances are known,

Original Scale Log-Scale

A= a3 [(5, f—l)ea,?/zT*Wf’ Bi = Wibi + (1~ Wi)(7i. — G),

where
where
= 28 > Vi
. Mz _ 1/M e R
& =]]q ,f—Hij. G ==V M
J

are arithmatic means.

are geometric means.
—2

‘ - [} _ Tf
The ‘weights', W; = v
relative to indirect information in fluxes.
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

B = Wib; + (1~ W)(7i. — G), G =7;~B,
— el = B,'O'-_Q — i Yij - i
Where GI e ZIJW j’ B = ZZ’:I O_FIZ ' .yl - lewyj’ y.’ - Zz’:f/;'rl
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

B = Wibj + (1 - Wi)(7i. — G), Gj=7;—B,
_ e — B0 2 i Yij - Yo’
where G,'ZZ,JWJ, B:%,yﬁ:szy!’ y'j:zg/#.

(3) When variances are unknown, shrinkage estimator of variance,

N 2 1 L4
6= ——= 52, 52, = > yi—B—-G)P+8

1 - y’i7 .y?i .7
1+4,/1+4 52, il +a |
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Advantages of Our Approach Benefits of fitting the variances
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Benefis o fiting the varances
. . . 2
Benefits of Fitting o7

@ Tolerance to model/error model misspecification.
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@ Tolerance to model/error model misspecification.
o Pitfalls of assuming ‘known’ variances:

e Overly optimistic ‘known variances’
= overly narrow confidence intervals

= possible false discoveries
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Benefis o fiting the varances
. . . 2
Benefits of Fitting o7

@ Tolerance to model/error model misspecification.
o Pitfalls of assuming ‘known’ variances:
e Overly optimistic ‘known variances’
= overly narrow confidence intervals
= possible false discoveries
e ‘known variances’ > true variability

= noninformative results
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Advantages of Our Approach Extentions to handle outliers
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@ Advantages of Our Approach
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Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?
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= e T
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

yii | Bi, Gj, &

Zij
B;

Yang Chen

0'2 Z,J

= A BI+G+ ’
e

2€jj
P60, 02),

"SSP N (by, 7R).
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= e T
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

o2

Z;
2 V?u'

Zjj P N(0, 02),

B "X N(bi,7?).

yii | Bi, Gj, &

d . . .
If {,meepx,/, i.e. independent chi-squared distributions, the error term

Zij/+/¢&jj follows independent student-t distributions, i.e.
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© Results
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Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.
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Estimates of B; = log A; (M = 2 each panel)
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@ Adjusted so that default effective area, b; = log a; = 0.
@ 95% posterior intervals (black:7 = 0.05; blue: 7 = 0.025).
@ Some instruments systematically high, others low.
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Prior Influence

Instrument Oxygen Neon
7=0.02 7=005|7=0.02 7=0.05

RGS1 0.570 0.205 0.063 0.016
MOS1 0.279 0.077 0.075 0.019
MOS2 0.355 0.065 0.077 0.017
pn 0.250 0.041 0.620 0.218
ACIS-S3 0.218 0.040 0.270 0.088
ACIS-I3 0.906 0.640 0.099 0.026
HETG 0.648 0.341 0.129 0.034
XIS0 0.180 0.051 0.069 0.018
XIS1 0.298 0.078 0.071 0.019
XIS2 0.463 0.140 0.063 0.016
XIS3 0.772 0.364 0.062 0.018
XRT-WT 0.726 0.278 0.154 0.026
XRT-PC 0.934 0.235 0.906 0.017

Table 1: Proportion of prior influence, as defined by 1 — W;, for E0102 data.
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Numerical Results (2XMM)

o 2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).
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Numerical Results (2XMM)

o 2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).

@ Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS
detectors (pn, MOS1, and MOS2).

