

#### Astrostat 1/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

# Seeking Effective Adjustments for Effective Areas

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul ....

Department of Statistics, Harvard University

October 5, 2015



# A problem posed by Herman, Matteo and Vinay

## Astrostat 2/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul



# A problem posed by Herman, Matteo and Vinay

Astrostat 2/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Systematic errors in comparing effective areas:

Speaking hypothetically, if we label the instruments by numbers i = 1, ..., N and each has an attribute A that is used to measure the same i = 1, ..., M astrophysical sources, with intrinsic attribute  $F_i$  where  $C_{ii} = A_i F_i$  are the instrumental measurements, then the question is: "Is there a way to decide how (or whether) to change  $A_i$  when the values  $C_{ii}/A_i$  do not agree with  $F_i$  to within their statistical uncertainties  $s_i$ . In other words, each instrument provides an estimator  $f_i$  of  $F_i$ with statistical uncertainty  $s_i$  but  $|f_i - F_i|/s_i$  is often large, not distributed as a Gaussian with unit variance (but can have zero mean if we define  $F_j = \sum_i f_j s_i^{-2} / \sum_i s_i^{-2}$ ). How to estimate the systematic error on the  $A_i$ ?



# From Vinay ...

#### Astrostat 3/11

Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

# Instruments (i) and Sources (j)

- i are individual detectors (e.g., Chandra/ACIS-I, Chandra/HEG, XMM/EPIC-pn, XMM/EPIC-MOS1, XMM/RGS2, Swift/XRT, Suzaku/XIS, NuSTAR/FPMA, Integral/ISGRI, etc.), with counts obtained in specific passbands (e.g., soft=[0.5-2 keV], hard=[2-7 keV], ultra=[10-30 keV], etc.)
- j are individual sources (HZ 43, Capella, PKS 2155-304, Mkn 421, Crab, G21.5-09, etc.) with fluxes predicted in specific passbands



## From Vinay ...

#### Astrostat 4/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul



 $\vec{t}$  = [RGS1, RGS2, HETG-MEG, ACIS-S3, MOS1, MOS2, pn, XIS0, XIS1, XRT] x [560-574 eV, 654 eV, 905-922 eV, 1022 eV] (i=1..10,11..20,21..30,31..40)

j = E0102 fluxes in [OVII, OVIII, NeIX, NeX] (j=1..4)

- c<sub>1,1</sub> = observed counts in RGS2/[560-574 eV], c<sub>12,2</sub> = in HETG-MEG/[654 eV], c<sub>23,3</sub> = in ACIS-S3/[905-922 eV], etc.
- a<sub>i</sub> = effective area, f<sub>j</sub> = expected flux, α<sub>ij</sub> = exposure time of instrument i for source j (in this case, α<sub>k(·)</sub> are identical for k={1, l+10, l+20, l+30}, l=1..10)



## Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul



Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul Use upper case for estimand/parameter; lower cases for estimator/data



Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

# Use upper case for estimand/parameter; lower cases for estimator/data

 Let A<sub>i</sub> be the actual effective area of instrument i; F<sub>j</sub> be the true flux of source j; then the expected rate can be modelled as

$$C_{ij} = A_i F_i$$
 or  $\log C_{ij} = \log A_i + \log F_i$ 



Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

# Use upper case for estimand/parameter; lower cases for estimator/data

• Let  $A_i$  be the *actual* effective area of instrument i;  $F_j$  be the *true* flux of source j; then the *expected* rate can be modelled as

$$C_{ij} = A_i F_j$$
 or  $\log C_{ij} = \log A_i + \log F_j$ 

• Let  $a_i$  be an estimator of  $A_i$ ;  $f_j$  an estimator of  $F_j$ , and  $c_{ij}$  be the actual observation from source j detected by instrument i. Then it is NOT reasonable to expect  $c_{ij} \approx a_i f_j$ , in the sense of justifying the "regression" model

$$\log c_{ij} = \log a_i + \log f_j + e_{ij}, \quad E(e_{ij}) = 0.$$



# Distributions cannot be manipulated as numbers

Astrostat 6/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## For (deterministic) numbers Y and X

If 
$$Y = \rho X$$
, then  $X = \rho^{-1} Y$ .



