

Astrostat 1/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Seeking Effective Adjustments for Effective Areas

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Department of Statistics, Harvard University

October 5, 2015

A problem posed by Herman, Matteo and Vinay

Astrostat 2/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

A problem posed by Herman, Matteo and Vinay

Astrostat 2/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Systematic errors in comparing effective areas:

Speaking hypothetically, if we label the instruments by numbers i = 1, ..., N and each has an attribute A that is used to measure the same i = 1, ..., M astrophysical sources, with intrinsic attribute F_i where $C_{ii} = A_i F_i$ are the instrumental measurements, then the question is: "Is there a way to decide how (or whether) to change A_i when the values C_{ii}/A_i do not agree with F_i to within their statistical uncertainties s_i . In other words, each instrument provides an estimator f_i of F_i with statistical uncertainty s_i but $|f_i - F_i|/s_i$ is often large, not distributed as a Gaussian with unit variance (but can have zero mean if we define $F_j = \sum_i f_j s_i^{-2} / \sum_i s_i^{-2}$). How to estimate the systematic error on the A_i ?

From Vinay ...

Astrostat 3/11

Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

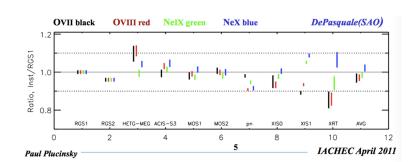
Instruments (i) and Sources (j)

- i are individual detectors (e.g., Chandra/ACIS-I, Chandra/HEG, XMM/EPIC-pn, XMM/EPIC-MOS1, XMM/RGS2, Swift/XRT, Suzaku/XIS, NuSTAR/FPMA, Integral/ISGRI, etc.), with counts obtained in specific passbands (e.g., soft=[0.5-2 keV], hard=[2-7 keV], ultra=[10-30 keV], etc.)
- j are individual sources (HZ 43, Capella, PKS 2155-304, Mkn 421, Crab, G21.5-09, etc.) with fluxes predicted in specific passbands

From Vinay ...

Astrostat 4/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul



 \vec{t} = [RGS1, RGS2, HETG-MEG, ACIS-S3, MOS1, MOS2, pn, XIS0, XIS1, XRT] x [560-574 eV, 654 eV, 905-922 eV, 1022 eV] (i=1..10,11..20,21..30,31..40)

j = E0102 fluxes in [OVII, OVIII, NeIX, NeX] (j=1..4)

- c_{1,1} = observed counts in RGS2/[560-574 eV], c_{12,2} = in HETG-MEG/[654 eV], c_{23,3} = in ACIS-S3/[905-922 eV], etc.
- a_i = effective area, f_j = expected flux, α_{ij} = exposure time of instrument i for source j (in this case, α_{k(·)} are identical for k={1, l+10, l+20, l+30}, l=1..10)

Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul Use upper case for estimand/parameter; lower cases for estimator/data

Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Use upper case for estimand/parameter; lower cases for estimator/data

 Let A_i be the actual effective area of instrument i; F_j be the true flux of source j; then the expected rate can be modelled as

$$C_{ij} = A_i F_i$$
 or $\log C_{ij} = \log A_i + \log F_i$

Astrostat 5/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Use upper case for estimand/parameter; lower cases for estimator/data

• Let A_i be the *actual* effective area of instrument i; F_j be the *true* flux of source j; then the *expected* rate can be modelled as

$$C_{ij} = A_i F_j$$
 or $\log C_{ij} = \log A_i + \log F_j$

• Let a_i be an estimator of A_i ; f_j an estimator of F_j , and c_{ij} be the actual observation from source j detected by instrument i. Then it is NOT reasonable to expect $c_{ij} \approx a_i f_j$, in the sense of justifying the "regression" model

$$\log c_{ij} = \log a_i + \log f_j + e_{ij}, \quad E(e_{ij}) = 0.$$

Distributions cannot be manipulated as numbers

Astrostat 6/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

For (deterministic) numbers Y and X

If
$$Y = \rho X$$
, then $X = \rho^{-1} Y$.

