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MONTE CARLO CONSTRAINTS ON INSTRUMENT CALIBRATION

OUTLINE

▸Historical background 

▸ Brief review of our MC uncertainties method 

▸Using MC approach to understand the limiting precision 
of Chandra 

▸Using observations as MC calibration constraints: 
G21.5-0.6 

▸Using observations and MC methods for cross-
calibration
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I HAVEN’T EVER DEALT WITH THE 
PROBLEM OF CORRELATED 
UNCERTAINTIES SO I’M AFRAID CAN’T 
BE MUCH HELP.  GOOD LUCK!

Keith Robinson

MC METHODS FOR HIGHLY-CORRELATED CALIBRATION UNCERTAINTIES



DISCUSSION WITH  
DAVID VAN DYK…
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RELATIONSHIP WITH PYBLOCXS APPROACH

Harvard 19/4/16 2016

PyBLoCXS MC Areas

May the 
brute force 
be with you
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TYPICAL UNCERTAINTY CHAIN: CHANDRA ACIS-S
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MONTE CARLO APPROACH TO CALIBRATION UNCERTAINTIES

▸ Use brute-force Monte Carlo methods instead: 

▸ Simulate 100’s-1000s of response functions that sample 
nominal response and its uncertainties 

▸ Repeat parameter estimation and examine distributions 
of “best-fit” parameters 

▸ Can be used to understand the true accuracy of flux 
measurements, parameter fits… and refine the 
calibration itself

Highly correlated - analytical solutions difficult....
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GENERATING MONTE CARLO EFFECTIVE AREAS

▸ Parameterised instrument models where available; vary 
parameters, re-compute response, eg: 

▸ Mirror trial models  

▸ CCD QE, contamination, RMF models 

▸ Use a “perturbation function” - a perturbation vs E by which 
to change subassembly responses between edges 

▸ Combine the above into an ARF multiplicative perturbation

Harvard 19/4/16 2016

[Do MC RMFs too but not discussed today…]
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FOR HRMA WE ALSO USE RAY-TRACE MODEL AREAS

Equal probabilities, except x2 for model f
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PERTURBATION FUNCTION (PIECEWISE CONSTRAINED CUBIC SPLINES)

Also: “maxdiff” - the maximum difference allowed between min 
and max perturbation - controls curvature in function, prevents 
unrealistic deviations

(Emindev)

(Emaxdev)

(edgeveto)
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PERTURBATION INPUT FILE

▸ Uncertainty data for each 
instrument subassembly 
(MM=multi-mirror, OBFM=optical 
blocking filter medium, etc) 

▸ Each line refers to an energy range 
(in keV) bounded by instrument 
edges 

▸ Format: 
Emin,Emindev,Emax,Emaxdev,Edge
veto, maxdiff

MM 
0.05 0.04 2.291 0.04 0.03 0.04 
2.291 0.03 3.425 0.03 0.01 0.03 
3.425 0.03 7.000 0.03 0.005 0.03 
7.000 0.05 12.0 0.10 0.10 
CONTAM 
0.05 0.10 0.2838 0.02 0.02 0.10 
0.2838 0.02 0.4099 0.02 0.02 0.02 
0.4099 0.02 0.532 0.02 0.01 0.02 
0.532 0.02 0.6967 0.02 0.02 
OBFM 
0.05 0.15 0.297 0.07 0.04 0.15 
0.297 0.06 0.540 0.03 0.02 0.06 
0.540 0.02 1.567 0.02 0.02 0.02 
1.567 0.02 12.0 0.02 0.02 
EPICPN 
0.05 0.20 0.132 0.10 0.11 0.20 
0.132 0.15 0.539 0.05 0.03 0.15 
0.539 0.04 1.827 0.04 0.03 0.04 
1.827 0.04 12.0 0.03 0.04 
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HOW ARE CALIBRATION UNCERTAINTIES DISTRIBUTED?.

▸ Rigorous treatment requires 
knowledge of how 
uncertainties are distributed 

▸ Unknown! 

▸ Assume a truncated normal 
distribution -1σ to +1σ 

▸ Peaked at preferred value 

▸ Includes gut feeling!
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RESULTING ACIS-S3 AREAS

Nominal response
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These are the basis of 
the pyBLoCXS 
calibration uncertainties
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XMM-NEWTON SAMPLE AREAS
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Medium filter
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EXERCISE: LIMITING ACCURACY OF X-RAY TELESCOPES

▸ Simulate a spectrum using a typical spectral model 
(“fakeit”), including Poisson noise 

▸ Fit using different effective area realisations a lot of (e.g. 
1000) times 

▸ XSPEC driven by Perl (Sherpa driven by Python 
soon…) 

▸ Compare with fits to 1000 different “fakeits” using 
nominal area to probe uncertainties from only Poisson 
statistics
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EXAMPLE FITTED PARAMETER DISTRIBUTIONS: EPIC-PN

Different spectrum realisations
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Different area realisations

Fj(E) = kE�↵
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XMM EPIC-PN LIMITING PRECISION

Different spectrum realisations

Harvard 19/4/16 2016

Different area realisations
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LIMITING PRECISION SUMMARY

▸ MC analysis using best guess effective area uncertainties finds 
that the limiting precisions of Chandra and XMM-Newton are 
reached for about 10,000 counts; ie increasing exposure time to 
get more counts does not help the accuracy of the fit 

▸ BUT:  

▸ based only on “best guess” uncertainties at subassembly 
level  

▸ how to make sure we do not end up with areas too deviant 
and to improve uncertainty estimates? 
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HOW DO WE IMPROVE 
UNDERSTANDING OF THE 
TRUE UNCERTAINTIES?
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G21.5 -0.6

▸ Plerionic SNR 

▸ Appears to have power-law 
spectrum 

▸ Used as an IACHEC cross-
calibration source 
(Tsujimoto et al 2011) 

▸ High NH - relatively 
insensitive to ACIS 
contamination model

Tsujimoto et al (2011)

Harvard 19/4/16 2016



MONTE CARLO CONSTRAINTS ON INSTRUMENT CALIBRATION

CHANDRA ACIS-S: SIMULTANEOUS FIT TO 8 OBSERVATIONS 
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RESULTS
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CONSTRAINTS ON “GOOD” AND “BAD” AREAS 
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REFINE TELESCOPE PRECISION ESTIMATES
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Poisson
Calibration
Calibration best 100





WHY STOP AT 
JUST CHANDRA?



NUSTAR 
3-79 KEV
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CHANDRA + NUSTAR: SIMULTANEOUS FIT 
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Chandra ACIS

NuSTAR FPMs 
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“BAD” AREA RATIOS: CHANDRA
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“GOOD” AREA RATIOS: CHANDRA
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“BAD” AREA RATIOS: NUSTAR
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“GOOD” AREA RATIOS: NUSTAR
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CHANDRA + NUSTAR + XMM: SIMULTANEOUS FIT 
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NuSTAR FPMs 

Chandra ACIS

XMM pn
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SUMMARY

▸ Application of MC effective areas to fitting of fiducial 
sources with assumptions about the spectral model 
provides a calibration discriminant 

▸ Technique can be applied to multiple missions 

▸ Technique can be applied to multiple and diverse sources 
(perturbation set is common to all) 

▸ Needs refinements, e.g. balance between input spectra - 
“most counts wins”; improved input uncertainties…
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