# Distributions cannot be manipulated as numbers

#### Astrostat 6/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### For (deterministic) numbers Y and X

If 
$$Y = \rho X$$
, then  $X = \rho^{-1} Y$ .

#### For distributional (random variables) Y and X

If regressing Y on X yields (both have zero mean and unit var):

$$Y = \rho X$$

Then regressing X on Y is NOT  $X = \rho^{-1}Y$ , but rather

$$X = \rho Y$$
.

Here  $\rho$  is the *correlation* between X and Y.



# Distributions cannot be manipulated as numbers

#### Astrostat 6/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## For (deterministic) numbers Y and X

If 
$$Y = \rho X$$
, then  $X = \rho^{-1} Y$ .

#### For distributional (random variables) Y and X

If regressing Y on X yields (both have zero mean and unit var):

$$Y = \rho X$$
,

Then regressing X on Y is NOT  $X = \rho^{-1}Y$ , but rather

$$X = \rho Y$$
.

Here  $\rho$  is the *correlation* between X and Y .

 Do not follow "The Rule of Three" (Stephen Stigler, Seven Pillars of Statistics; ASA President Address, 2014).



## Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul



## Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

#### Notation is important

$$b_i = \log a_i$$
,  $B_i = \log A_i$ ,  $i \in I = \{1, \ldots, N\}$ .



## Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

#### Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$ 



## Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta

## Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 



# Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$



# Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

### Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$
  
 $e_{ii} \sim indep \ N(0, \sigma_{ii}^2)$ 



#### Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

### Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$
  
 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$   
 $\alpha_{ij} = -0.5\sigma_{ij}^2.$ 



#### Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

### log-normal model for c

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$
  
 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$   
 $\alpha_{ij} = -0.5\sigma_{ij}^2.$ 

• Model I:  $\sigma_{ii}^2 = \sigma_i^2$ 

#### Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$
  
 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$   
 $\alpha_{ij} = -0.5\sigma_{ij}^2.$ 

- Model I:  $\sigma_{ii}^2 = \sigma_i^2$
- Model II:  $\sigma_{ii}^2 = \sigma_i^2 + \sigma_i^2$

#### Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

## log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$
  
 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$   
 $lpha_{ii} = -0.5\sigma_{ii}^2.$ 

- Model I:  $\sigma_{ii}^2 = \sigma_i^2$
- Model II:  $\sigma_{ii}^2 = \sigma_i^2 + \sigma_i^2$

## log-normal models for a and f

#### Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

## log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$
  
 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$   
 $lpha_{ij} = -0.5\sigma_{ii}^2.$ 

- Model I:  $\sigma_{ii}^2 = \sigma_i^2$
- Model II:  $\sigma_{ii}^2 = \sigma_i^2 + \sigma_i^2$

## log-normal models for a and f

$$b_i = \beta_i + B_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \tau_i^2), \ \beta_i = -0.5\tau_i^2$$

#### Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

## log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$
  $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$   $lpha_{ij} = -0.5\sigma_{ij}^2.$ 

- Model I:  $\sigma_{ii}^2 = \sigma_i^2$
- Model II:  $\sigma_{ij}^2 = \sigma_i^2 + \sigma_j^2$

## log-normal models for a and f

$$b_i = \beta_i + B_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \tau_i^2), \ \beta_i = -0.5\tau_i^2$$

$$g_j = \gamma_j + G_j + \delta_j$$

$$\delta_j \sim N(0, \eta_j^2), \ \gamma_j = -0.5\eta_j^2$$

#### Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$
  
 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$   
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$ 

### log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$
  $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$   $lpha_{ij} = -0.5\sigma_{ij}^2.$ 

