Topics in Astrostatistics - 8 September 2015

The Art & Science of Image Processing

Joseph DePasquale Visualization Scientist Chandra X-ray Center Office of Communication and Public Engagement

Communication and Public Engagement

THE ASTRONOMICAL JOURNAL, 133:598-611, 2007 February © 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. arXiv:astro-ph/0412138

IMAGE-PROCESSING TECHNIQUES FOR THE CREATION OF PRESENTATION-QUALITY ASTRONOMICAL IMAGES

TRAVIS A. RECTOR

Department of Physics and Astronomy, University of Alaska Anchorage, AK, USA; rector@uaa.alaska.edu

ZOLTAN G. LEVAY AND LISA M. FRATTARE Space Telescope Science Institute, Baltimore, MD, USA

JAYANNE ENGLISH Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada

AND

KIRK PU'UOHAU-PUMMILL Gemini Observatory, Hilo, HI, USA Received 2004 December 6; accepted 2006 September 29

ABSTRACT

The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

Key words: techniques: image processing Online material: color figures Research & Applications

What Determines the Aesthetic Appeal of Astronomical Images?

Lars Lindberg Christensen European Southern Observatory lars@eso.org

Douglas Pierce-Price European Southern Observatory dpiercep@eso.org Olivier Hainaut European Southern Observatory ohainaut@eso.org Keywords Astronomical Images, Astrophotography, Photography, Image Processing

capjournal.org/issues/14/14_20.pdf

Summary

In the context of images used for education and outreach purposes, this paper describes a set of parameters that are key in determining the aesthetic appeal, or beauty, of an astronomical image.

Create the best possible representations of telescope data for public consumption

The images must tell the story of the science behind the data in the most aesthetically pleasing way possible while preserving data integrity

What do I do?

