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General framework

Goal of statistical signal detection in physics

We would like to distinguish signals of new physics phenomena
from the random fluctuations of the data.
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E.g., Higgs boson, quark,
neutrino.

We want to detect a bump (the
signal of the new particle) on
top of a background flux.
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How does statistics tackle this problem?

Approach 1:
Multiple hypotesis testing ⇒ Bonferroni’s correction.

Approach 2:
Simulations ⇒ Monte Carlo, Bootstrap.

Approach 3:
Hypothesis testing when a nuisance parameter is present only
under the alternative ⇒ Davies (1977, 1987), Gross and Vitells
(2010).

↓
We refer to this as Testing one hypothesis multiple times.

Note!

In High Energy Physics a discovery is claimed at 5σ significance
⇒ in Approach 2 we need to simulate O(108), can we avoid that?

Yes! Use (responsibly) Approach 1 and/or Approach 3.

S. Algeri (ICL, SU) Statistical Tests for HEP CHASC - May 10, 2016 3 / 35



Questions I would like to address with this talk

1 What does it mean exactly to “test one hypothesis multiple times”,
and in what sense is it equivalent to a testing problem when a
nuisance parameter is present only under the alternative?

2 Can we tackle both nested and non-nested models with this
approach?

3 What is the difference between testing one hypothesis multiple times
and multiple hypothesis testing?

4 When do multiple hypothesis testing and testing one hypothesis
multiple times coincide in some sense?

5 What else can we do, and what is the potential of working in this
direction?
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Testing one hypothesis multiple times

Outline

1 What does it mean exactly to “test one hypothesis multiple times”, and
in what sense is it equivalent to a testing problem when a nuisance
parameter is present only under the alternative?

2 Can we tackle both nested and non-nested models with this approach?

3 What is the difference between testing one hypothesis multiple times
and multiple hypothesis testing?

4 When do multiple hypothesis testing and testing one hypothesis
multiple times coincide in some sense?

5 What else can we do and what is the potential of working in this
direction?
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Testing one hypothesis multiple times

A statistical framework for a physics problem
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f(y, α)

f(y, α) + µg(y, β)

4 6 8 10β

The model of interest is proportional to

f (y , α)︸ ︷︷ ︸
background

+ µ︸︷︷︸
signal

strength

g(y ,

signal
location︷︸︸︷
β )︸ ︷︷ ︸

bump

(1)

and we test

H0 : µ = 0 vs. µ > 0. (2)

Problems

µ is on the boundary of its parameter space + β is not defined under H0.

Solutions

Chernoff, 1954 + Davies, 1987︸ ︷︷ ︸
Theoretical solutions

,Gross and Vitells, 2010︸ ︷︷ ︸
Practical solution

.
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Testing one hypothesis multiple times

Testing on the boundary of the parameter space

Model:
∝ f (y , α) + µg(y , β) µ ≥ 0 (3)

For now, let β be fixed, the model in (3) is identifiable.

Test
H0 : µ = 0 versus H1 : µ > 0

Test statistics∗:

LRT = −2 log[L(0, α̂0, -)︸ ︷︷ ︸
Likelihood
under H0

− L(µ̂, α̂, β)︸ ︷︷ ︸
Likelihood
under H1

] (4)

∗ for the specific case of β be fixed.

η is on the boundary ⇒ WE CAN USE Chernoff, 1954 i.e.:

LRT =
d−−−→

n→∞
1
2χ

2
1 + 1

2δ(0) under H0 (5)
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Testing one hypothesis multiple times

Testing one hypothesis multiple times (1)

If β fixed, under H0 the LRT is asymptotically 1
2χ

2
1 + 1

2δ(0).

If we let β vary⇒ Under H0, {LRT (β), β ∈ B} is asymptotically a
1
2χ

2
1 + 1

2δ(0) random process indexed by β.

In practice:

Define a grid BR of R βr values over the energy spectrum B.
∀βr ∈ BR calculate LRT (βr ).

Many “sub”-alternatives...

It is like if we had many alternative hypothesis H11, . . . ,H1r , . . . ,H1R , one
for each value βr ∈ BR , and for each of them we have one value LRT (βr ).

...but yet just one test statistic...

We finally combine the R LRT (βr ) values in a unique test statistics

maxβr∈BR
LRT (βr )
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Testing one hypothesis multiple times

Testing one hypothesis multiple times (2)

... and one global p-value...

The p-value of our test H0 : η = 0 versus Ha : η > 0 is in the form

P(supβ∈B LRT (β) > c) (6)

with c = maxβr∈BR
LRT (β).

...which we must calculate/approximate somehow!

To do so, we first need to introduce the concept of upcrossings of the
LRT-process {LRT (β), β ∈ B}.
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Testing one hypothesis multiple times

What do we mean by “upcrossings”?

