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Introduction

The Markov chain Monte Carlo (MCMC) methods, originated in computational
physics about half a century ago, have seen an enormous range of applications
in recent statistical literature, due to their ability to simulate from very com-
plex distributions such as the ones needed in realistic statistical models. This
talk provides an introductory tutorial of the two most frequently used MCMC
algorithms: the Gibbs sampler and the Metropolis-Hastings algorithm. Using
simple yet non-trivial examples, we show, step by step, how to implement these
two algorithms. The examples involve a family of bivariate distributions whose
full conditional distributions are all normal but whose joint densities are not
only non-normal, but also bimodal.
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Applications of Monte Carlo

Physics Sociology Economics
Chemistry Education Finance
Astronomy Psychology Management
Biology Arts Policy
Environment Linguistics Military
Engineering History Government

Traffic Medical Science Business
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Monte Carlo Integration

m Suppose we want to compute

1= [ g(@)f(z)da,

where f(x) is a probability density. If
we have samples x,,...,X, ~ f(X), we can estimate | by

1 n
In = — E : g(a:z-)
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Monte Carlo Optimization

m  We want to maximize p(X)

m  Simulate from
00 o P, (h=1)

As AL — oo, the simulated

draws will be more and

more concentrated around @ /\/L
the maximizer of p(x) H i i
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Simulating from a Distribution

m What does it mean?

Suppose a random variable (fZ#] %) X can only take two values:

P(X=0)= g% P(X=1)= 5;

Simulating from the distribution of X means that we want a collection
of O's and 1’s:

L1,L2---3Ln

such that about 25% of them are 0’'s and about 75%o0f them are 1's,
when n, the simulation size is large.

m The {x, 1=1,...,n} don’t have to be independent
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Simulating from a Complex Distribution

m Continuous variable X,
described by a density
function f(x)

m Complex:
the form of f(x)

the dimension of x
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BN
Markov Chain Monte Carlo

2 = p(at-1) p®),

where {U®, t=1,2,...} are identically and independently distributed.

m Under regularity conditions,
fa®) =0 f(2)

So We can treat {x®, t= N,, ..., N} as an approximate sample from
f(x), the stationary/limiting distribution.
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Gibbs Sampler

m Target density: f(z,y)

m \We know how to simulate form the conditional

distributions
f(zly) and f(y|z)

m For the previous example,
f(z,y) exl:i(—%(mzy2 + 2 +y° — 8z — 8y))

4 1
Jaly) = NG 2)

N(n,c2)

4 1 “Bell Curve”

[@lz) = NG 722
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Statistical Inference

m Point Estimator:  gn = %Z?:l g(z(®))

m Variance Estimator: V(gn) =~ %i

02 =Var(g(x)) estimated by 62 = ﬁ Z?:l(g(a:(t)) — Gn)?,

p = corr(g(z®), g(x*=1))  estimated by

.1 >z (9(z') = §n) (g(2""Y) — gn)

p = :
L S g2 ®) — ga)2 S0 (g(2®) - g,)?

m Interval Estimator:
(gn - td\/ V@n)a §n + td\/ V(gn))a
where d = n%%’op —1, and t; — 1.96 as n — oo.
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Gibbs Sampler (k steps)

m Select an initial value (x,©, x,@ ..., x,©).

m Fort=0,1,2,...,N
Step 1: Draw x,®D from f(x1|x,®, x,@,..., x,©)
Step 2: Draw X, from f(x,|x, D, x,® ..., x,0)

Step K:Draw x, D from f(x,|x, D, x,D .., x, D)
m Output {(x,9, x,®,..., x®): t=1,2,...,N}
m Discard the first N, draws

Use {(x,9, x,,..., x,®): t= Ny+1,2,...,N} as (approximate) samples
from f(X,, X,,..., X;).
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Data Augmentation

m \We want to simulate from

1 1 16
f(z) x mexp{—i(g? — 8z — ﬁ)}
But this is just the marginal distribution of

fa,) o< exp(—3 (7 + 5 + 37 — 82— 8y)).

© _|
o

So once we have simulations: .
{(xO, yO: t=1,2,...,N)}, |
we also obtain draws: 5
{x®:t=1,2,...,N)}

]
o

0.2

0.1

0.0
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A More Complicated Example

1
f(z,y) « e><r>(—§(lﬂ=ly2 + 2° + y° — 8z — 8y))

flz,y) = exp{—%(:n—4)2} exp{—%(y—4)2} exp{—%l:rlyz}
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Metropolis-Hastings algorithm

m  Simulate from an approximate distribution q(z,|z,), then
Step 0: Select z©;
Now fort=1,2,...,N, repeat
Step 1: draw z, from q(z,|z,=z®)
Step 2: Calculate

_ f(z)a(zBz)
a(zlsz(t)) - f(z(}f))qq(zllzé))

Step 3:set  _(t+1) _ ) #1 with p = min{a, 1}
z(t), with 1 —p

m Discard the first N, draws
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M-H Algorithm: An Intuitive Explanation

Assume q(z1]22) = q(z2]21) . then a(z1,2()) = [
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M-H: A Terrible Implementation

f(z,y) = (z — ) d(y — 4) exp{—3|z|y?}
[@(z) is the density function of N(0,1)]
We choose q(z|z,)=q(z)=®(x-4)D(y-4)

Step 1: draw x ~ N(4,1), y ~ N(4,1);
Dnote z,=(x,y)
Step 2: Calculate

Oy exp{—3|zly?}
O,’(Z]_,z( )) _ exp{—%lm%t)l[y(t)]2}

Step 3: draw u ~ UJ[0,1]

Let z1, 1f u<min{l,«
D) = | 7 fu<mintl,a}
z\") otherwise
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Why Is it so bad?
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M-H: A Better Implementation

Starting from some arbitrary (x©,y©)

Step 1: draw x ~ N(x®,1), y ~ N(y®,1)
“‘random walk” 2z =z® +U,, y =4® + U,

Us, Uy %4 N(0,1)

Step 2: dnote z,=(x,y), calculate

alz1, 2(M) = 7;2 (z"&)))

Step 3: draw u ~ U[0,1]
Let

z1, if v <min{l, «
D) = { %n) Sus - thel
z\" otherwise
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Much Improved!
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Further Discussion

m  How large should Ny and N be?

Not an easy problem!
m  Key difficulty:
multiple modes in unknown area

m  We would like to know all (major) modes, as well as their surrounding mass.
Not just the global mode
We need “automatic, Hill-climbing” algorithms.

= The Expectation/Maximization (EM) Algorithm, which can be viewed as a deterministic

version of Gibbs Sampler.
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Drive/Drink Safely,

Don’t become a Statistic:

“Unfortunately, there's no law against driving after doing triple shifts.”

Go to Graduate School,

Become a Statistician!
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