Striking a Balance

Striking a Balance

CHANDRA X-RAY OBSERVATORY

CHANDRA X-RAY OBSERVATORY

Mirror elements are 0.8 m long and from 0.6 m to 1.2 m diameter

Grazing Incidence, X-ray Mirrors CHANDRA X-RAY OBSERVATORY

Advanced CCD Imaging Spectrometer CHANDRA X-RAY OBSERVATORY

High Resolution Camera CHANDRA X-RAY OBSERVATORY

Data Format

	time	ccd_id no	ode_id expno		chipx	chipy	tdetx	tdety	detx	dety	x	У	pha	pha_	_ro	corn_pha	energy	pi	fltgrade g	rade	status
	s				pixel	pixel	pixel	pixel	pixel	pixel	pixel	pixel	adu	adu			eV	chan			
1	1.995197353739404E+08	7	0	582	175	19	4892	1721	4.0619429E+03	4.5887188E+03	4.5073301E+03	4.3782568E+03	3	142	140	5	7.0569946E+02	49	88	6	
2	1.995197353739484E+88	7	0	582	237	97	4154	1799	4.1230400E+03	4.5115591E+03	4.4723101E+03	4.2862783E+03	3	381	378	0	1.7980546E+03	124	11	6	
3	1.995197353739404E+08	7	2	582	644	101	4561	1803	4.5295107E+03	4.5065186E+03	4.6760068E+03	3.9344949E+03	3	1567	1558	-1	7.4039917E+03	508	184	6	
- 4	1.995197353739404E+08	7	1	582	314	184	4231	1806	4.2003442E+03	4.5044873E+03	4.5857979E+83	4.2162456E+83	3	306	302	1	1.5412102E+03	106	2	2	
5	1.995197353739404E+08	7	2	582	568	105	4485	1807	4.4543657E+03	4.5033232E+03	4.6348032E+03	3.9974172E+03	3	3769	3759	6	1.7601096E+04	1024	22	6	
6	1.995197353739404E+08	7	2	582	750	106	4667	1808	4.6357476E+03	4.5018452E+03	4.7263628E+03	3.8408335E+03	3	257	255	1	1.3026378E+03	98	٥	0	
7	1.995197353739484E+88	7	2	582	624	117	4541	1819	4.5099131E+03	4.4909370E+03	4.6525903E+03	3.9433569E+03	3	329	325	1	1.6134098E+03	111	0	0	
8	1.995197353739404E+08	7	2	582	562	127	4479	1829	4.4476899E+83	4.4809883E+03	4.6121577E+03	3.9917910E+03	3	351	348	3	1.6985310E+03	117	8	3	
9	1.995197353739484E+88	7	2	582	570	129	4487	1831	4.4559795E+03	4.4789863E+03	4.6147207E+03	3.9835757E+03	3	211	209	1	1.0488915E+03	72	0	0	
10	1.995197353739404E+08	7	1	582	433	149	4350	1851	4.3187788E+03	4.4590967E+03	4.5274165E+03	4.0912671E+03	3	250	246	-1	1.2470641E+03	86	8	3	
11	1.995197353739404E+08	7	2	582	663	158	4580	1860	4.5488350E+03	4.4499692E+03	4.6373145E+03	3.8889519E+03	3	499	494	-1	2.4125427E+03	166	0	0	
12	1.995197353739404E+08	7	1	582	396	164	4313	1866	4.2824512E+03	4.4438838E+03	4.4957544E+03	4.1146909E+03	3	3659	3640	3	1.7377172E+04	1824	80	6	
13	1.995197353739404E+08	7	2	582	533	164	4450	1866	4.4190083E+03	4.4440562E+03	4.5657910E+03	3.9974612E+03	3	266	263	-1	1.2981259E+03	89	٥	0	
14	1.995197353739484E+88	7	3	582	800	170	4717	1872	4.6856406E+03	4.4379023E+03	4.6969634E+03	3.7652446E+03	3	201	200	-2	1.0075438E+03	78	0	0	
15	1.995197353739404E+08	7	1	582	385	181	4382	1883	4.2712007E+03	4.4275449E+03	4.4759595E+03	4.1159941E+03	3	250	244	-2	1.2557699E+03	87	2	2	
16	1.995197353739484E+88	7	1	582	320	182	4237	1884	4.2059106E+03	4.4258330E+03	4.4410742E+03	4.1712095E+03	3	2588	2497	-3	1.2016417E+04	824	184	6	
17	1.995197353739404E+08	7	2	582	715	207	4632	1909	4.6007339E+03	4.4010044E+03	4.6218096E+03	3.8193052E+03	3	273	271	1	1.3760067E+03	95	0	0	
18	1.995197353739404E+08	7	1	582	506	214	4423	1916	4.3920146E+03	4.3937993E+03	4.5087993E+03	3.9949307E+03	3	409	405	-2	1.9892632E+03	137	64	2	
19	1.995197353739484E+88	7	2	582	555	215	4472	1917	4.4409473E+03	4.3931128E+03	4.5332529E+03	3.9525408E+03	3	269	266	0	1.3205133E+03	91	0	0	
20	1.995197353739404E+08	7	0	582	50	220	3967	1922	3.9366343E+03	4.3880845E+03	4.2708315E+03	4.3832285E+03	3	397	393	1	1.8420740E+03	127	64	2	

