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Introduction
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Applications of Monte Carlo
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Monte Carlo 之应用
A Chinese version of the previous slide
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Monte Carlo Integration

Suppose we want to compute

where f(x) is a probability density. If 
we have samples x1,…,xn∼ f(x), we can estimate I by
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Monte Carlo Optimization
We want to maximize p(x)
Simulate from
f(x) ∝ pλ(x). 

As λ→∞, the simulated 

draws will be more and 
more concentrated around 
the maximizer of p(x)
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Simulating from a Distribution
What does it mean?
Suppose a random variable (随机变量) X can only take two values:

Simulating from the distribution of X means that we want a collection 
of 0’s  and 1’s:

such that about 25% of them are 0’s and about 75%of them are 1’s, 
when n, the simulation size is large.

The {xi, i = 1,…,n} don’t have to be independent
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Simulating from a Complex Distribution

Continuous variable X, 
described by a density 
function f(x)

Complex: 
the form of f(x)
the dimension of x xy

f(x,y)
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Markov Chain Monte Carlo

where {U(t), t=1,2,…} are identically and independently distributed.

Under regularity conditions,

So We can treat {x(t), t= N0, …, N} as an approximate sample from 
f(x), the stationary/limiting distribution.
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Gibbs Sampler 

Target density:
We know how to simulate form the conditional 
distributions

For the previous example,

N(μ,σ2)
Normal Distribution

“Bell Curve”
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Statistical Inference
Point Estimator:

Variance Estimator:

Interval Estimator:
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Gibbs Sampler (k steps)

Select an initial value (x1
(0), x2

(0) ,…, xk
(0)).

For t = 0,1,2, …, N
Step 1: Draw x1

(t+1) from f(x1|x2
(t), x3

(t),…, xk
(t))

Step 2: Draw x2
(t+1) from f(x2|x1

(t+1), x3
(t),…, xk

(t))
…

Step K:Draw xk
(t+1) from f(xk|x1

(t+1), x2
(t+1),…, xk-1

(t+1)) 

Output {(x1
(t), x2

(t),…, xk
(t) ): t= 1,2,…,N}

Discard the first N0 draws
Use {(x1

(t), x2
(t),…, xk

(t) ): t= N0+1,2,…,N} as (approximate) samples 
from f(x1, x2,…, xk).
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Data Augmentation
We want to simulate from

But this is just the marginal distribution of

So once we have simulations:
{(x(t), y(t): t= 1,2,…,N)},
we also obtain draws: 
{x(t): t= 1,2,…,N)}
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A More Complicated Example

xy

f(x,y)
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Metropolis-Hastings algorithm
Simulate from an approximate distribution q(z1|z2), then

Step 0: Select z(0);
Now for t = 1,2,…,N, repeat
Step 1: draw z1 from q(z1|z2=z(t))
Step 2: Calculate

Step 3: set

Discard the first N0 draws

Accept

reject
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M-H Algorithm: An Intuitive Explanation

Assume                                      , then
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M-H: A Terrible Implementation

We choose q(z|z2)=q(z)=Φ(x-4)Φ(y-4)

Step 1: draw x ∼ N(4,1), y ∼ N(4,1);

Dnote z1=(x,y)

Step 2: Calculate

Step 3:  draw u ∼ U[0,1]

Let 
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Why is it so bad?
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M-H: A Better Implementation

Starting from some arbitrary (x(0),y(0))

Step 1: draw x ∼ N(x(t),1), y ∼ N(y(t),1)

“random walk”

Step 2: dnote z1=(x,y), calculate

Step 3:  draw u ∼ U[0,1]

Let 
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Much Improved!
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Further Discussion
How large should N0 and N be?

Not an easy problem   !
Key difficulty:

multiple modes in unknown area

We would like to know all (major) modes, as well as their surrounding mass.
Not just the global mode
We need “automatic, Hill-climbing” algorithms.

⇒ The Expectation/Maximization (EM) Algorithm, which can be viewed as a deterministic 

version of Gibbs Sampler.



23April 26, 2006

Drive/Drink Safely,

Don’t become a Statistic;

Go to Graduate School,

Become a Statistician!