True LRT-process
under H0

Discretized version
we deal with
in practice

Search Region (B)
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Testing one hypothesis multiple times

Approximation of P
(
supβ∈B LRT (β) > c

)
From Davies, 1987 we have that if {LRT (β), β ∈ B} is a “regular” χ2

1

process, then as c → +∞

P(sup LRT (β) > c) ≈ P(χ2
1 > c)

2
+ e

c
2√
2π

∫ U

L κ(β)dβ

Expected #
of upcrossings
over c of the
LRT process

under H0

(7)

if c 6→ +∞⇒ we have an upper bound for P(sup LRT (β) > c).
κ(β) is complicated ⇒ use the ”empirical” version of (7) proposed in

Gross and Vitells, 2010

P(sup LRT (β) > c) ≈ P(χ2
1 > c)

2
+ e−

c−c0
2 E [N(c0)|H0]︸ ︷︷ ︸
=E [N(c)|H0]

Expected #
of upcrossings
over c0 of the
LRT process

under H0

(8)

where c0 << c and E [N(c0)|H0] is estimated using (few) Bootstrap
simulations.

For more details and an alternative approach to the problem, check out:
Algeri S., van Dyk D.A., Conrad J., Brandon, A. Looking for a Needle in a Haystack? Look Elsewhere!
A statistical comparison of approximate global p-values. Submitted, 2016.
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Testing non-nested models

Outline

1 What does it mean exactly to “test one hypothesis multiple times”, and
in what sense is it equivalent to a testing problem when a nuisance
parameter is present only under the alternative?

2 Can we tackle both nested and non-nested models with this approach?

3 What is the difference between testing one hypothesis multiple times
and multiple hypothesis testing?

4 When do multiple hypothesis testing and testing one hypothesis
multiple times coincide in some sense?

5 What else can we do and what is the potential of working in this
direction?
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Testing non-nested models

Non-nested models comparison in physics

Goal

We would like to distinguish known astrophysics
from new signals.
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E.g., Dark Matter.

We wish to distinguish a dark
matter signal from a “fake”
signal that mimics it.
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Testing non-nested models

The statistical problem
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g(y, β)

f(y, α)

The model for the know cosmic
source is f (y , α);

The model for the new source is
g(y , β);

f 6≡ g for any α and β.

Is f sufficient to explain the data, or
does g provide a better fit?

Problem
f and g are non-nested.

Solutions
Cox, 1961-1962, Atkinson, 1970; etc.︸ ︷︷ ︸

Theoretical solutions

,Bootstrap, next two slides.︸ ︷︷ ︸
Practical solutions

.
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Testing non-nested models

Formulation of the problem

Consider a comprehensive model which includes f (y , α) and g(y , β) as
special cases. We have two possibilities:

Multiplicative form

∝ {f (y , α)}1−η{g(y , β)}η (9)

Additive form
(1− η)f (y , α) + ηg(y , β) (10)

We prefer (10), it avoids the need to deal with the normalizing constant.

Thus, considering the model in (10) we test

H0 : η = 0 versus H1 : η > 0

To exclude intermediate values of η we can interchange the roles of the
hypotheses and test

H0 : η = 1 versus H1 : η < 1.
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Testing non-nested models

From a new formulation to a well known problem

Model:

(1− η︸︷︷︸
Tested
on the

boundary

)f (y , α) + ηg(y , β︸︷︷︸
Not

defined
under

H0

) with 0 ≤ η ≤ 1 (11)

Test:
H0 : η = 0 versus H1 : η > 0

similar argument for H0 : η = 1 versus H1 : η < 1

Note!

These are precisely the same issues we encounter when detecting new
particles, i.e., when testing one hypothesis multiple times

=⇒ we already have a solution!

For more details, check out:
Algeri S., Conrad J., van Dyk D.A. A method for comparing non-nested models with application to
astrophysical searches for new physics. MNRAS: Letters, 2016.
Algeri S., R package ‘NONnest’, 2015.

S. Algeri (ICL, SU) Statistical Tests for HEP CHASC - May 10, 2016 16 / 35



Multiple hypothesis testing

Outline

1 What does it mean exactly to “test one hypothesis multiple times”, and
in what sense is it equivalent to a testing problem when a nuisance
parameter is present only under the alternative?

2 Can we tackle both nested and non-nested models with this approach?

3 What is the difference between testing one hypothesis multiple times
and multiple hypothesis testing?

4 When do multiple hypothesis testing and testing one hypothesis
multiple times coincide in some sense?

5 What else can we do and what is the potential of working in this
direction?
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Multiple hypothesis testing

Multiple hypothesis testing - Framework

Also in this case:

We define a grid BR of R βr values over the energy spectrum B.
∀βr ∈ BR calculate LRT (βr ).