Distributions cannot be manipulated as numbers

Astrostat 6/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

For (deterministic) numbers Y and X

If
$$Y = \rho X$$
, then $X = \rho^{-1} Y$.

For distributional (random variables) Y and X

If regressing Y on X yields (both have zero mean and unit var):

$$Y = \rho X$$

Then regressing X on Y is NOT $X = \rho^{-1}Y$, but rather

$$X = \rho Y$$
.

Here ρ is the *correlation* between X and Y.

Distributions cannot be manipulated as numbers

Astrostat 6/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

For (deterministic) numbers Y and X

If
$$Y = \rho X$$
, then $X = \rho^{-1} Y$.

For distributional (random variables) Y and X

If regressing Y on X yields (both have zero mean and unit var):

$$Y = \rho X$$
,

Then regressing X on Y is NOT $X = \rho^{-1}Y$, but rather

$$X = \rho Y$$
.

Here ρ is the *correlation* between X and Y .

 Do not follow "The Rule of Three" (Stephen Stigler, Seven Pillars of Statistics; ASA President Address, 2014).

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

Notation is important

$$b_i = \log a_i$$
, $B_i = \log A_i$, $i \in I = \{1, \ldots, N\}$.

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$

 $e_{ii} \sim indep \ N(0, \sigma_{ii}^2)$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$

 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$
 $\alpha_{ij} = -0.5\sigma_{ij}^2.$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

log-normal model for c

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$

 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$
 $\alpha_{ij} = -0.5\sigma_{ij}^2.$

• Model I: $\sigma_{ii}^2 = \sigma_i^2$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

$$y_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$$

 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$
 $\alpha_{ij} = -0.5\sigma_{ij}^2.$

- Model I: $\sigma_{ii}^2 = \sigma_i^2$
- Model II: $\sigma_{ii}^2 = \sigma_i^2 + \sigma_i^2$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$

 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$
 $lpha_{ii} = -0.5\sigma_{ii}^2.$

- Model I: $\sigma_{ii}^2 = \sigma_i^2$
- Model II: $\sigma_{ii}^2 = \sigma_i^2 + \sigma_i^2$

log-normal models for a and f

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$

 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$
 $lpha_{ij} = -0.5\sigma_{ii}^2.$

- Model I: $\sigma_{ii}^2 = \sigma_i^2$
- Model II: $\sigma_{ii}^2 = \sigma_i^2 + \sigma_i^2$

log-normal models for a and f

$$b_i = \beta_i + B_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \tau_i^2), \ \beta_i = -0.5\tau_i^2$$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$
 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$ $lpha_{ij} = -0.5\sigma_{ij}^2.$

- Model I: $\sigma_{ii}^2 = \sigma_i^2$
- Model II: $\sigma_{ij}^2 = \sigma_i^2 + \sigma_j^2$

log-normal models for a and f

$$b_i = \beta_i + B_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \tau_i^2), \ \beta_i = -0.5\tau_i^2$$

$$g_j = \gamma_j + G_j + \delta_j$$

$$\delta_j \sim N(0, \eta_j^2), \ \gamma_j = -0.5\eta_j^2$$

Astrostat 7/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Notation is important

$$b_i = \log a_i, \quad B_i = \log A_i, \quad i \in I = \{1, ..., N\}.$$

 $g_j = \log f_j, \quad G_j = \log F_j, \quad j \in J = \{1, ..., M\}.$
 $y_{ij} = \log c_{ij}, \quad i \in I, \quad j \in J_i \subset J.$

log-normal model for c

$$y_{ij} = lpha_{ij} + B_i + G_j + e_{ij}$$
 $e_{ij} \sim indep \ N(0, \sigma_{ij}^2)$ $lpha_{ij} = -0.5\sigma_{ij}^2.$