- Model I:  $\sigma_{ii}^2 = \sigma_i^2$
- Model II:  $\sigma_{ij}^2 = \sigma_i^2 + \sigma_j^2$

## log-normal models for a and f

$$b_i = \beta_i + B_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \tau_i^2), \ \beta_i = -0.5\tau_i^2$$

$$g_j = \gamma_j + G_j + \delta_j$$

$$\delta_j \sim N(0, \eta_i^2), \ \gamma_j = -0.5\eta_i^2$$

• set  $\eta_j = \infty$  when  $f_j$ 's are estimated by  $\{y_{ij}\}$ 



#### Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul



#### Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$



#### Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

## This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$

#### It is well known that

if 
$$\log X \sim N(\mu, \sigma^2)$$
, then  $E(X) = e^{u + \frac{\sigma^2}{2}}$ 



#### Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy Paul

#### This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$

#### It is well known that

if 
$$\log X \sim N(\mu, \sigma^2)$$
, then  $E(X) = e^{u + \frac{\sigma^2}{2}}$ 

#### Therefore, when we set

$$E(y_{ij}) = -0.5\sigma_{ij}^2 + B_i + G_j,$$

We obtain 
$$E(c_{ij}) = E(e^{y_{ij}}) = e^{E(y_{ij}) + \sigma_{ij}^2/2} = e^{B_i + G_j} = A_i F_i$$
.

#### Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$

#### It is well known that

if 
$$\log X \sim N(\mu, \sigma^2)$$
, then  $E(X) = e^{u + \frac{\sigma^2}{2}}$ 

#### Therefore, when we set

$$E(y_{ij}) = -0.5\sigma_{ij}^2 + B_i + G_j,$$

We obtain 
$$E(c_{ij}) = E(e^{y_{ij}}) = e^{E(y_{ij}) + \sigma_{ij}^2/2} = e^{B_i + G_j} = A_i F_j$$
.

When variances are known, simply "correct" the data

$$y'_{ij} = y_{ij} + 0.5\sigma_{ij}^2$$



#### Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul



#### Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

#### Two sources of information

• *Prior/other-data estimator* for *B<sub>i</sub>*:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$



#### Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Two sources of information

• Prior/other-data estimator for B<sub>i</sub>:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$

• Calibration-data estimator for  $B_i$ :

#### Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Two sources of information

• Prior/other-data estimator for B<sub>i</sub>:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$

Calibration-data estimator for B<sub>i</sub>:

$$\hat{B}_{i}^{data} = \bar{y}_{i.}' - \bar{G}, \text{ with } Var = \frac{\sigma_{i}^{2}}{M}$$

• Relative precision:  $w_i = \tau_i^{-2}/(\tau_i^{-2} + M\sigma_i^{-2})$ 

#### Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Two sources of information

• Prior/other-data estimator for B<sub>i</sub>:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$

• Calibration-data estimator for B<sub>i</sub>:

$$\hat{B}_{i}^{data} = \bar{y}_{i.}' - \bar{G}, \text{ with } Var = \frac{\sigma_{i}^{2}}{M}$$

• Relative precision:  $w_i = \tau_i^{-2}/(\tau_i^{-2} + M\sigma_i^{-2})$ 

## Maximum Likelihood Estimation: Linear shrinkage on log-scale

$$\hat{B}_i - \bar{B} = w_i(b'_i - \bar{B}) + (1 - w_i)(\bar{y}'_i - \bar{y}')$$

#### Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Two sources of information

• Prior/other-data estimator for B<sub>i</sub>:

$$\hat{B}_{i}^{prior} = b'_{i}$$
, with  $Var = \tau_{i}^{2}$ 

• Calibration-data estimator for B<sub>i</sub>:

$$\hat{B}_{i}^{data} = \bar{y}_{i.}' - \bar{G}, \text{ with } Var = \frac{\sigma_{i}^{2}}{M}$$