@ Three datasets: hard (2.5 - 10.0 keV), medium (1.5 - 2.5 keV) and
soft (0.5 - 1.5 keV) energy bands. The three instruments (pn, MOS1
and MOS2) measured 41, 41, and 42 sources respectively in hard,
medium, and soft bands. Faint sources.
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Numerical Results (2XMM)

s 01 Hard band Medium band Soft band
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Figure 2: Adjustments of the log-scale Effective Areas for hard band (left),
medium band (middle) and soft band (right) of the 2XMM datasets.
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Numerical Results (XCAL)

@ XCAL data: Bright active galactic nuclei from the XMM-Newton
cross-calibration sample.

o Observed in hard (n = 94), medium (n = 103), soft (n = 108) bands.

o Pileup: Image data are clipped to eliminate the regions affected by
pileup, determined using epatplot.

@ Three detectors: MOS1, MOS2 and pn.

@ We fit our model and show results on
Sources: M=103 (in medium band).

The hard and soft bands data are fitted similarly — treating
hard/medium /soft band as three different data sets.

Calibration Concordance June 7, 2021 31/ 42



Numerical Results (XCAL): Calibration Concordance

315 PKS2155-304 34 3C120

~3.20 -35
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—355 pn MOS1  MOS2 7-0.025 ,=0.05 43 pn MOS1  MOS2 7-0.025 ,=0.05
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-85 pn MOS1T  MOS2 7,=0.025 7,=0.05 —265 pn MOS1T  MOS2 7,=0.025 7,=0.05

4 out of 103 Sources in medium band. y-axis: G (log flux); vertical bars
(left 3 in each panel): mean + 2 s.d. based on observed fluxes, vertical
bars (right 2 in each panel): 95% posterior intervals based on our model.
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Prior Influence

Data Name 7; = 0.025 7; = 0.05

pn mosl  mos2 pn mosl  mos2

hard band 2XMM 0.093 0.075 0.082 | 0.025 0.020 0.022
medium band 2XMM | 0.250 0.216 0.222 | 0.076 0.065 0.067
soft band 2XMM 0.093 0.075 0.069 | 0.025 0.020 0.018
hard band XCAL 0.010 0.019 0.031 | 0.003 0.005 0.008
medium band XCAL | 0.023 0.016 0.028 | 0.006 0.004 0.007
soft band XCAL 0.021 0.011 0.007 | 0.005 0.003 0.002

Table 2: Proportion of prior influence.
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Extensions

Q Extensions
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Extensions

Extensions to Account for Correlated Energy Bands

Heterogeneous Uncertainties in Effective Area Priors

@ Instrument specific fractional uncertainty 7;
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Extensions

Extensions to Account for Correlated Energy Bands

Heterogeneous Uncertainties in Effective Area Priors

@ Instrument specific fractional uncertainty 7;

Correlations between Effective Area Priors

@ allow correlations between the effective areas in different energy
bands, which are taken as different “instruments” in the previous
setup, for each instrument

@ Correlations calculated based on Monte Carlo methods
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Extensions

Extensions to Account for Correlated Energy Bands
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Extensions

Extensions to Account for Correlated Energy Bands

soft band medium band hard band
1.1+ 1.1 1.1
< < <
< < <
1.04 1.0 1.0
0.9+ 0.9 0.9
MOS1 MOS2 pn MOS1 MOS2 pn MOS1 MOS2 pn
Instruments Instruments Instruments
Tau =@ Correlated EAs =@ Heterogeneous =@ tau=0.025 tau=0.05
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Extensions

Extensions to Account for Correlated Energy Bands

soft band medium band hard band
1.1+ 1.1 1.1
< < <
< < <
1.04 1.0 1.0
0.9+ 0.9 0.9
MOS1 MOS2 pn MOS1 MOS2 pn MOS1 MOS2 pn
Instruments Instruments Instruments
Tau =@ Correlated EAs =@ Heterogeneous =@ tau=0.025 tau=0.05
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Extensions

Extensions to Account for Correlated Energy Bands
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Summary

@ Summary
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Summary

Summary

Statistics
@ Multiplicative mean modeling:

log-Normal hierarchical model.
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Summary

Summary

Statistics
@ Multiplicative mean modeling:

log-Normal hierarchical model.
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