- Model I: $\sigma_{ii}^2 = \sigma_i^2$
- Model II: $\sigma_{ij}^2 = \sigma_i^2 + \sigma_j^2$

log-normal models for a and f

$$b_i = \beta_i + B_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \tau_i^2), \ \beta_i = -0.5\tau_i^2$$

$$g_j = \gamma_j + G_j + \delta_j$$

$$\delta_j \sim N(0, \eta_i^2), \ \gamma_j = -0.5\eta_i^2$$

• set $\eta_j = \infty$ when f_j 's are estimated by $\{y_{ij}\}$

Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$

Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$

It is well known that

if
$$\log X \sim N(\mu, \sigma^2)$$
, then $E(X) = e^{u + \frac{\sigma^2}{2}}$

Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy Paul

This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$

It is well known that

if
$$\log X \sim N(\mu, \sigma^2)$$
, then $E(X) = e^{u + \frac{\sigma^2}{2}}$

Therefore, when we set

$$E(y_{ij}) = -0.5\sigma_{ij}^2 + B_i + G_j,$$

We obtain
$$E(c_{ij}) = E(e^{y_{ij}}) = e^{E(y_{ij}) + \sigma_{ij}^2/2} = e^{B_i + G_j} = A_i F_i$$
.

Astrostat 8/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

This is because, by Jensen's inequality,

$$E(c_{ij}) = E(e^{y_{ij}}) > e^{E(y_{ij})}$$

It is well known that

if
$$\log X \sim N(\mu, \sigma^2)$$
, then $E(X) = e^{u + \frac{\sigma^2}{2}}$

Therefore, when we set

$$E(y_{ij}) = -0.5\sigma_{ij}^2 + B_i + G_j,$$

We obtain
$$E(c_{ij}) = E(e^{y_{ij}}) = e^{E(y_{ij}) + \sigma_{ij}^2/2} = e^{B_i + G_j} = A_i F_j$$
.

When variances are known, simply "correct" the data

$$y'_{ij} = y_{ij} + 0.5\sigma_{ij}^2$$

Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta,

Two sources of information

• *Prior/other-data estimator* for *B_i*:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$

Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Two sources of information

• Prior/other-data estimator for B_i:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$

• Calibration-data estimator for B_i :

Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Two sources of information

• Prior/other-data estimator for B_i:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$

Calibration-data estimator for B_i:

$$\hat{B}_{i}^{data} = \bar{y}_{i.}' - \bar{G}, \text{ with } Var = \frac{\sigma_{i}^{2}}{M}$$

• Relative precision: $w_i = \tau_i^{-2}/(\tau_i^{-2} + M\sigma_i^{-2})$

Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Two sources of information

• Prior/other-data estimator for B_i:

$$\hat{B}_i^{prior} = b_i', \text{ with } Var = \tau_i^2$$

• Calibration-data estimator for B_i:

$$\hat{B}_{i}^{data} = \bar{y}_{i.}' - \bar{G}, \text{ with } Var = \frac{\sigma_{i}^{2}}{M}$$

• Relative precision: $w_i = \tau_i^{-2}/(\tau_i^{-2} + M\sigma_i^{-2})$

Maximum Likelihood Estimation: Linear shrinkage on log-scale

$$\hat{B}_i - \bar{B} = w_i(b'_i - \bar{B}) + (1 - w_i)(\bar{y}'_i - \bar{y}')$$

Astrostat 9/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Two sources of information

• Prior/other-data estimator for B_i:

$$\hat{B}_{i}^{prior} = b'_{i}$$
, with $Var = \tau_{i}^{2}$

• Calibration-data estimator for B_i:

$$\hat{B}_{i}^{data} = \bar{y}_{i.}' - \bar{G}, \text{ with } Var = \frac{\sigma_{i}^{2}}{M}$$

• Relative precision: $w_i = \tau_i^{-2}/(\tau_i^{-2} + M\sigma_i^{-2})$

Maximum Likelihood Estimation: Linear shrinkage on log-scale

$$\hat{B}_i - \bar{B} = w_i(b'_i - \bar{B}) + (1 - w_i)(\bar{y}'_i - \bar{y}')$$

$$\bar{y}' = \frac{\sum_i \bar{y}_i' \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}, \quad \text{and} \quad \bar{B} = \frac{\sum_i \hat{B}_i \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}.$$

When variance is unknown ...