Events List

Data Format

	time	ccd_id n	ode_id expno		chipx	chipy	tdetx	tdety	detx	dety	x	У	pha	pha_ro)	corn_pha	energy	pi	fltgrade g	rade	status
	s				pixel	pixel	pixel	pixel	pixel	pixel	pixel	pixel	adu	adu			eV	chan			
1	1.995197353739404E+08	7	0	582	175	19	4092	1721	4.0619429E+03	4.5887188E+03	4.5073301E+03	4.3782568E+03	3	142	140	5	7.0569946E+02	49	80	6	
2	1.995197353739404E+08	7	0	582	237	97	4154	1799	4.1230400E+03	4.5115591E+03	4.4723101E+03	4.2862783E+03	3	381	378	0	1.7980546E+03	124	11	6	
3	1.995197353739404E+08	7	2	582	644	101	4561	1803	4.5295107E+03	4.5065186E+03	4.6760068E+03	3.9344949E+03	3	1567	1558	-1	7.4039917E+03	508	184	6	
- 4	1.995197353739484E+88	7	1	582	314	184	4231	1806	4.2003442E+03	4.5044873E+03	4.5857979E+03	4.2162456E+03	3	306	302	1	1.5412102E+03	106	2	2	
5	1.995197353739404E+08	7	2	582	568	105	4485	1807	4.4543657E+03	4.5033232E+03	4.6348032E+03	3.9974172E+03	3	3769	3759	6	1.7601096E+04	1024	22	6	
6	1.995197353739404E+08	7	2	582	750	106	4667	1808	4.6357476E+03	4.5018452E+03	4.7263628E+03	3.8408335E+03	3	257	255	1	1.3026378E+03	96	8	0	
7	1.995197353739484E+88	7	2	582	624	117	4541	1819	4.5099131E+03	4.4909370E+03	4.6525903E+03	3.9433569E+03	3	329	325	1	1.6134098E+03	111	8	0	
8	1.995197353739404E+08	7	2	582	562	127	4479	1829	4.4476899E+83	4.4809883E+03	4.6121577E+03	3.9917910E+03	3	351	348	3	1.6985310E+03	117	8	3	
9	1.995197353739484E+88	7	2	582	570	129	4487	1831	4.4559795E+03	4.4789863E+03	4.6147207E+03	3.9835757E+03	3	211	209	1	1.0488915E+03	72	8	0	
10	1.995197353739404E+08	7	1	582	433	149	4350	1851	4.3187788E+03	4.4590967E+03	4.5274165E+03	4.0912671E+03	3	250	246	-1	1.2470641E+03	86	8	3	
11	1.995197353739404E+08	7	2	582	663	158	4580	1860	4.5488350E+03	4.4499692E+03	4.6373145E+03	3.8889519E+03	3	499	494	-1	2.4125427E+03	166	0	0	
12	1.995197353739404E+08	7	1	582	396	164	4313	1866	4.2824512E+03	4.4438838E+03	4.4957544E+03	4.1146909E+03	3	3659	3640	3	1.7377172E+04	1024	80	6	
13	1.995197353739404E+08	7	2	582	533	164	4450	1866	4.4190083E+03	4.4440562E+03	4.5657910E+03	3.9974612E+03	3	266	263	-1	1.2981259E+03	89	0	0	
14	1.995197353739484E+88	7	3	582	800	170	4717	1872	4.6856406E+03	4.4379023E+03	4.6969634E+03	3.7652446E+03	3	201	200	-2	1.0075438E+03	78	8	0	
15	1.995197353739404E+08	7	1	582	385	181	4302	1883	4.2712007E+03	4.4275449E+03	4.4759595E+03	4.1159941E+03	3	250	244	-2	1.2557699E+03	87	2	2	
16	1.995197353739484E+88	7	1	582	320	182	4237	1884	4.2059106E+03	4.4258330E+03	4.4410742E+03	4.1712095E+03	3	2588	2497	-3	1.2016417E+04	824	104	6	
17	1.995197353739404E+08	7	2	582	715	207	4632	1909	4.6007339E+03	4.4010044E+03	4.6218096E+03	3.8193052E+03	3	273	271	1	1.3760067E+03	95	8	0	
18	1.995197353739404E+08	7	1	582	506	214	4423	1916	4.3920146E+03	4.3937993E+03	4.5087993E+03	3.9949307E+03	3	409	485	-2	1.9892632E+03	137	64	2	
19	1.995197353739484E+88	7	2	582	555	215	4472	1917	4.4409473E+03	4.3931128E+03	4.5332529E+03	3.9525408E+03	3	269	266	0	1.3205133E+03	91	8	0	
20	1.995197353739404E+08	7	0	582	50	220	3967	1922	3.9366343E+03	4.3880845E+03	4.2708315E+03	4.3832285E+03	3	397	393	1	1.8420740E+03	127	64	2	

Sample event at the pixel scale

	•••		S	AOImage	ds9						
	File		e102.200-750e	eV.fits							
	Object		Merged			1000	6.3				
	Value		235				18				
	FK5	α	01:04:00.688	δ	-72:02:05.01						
	Physical	Х	4188.750	Y	3782.250		and and				
	Image	_ X	281.000	Y	218.000	1.000	13.20				
time ccd_id node_id expno chipx ch s pixel pi	Frame 1	Zoom	1.000	Angle	0.000			corn_p	haenergy pi eV chan	fltgra	de grade status
1 1.995197353739404E+08 7 0 582 175 2 1.995197353739404E+08 7 0 582 237	file edit	view	frame bin	zoom	scale color (region wcs	help	140 5 378 0	7.0569946E+02 1.7980546E+03	49 80 124 11	6 6
3 1.995197353739404E+08 7 2 582 644 4 1.995197353739404E+08 7 1 582 314	about	open	save image	heade	r 🔰 page setup	print	exit	558 -1 302 1	7.4039917E+03 1.5412102E+03	508 104 106 2	6 2
10 1.995197353739404E+08 7 1 582 433 11 1.995197353739404E+08 7 2 582 663 12 1.995197353739404E+08 7 1 582 396 13 1.995197353739404E+08 7 2 582 533 14 1.995197353739404E+08 7 1 582 385 16 1.995197353739404E+08 7 1 582 385 16 1.995197353739404E+08 7 1 582 320 17 1.995197353739404E+08 7 2 582 715 18 1.995197353739404E+08 7 1 582 506 19 1.995197353739404E+08 7 2 582 555 20 1.995197353739404E+08 7 2 582 555 20 1.995197353739404E+08 7 0 582 50								246 -1 494 -1 540 3 263 -1 200 -2 244 -2 497 -3 271 1 1405 -2 266 0 393 1	1.2470641E+03 2.4125427E+03 1.7377172E+04 1.2981259E+03 1.0075438E+03 1.2557699E+03 1.2016417E+04 1.3760067E+03 1.9892632E+03 1.3205133E+03 1.8420740E+03	86 8 166 0 1024 80 89 0 70 0 87 2 824 104 95 0 137 64 91 0 127 64	3 0 6 0 2 6 0 2 0 2 0 2
								х,ур	position		
								ime			
								ener	gy		
								grad	е		
	0.3	0.8	1.8 3.8	7,9	15.9 32.0	64.3 128	.3	<u></u>			
							11.				