However, now we have:

Many sub-alternatives...

We have many alternative hypothesis
H11, . . . ,H1r , . . . ,H1R , one for each value βr ∈ BR .

...many test statistics...

∀βr ∈ BR we have one test statistics LRT (βr ), and such that
LRT (βr ) ∼ 1

2χ
2
1 + 1

2δ(0) asymptotically.

...many p-values!

∀βr ∈ BR we have pr =
P(χ2

1>LRT (βr ))
2 .
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Multiple hypothesis testing

Local p-values and type I error

We have an ensemble of R local p-values p1, . . . , pr , . . . , pR .

The smallest, names pL is then compared with the target probability
of type I error αL.

But what is αL if we want to claim a discovery at 5σ?

Global and local probability of false detection

αL = specific probability of false detection for each of the R
6=

αG = probability of having at least one false detection over the whole
ensemble of R tests.

⇒ we must correct pL accordingly
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Multiple hypothesis testing

Local p-values corrections

If the R tests were independent

αG = 1− (1− αL)R ⇒ pG = 1− (1− pL)R (12)

E.g.: Suppose we are conducting R = 50 simultaneous test, each of
them at 5σ

αL = 1− Φ(5) ⇒ by (11): αG = 1− Φ(4.18)

i.e., αG
αL
≈ 50.

If the R tests were dependent (which is generally the case)

αG ≤ RαL ⇒ pBF = RpL Bonferroni’s
correction (13)
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Two sides of the same coin

Outline

1 What does it mean exactly to “test one hypothesis multiple times”, and
in what sense is it equivalent to a testing problem when a nuisance
parameter is present only under the alternative?

2 Can we tackle both nested and non-nested models with this approach?

3 What is the difference between testing one hypothesis multiple times
and multiple hypothesis testing?

4 When do multiple hypothesis testing and testing one hypothesis
multiple times coincide in some sense?

5 What else can we do and what is the potential of working in this
direction?
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Two sides of the same coin

Upcrossings and Exceedances

Discretized
LRT-process

under H0

Multiple LRTs
under H0
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Two sides of the same coin

Why are we interested in the Exceedances?

We can identify situations where the average number of exceedances under
H0, namely E [N?

c |H0], and the average number of upcrossings under H0,
E [Nc |H0] are approximately equal.

We will soon see two conditions we need for this to happen.

For now let’s focus on E [N?c |H0]:

E [N?c |H0] =
R∑

r=1

1 · P(LRT (βr ) > c)

under H0, ∀βr ∈ BR ,

LRT (βr ) ∼ 1

2
χ2

1 +
1

2
δ(0) asymptotically

=
R∑

r=1

P(χ2
1 > c)

2
= R

P(χ2
1 > c)

2
= RpL = pBF

Bonferroni’s
correction!
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Two sides of the same coin

Two sides of the same coin

What the previous slide is telling us is that, if

E [Nc |H0]︸ ︷︷ ︸
Expected

# upcrossings
under H0

≈ E [N?c |H0]︸ ︷︷ ︸
Expected

# exceedances
under H0

= pBF︸︷︷︸
Bonferroni’s

correction

(14)

and ∃λ s.t as c → +∞ (pL → 0) and R → +∞

E [Nc |H0] ≈ E [N?c |H0] = pBF → λ

then, for R and c large we have

P(sup LRT (β) > c)︸ ︷︷ ︸
Global p-value

≈ P(χ2
1 > c)

2︸ ︷︷ ︸
→0

as c→+∞

+E [Nc |H0]

≈ E [Nc |H0] ≈ E [N?c |H0]

≈ pBF
Bonferroni adjusted

local p-value

(15)

This means that if E [Nc |H0] ≈ E [N?c |H0], then testing one hypothesis multiple times
and multiple hypothesis testing will lead to approximately the same inference.

(But, since the latter is much quicker than the former, I might gain in computing time.)
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Two sides of the same coin

When do we have E [Nc |H0] ≈ E [N?
c |H0]?

To guarantee E [Nc |H0] ≈ E [N?c |H0] (as c → +∞), we need the following two conditions
to be satisfied:

1 Long range independence

|F1,...,r,r+1,...,r+k − F1,...,rFr+1,...,r+k | ≤ q(r) (16)

where F (·) is the cdf of LRT (βr ), ∀βr ∈ BR , and q(r) is a function such that
q(r)→ 0 as r →∞.

This condition implies that independence is achieved for distant points βr of the
(discretized) energy/mass spectrum.

2 Local dependence

lim supR

[R/l ]∑
r=2

P(LRT (β1) > c, LRT (βr ) > c)→ 0 as l → +∞ (17)

where F (·) be the cdf of LRT (βr ), ∀βr ∈ BR ,

This condition excludes the chance of clustering of the upcrossings of the LRT-process.
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Two sides of the same coin

How to assess if these two conditions hold?