Astrostat 10/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

When variance is unknown ...

Astrostat 10/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

The MLE is also a (non-linear) shrinkage estimator

$$\hat{\sigma}_{i}^{2} = 2\left[\sqrt{1 + S_{y,i}^{2}} - 1\right] \equiv R_{i}S_{y,i}^{2},$$

$$R_{i} = \frac{2}{1 + \sqrt{1 + S_{y,i}^{2}}} \le 1$$

$$S_{y,i}^{2} = \frac{1}{M} \sum_{j=1}^{M} (y_{ij} - \hat{B}_{i} - \hat{G}_{j})^{2}$$
$$= \frac{1}{M} \sum_{i=1}^{M} [y_{ij} - \bar{y}'_{.j} - (\hat{B}_{i} - \bar{B})]^{2}$$

When variance is unknown ...

Astrostat 10/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

The MLE is also a (non-linear) shrinkage estimator

$$\hat{\sigma}_{i}^{2} = 2\left[\sqrt{1 + S_{y,i}^{2}} - 1\right] \equiv R_{i}S_{y,i}^{2},$$

$$R_{i} = \frac{2}{1 + \sqrt{1 + S_{y,i}^{2}}} \le 1$$

$$S_{y,i}^{2} = \frac{1}{M} \sum_{j=1}^{M} (y_{ij} - \hat{B}_{i} - \hat{G}_{j})^{2}$$
$$= \frac{1}{M} \sum_{j=1}^{M} [y_{ij} - \bar{y}'_{.j} - (\hat{B}_{i} - \bar{B})]^{2}$$

$$\bar{y}'_{.j} = \frac{\sum_{i} y'_{ij} \hat{\sigma}_{i}^{-2}}{\sum_{i} \hat{\sigma}_{i}^{-2}} = \frac{\sum_{i} y_{ij} \hat{\sigma}_{i}^{-2} + 0.5}{\sum_{i} \hat{\sigma}_{i}^{-2}}$$

Astrostat 11/11

Working with
Herman
Marshall &
Matteo
Guainazzi,
Vinay, Aneta,
Jeremy, Paul

Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Directly model the counts

 $c_{ij} \sim Poisson(C_{ij})$

Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

• Model $C_{ij} = A_i F_j$?

Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

- Model $C_{ij} = A_i F_j$?
- But need to take care of the model error/imperfection:

$$C_{ij} = \alpha_{ij} A_i F_i + \beta_{ij}, \qquad \beta_{ij} - background \ rate$$

Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

- Model $C_{ij} = A_i F_j$?
- But need to take care of the model error/imperfection:

$$C_{ij} = \alpha_{ij}A_iF_j + \beta_{ij}, \qquad \beta_{ij} - background \ rate$$

• Do we give a distribution to α_{ij} , and impose $E(\alpha_{ij}) = 1$?

Astrostat 11/11

Xiao-Li Meng Working with Herman Marshall & Matteo Guainazzi, Vinay, Aneta, Jeremy, Paul

Directly model the counts

$$c_{ij} \sim Poisson(C_{ij})$$

- Model $C_{ij} = A_i F_j$?
- But need to take care of the model error/imperfection:

$$C_{ij} = \alpha_{ij}A_iF_j + \beta_{ij}, \qquad \beta_{ij} - background \ rate$$

- Do we give a distribution to α_{ij} , and impose $E(\alpha_{ij}) = 1$?
- This will be an over-dispersion model because

$$\operatorname{Var}(c_{ij}) = E(c_{ij}) + A_i^2 F_i^2 \operatorname{Var}(\alpha_{ij})$$