WARM ----- COOL COLOR CHOICE

It's Biological!

Core Qualities

Photogenic Resolution (Christensen et al, 2014) $r_{photo} = FOV/\Theta_{effective}$ $\Theta_{diffraction} = \lambda/D$

> High Signal to Noise SNR = P_{signal}/P_{noise}

Clean of Artifacts

Color/Contrast

Composition

NGC 2207 - an example

NGC 2207 - an example

Core Processing Concepts

Image Integration

Pre-processing

CIAO/IDL Python Image Smoothing (De-noise)

Image Delinearization

High Dynamic Range Processing

Color Choice

Cropping/Composition

Post-processing

PixInsight Photoshop

Metadata (Python)

Core Processing Concepts

Image Integration

Pre-processing

CIAO/IDL Python Image Smoothing (De-noise)

Image Delinearization

High Dynamic Range Processing

Color Choice

Cropping/Composition

Post-processing PixInsight Photoshop

> Metadata (Python)

ASMOOTH

Adaptive kernel smoothing

Useful for suppressing noise while preserving real structure (signal that is significant at a preset S/N level)

see: <u>http://arxiv.org/abs/astro-ph/0601306</u>

ASMOOTH

GREYCstoration anisotropic smoothing using curvature-preserving PDEs

see: https://tschumperle.users.greyc.fr/publications/tschumperle_ijcv06.pdf

GREYCstoration anisotropic smoothing using curvature-preserving PDEs

see: https://tschumperle.users.greyc.fr/publications/tschumperle_ijcv06.pdf

Intensity Scaling & Bit Values

bits work in powers of 2

A 2-bit grayscale image has 2^2 possible values of gray

2-bit

2*2=4 00,01,10,11

8-bit? $2^8 = 256$ possible values

16-bit? $2^{16} = 65,536$ possible values

Image Credit: wikipedia/Ricardo Cancho Niemietz

8-bit

FITS Liberator

PixInsight

FITS Liberator

PixInsight

High Dynamic Range

PixInsight's wavlet based approach

High Dynamic Range

Photoshop's open as Camera Raw "Trick" and HDR Toning tool

High Dynamic Range

If you have access to Photoshop: Start it up, choose File->Open and select a TIFF file At the bottom of the dialog box, select "Format" and choose "Camera Raw"

Blending Mode: Screen

f(a,b) = 1 - (1 - a)(1 - b)

Processing example with M106

Processing example with M106

X X	PixelMath	22
Expressions		*
R/K:	g	
G:	g*0.5 + b*0.5	3
В:	b	•23
A:		•23
Symbols:		3
	Use a single RGB/K expression	
	Expression Editor	
Destination		*
	Generate output	
	Single threaded	
	Use 64-bit working images	
	Rescale result	
Lower bound:	0.00000000000	
Upper bound:	1.00000000000	
	 Replace target image 	
	Create new image	
Image Id:	<auto></auto>	•
Image width:	<as target=""></as>	
Image height:	<as target=""></as>	
Color space:	RGB Color 🔻	
	Alpha channel	
Sample format:	<same as="" target=""></same>	
		2 X

Kepler's SNR

Kepler's SNR

Tycho's SNR

Tycho's SNR

Moving Beyond "Pretty Pictures"

JS9

Image processing via javascript in the browser <u>http://js9.si.edu</u>

Project Goals: Automated image registration via WCS Photoshop-like implementation of layers Image smoothing Dynamic range processing (wavlets?)

Ultimate Goal:

Preserve original source data and track compositional changes (WCS) Provide ability to revisit source data if/when interesting features are discovered in the image creation process

Thank you!