• Relative precision:  $w_i = \tau_i^{-2}/(\tau_i^{-2} + M\sigma_i^{-2})$ 

## Maximum Likelihood Estimation: Linear shrinkage on log-scale

$$\hat{B}_i - \bar{B} = w_i(b'_i - \bar{B}) + (1 - w_i)(\bar{y}'_i - \bar{y}')$$

$$\bar{y}' = \frac{\sum_i \bar{y}_i' \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}, \quad \text{and} \quad \bar{B} = \frac{\sum_i \hat{B}_i \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}.$$



## When variance is unknown ...

#### Astrostat 10/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## When variance is unknown ...

#### Astrostat 10/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

### The MLE is also a (non-linear) shrinkage estimator

$$\hat{\sigma}_{i}^{2} = 2\left[\sqrt{1 + S_{y,i}^{2}} - 1\right] \equiv R_{i}S_{y,i}^{2},$$

$$R_{i} = \frac{2}{1 + \sqrt{1 + S_{y,i}^{2}}} \le 1$$

$$S_{y,i}^{2} = \frac{1}{M} \sum_{j=1}^{M} (y_{ij} - \hat{B}_{i} - \hat{G}_{j})^{2}$$
$$= \frac{1}{M} \sum_{i=1}^{M} [y_{ij} - \bar{y}'_{.j} - (\hat{B}_{i} - \bar{B})]^{2}$$

## When variance is unknown ...

#### Astrostat 10/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## The MLE is also a (non-linear) shrinkage estimator

$$\hat{\sigma}_{i}^{2} = 2\left[\sqrt{1 + S_{y,i}^{2}} - 1\right] \equiv R_{i}S_{y,i}^{2},$$

$$R_{i} = \frac{2}{1 + \sqrt{1 + S_{y,i}^{2}}} \le 1$$

$$S_{y,i}^{2} = \frac{1}{M} \sum_{j=1}^{M} (y_{ij} - \hat{B}_{i} - \hat{G}_{j})^{2}$$
$$= \frac{1}{M} \sum_{j=1}^{M} [y_{ij} - \bar{y}'_{.j} - (\hat{B}_{i} - \bar{B})]^{2}$$

$$\bar{y}'_{.j} = \frac{\sum_{i} y'_{ij} \hat{\sigma}_{i}^{-2}}{\sum_{i} \hat{\sigma}_{i}^{-2}} = \frac{\sum_{i} y_{ij} \hat{\sigma}_{i}^{-2} + 0.5}{\sum_{i} \hat{\sigma}_{i}^{-2}}$$



#### Astrostat 11/11

Working with
Herman
Marshall &
Matteo
Guainazzi,
Vinay, Aneta,
Jeremy, Paul



#### Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

## Directly model the counts

 $c_{ij} \sim Poisson(C_{ij})$ 



#### Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

• Model  $C_{ij} = A_i F_j$ ?

#### Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

- Model  $C_{ij} = A_i F_j$ ?
- But need to take care of the model error/imperfection:

$$C_{ij} = \alpha_{ij} A_i F_i + \beta_{ij}, \qquad \beta_{ij} - background \ rate$$

#### Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

- Model  $C_{ij} = A_i F_j$ ?
- But need to take care of the model error/imperfection:

$$C_{ij} = \alpha_{ij}A_iF_j + \beta_{ij}, \qquad \beta_{ij} - background \ rate$$

• Do we give a distribution to  $\alpha_{ij}$ , and impose  $E(\alpha_{ij}) = 1$ ?

#### Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

#### Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

- Model  $C_{ij} = A_i F_j$ ?
- But need to take care of the model error/imperfection:

$$C_{ij} = \alpha_{ij}A_iF_j + \beta_{ij}, \qquad \beta_{ij} - background \ rate$$

- Do we give a distribution to  $\alpha_{ij}$ , and impose  $E(\alpha_{ij}) = 1$ ?
- This will be an over-dispersion model because

$$\operatorname{Var}(c_{ij}) = E(c_{ij}) + A_i^2 F_i^2 \operatorname{Var}(\alpha_{ij})$$