Let the model of reference be (1− η)f (y , α) + ηg(y , βr ), and let l(η|α, βr , y) be
its log-likelihood.

∀βr the score function evaluated at H0 is S(βr ) = ∂l(η|α,βr ,y)
∂η

∣∣
η=0

⇒ the score process under H0 is {S(βr ), βr ∈ Br}

with covariance function is cov(S(βr ), S(βt)) =

∫
g(y,βr )g(y,βt )

f (y,α)
∂y − 1

S?(βr ) = S(βr )√
cov(S(βr ),S(βr ))

(18)

A sufficient condition on S?(βr ) (Berman’s condition)

If the covariance function of S?(βr ) satisfies

sup
|βr−βt |>τ

|cov(S?(βr ), S?(βt))| log(τ)→ 0 as τ → +∞ (19)

then long range independence and local independence hold on both
the normalized score and the LRT processes.
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Two sides of the same coin

Example

Consider a power-law distributed background with index ψ and a Gaussian signal with
dispersion proportional to the signal location.
The full model is

(1− η)
1

kψyψ+1
+

η

kMχ

exp

{
− (y −Mχ)2

0.02M2
χ

}
(20)

with kψ and kMχ normalizing constants, y ∈ [1; 100], ψ = 1.4 and Mχ ∈ [1; 100].
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Two sides of the same coin

Realistic data analysis

We simulated observation of monochromatic feature by the Fermi Large Area
Telescope (LAT).

2391 events from an astrophysical background corresponding to isotropic
emission following a spectral power-law with index 2.4, i.e., ψ = 1.4.

64 events from a Gaussian signal with mass of 35 GeV.

80 energy bins, spaced equally from 10-350 GeV.

Signal Signal
Method Location Strength Sig.

Unadjusted local 35.82 0.042 5.920σ

Bonferroni adj. local 35.82 0.042 5.152σ

Gross & Vitells 35.82 0.042 5.192σ
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Potential of future work

Outline

1 What does it mean exactly to “test one hypothesis multiple times”, and
in what sense is it equivalent to a testing problem when a nuisance
parameter is present only under the alternative?

2 Can we tackle both nested and non-nested models with this approach?

3 What is the difference between testing one hypothesis multiple times
and multiple hypothesis testing?

4 When do multiple hypothesis testing and testing one hypothesis
multiple times coincide in some sense?

5 What else can we do and what is the potential of working in this
direction?
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Potential of future work

What can we do more?

Berman’s condition is not only a sufficient condition to guarantee
asymptotic equivalence between testing one hypothesis multiple times
and multiple hypothesis testing.

Indeed, it can be used as diagnostic tool to assess the validity of the
Davies (1987) and Gross and Vitells (2010) approximations for the
global p-value P(sup LRT (β) > c).

Several cases can be identified and additional conditions, in addition
to long range independence and local independence, are needed.

But we still have to refine the details...

...however, we already can take a look at some examples.
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Potential of future work

A case where everything works nicely

Considering again the Power Law background + Gaussian signal example:

(1− η)
1

kψyψ+1
+

η

kMχ

exp

{
− (y −Mχ)2

0.02M2
χ

}
(21)

with kψ and kMχ normalizing constants, y ∈ [1; 100], ψ = 1.4 and Mχ ∈ [1; 100].
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Potential of future work

A non-ideal case

Suppose we want to distinguish between Pulsar Spectrum and Dark Matter. The
full model is:

(1− η)
exp{−y2}

kρyρ
+
η exp{−7.8 y

φ}
kφy1.5

(22)

with kρ and kφ normalizing constants, y ∈ [1; 15], ρ = 4/3 and φ ∈ [1; 15].
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Potential of future work

A case somewhere in between

Suppose we want to distinguish between a Power Law distributed cosmic source
and and Dark Matter. The full model is:

(1− η)
1

kψyψ+1
+
η exp{−7.8 y

φ}
kφy1.5

(23)

with kψ and kφ normalizing constants, y ∈ [1; 100], ψ = 1.4 and φ ∈ [1; 100].
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Potential of future work

...in the “next episode”...

Work in progress and (immediate) future goals:

We would like to provide a formal explanation of cases where the
global p-value approximations do and do not work.

We would like to provide precise indications on how to spot these
cases.

We would like to exploit the information on the dependence structure
of the underlying processes to improve, if possible, the global p-value
approximations discussed in this talk.

All this will be discussed in:
Algeri S., van Dyk D.A., Conrad J. Testing one hypothesis multiple times. In preparation, 2016.

(Hopefully, available on ArXiv by the end of the summer.)

Thank you for listening!
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Potential of future work
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