Beyond population synthesis: MCMC models of high mass X-ray binaries

Jeff J Andrews Andreas Zezas Tassos Fragos

Massive stellar evolution crash course

end their lives in a supernova (SN)

leaving behind a neutron star (NS) or black hole (BH)

Binary stellar evolution crash course

Mass transfer can occur when there is a companion

SN affects the orbit

Wind accretion onto the NS or BH

Image: Mathew Bailey

Image: Kyle Kremer

Zezas & Fabbiano (2002)

X-ray sources in nearby galaxies

Notation

Model variables

- M Model
- \vec{x}_i Initial parameters
- \vec{x}_f Current parameters
- $\{\vec{x}_i\}$ Set of initial parameters, for all systems

 $\{\vec{x}_f\}$

Set of current parameters, for all systems

Binary variables

- M_1 Primary mass
- M_2 Secondary mass
 - *a* Orbital separation
 - *e* Orbital eccentricity
 - v_k Kick velocity
 - θ Kick polar angle
 - ϕ Kick azimuthal angle
 - α Coordinate right ascension
 - δ Coordinate declination
 - *t* Birth time / age
- *P*_{orb} Orbital period
- $v_{\rm sys}$ Velocity of the system

Population synthesis basics

Population synthesis goals

-70

7

 $5^{\rm h}\,30^{\rm n}$

 $5^{h} 20^{r}$

Right Ascension

 $5^{\rm h}\,40^{\rm m}$

 $5^{\rm h}\,10^{\rm n}$

 $5^{\rm h}\,00^{\rm n}$

 $4^{\rm h}\,50^{\rm m}$

Population synthesis math: model selection

Goal is to compare our physics with observed population

Observed systems are independent

Model doesn't directly provide us with a population

Population synthesis uses importance sampling

Only select binaries

$$P(M|\{\vec{x}_f\}) = \frac{P(\{\vec{x}_f\}|M)P(M)}{P(\{\vec{x}_f\})}$$

 $P(\{\vec{x}_f\}|M) = \prod P(\vec{x}_f|M)$

$$P(\vec{x}_f|M) = \int \mathrm{d}\vec{x}_i \ P(\vec{x}_f|\vec{x}_i, M) \ P(\vec{x}_i|M)$$

$$P(\vec{x}_f|M) \approx \frac{1}{N} \sum_{j} P(\vec{x}_f|\vec{x}_{i,j}, M)$$
$$\vec{x}_{i,j} \sim P(\vec{x}_i|M)$$

$$P(\vec{x}_f | \vec{x}_{i,j}, M) = \begin{cases} 1 & \vec{x}_f \in \text{binary} \\ 0 & \vec{x}_f \text{ else} \end{cases}$$

Population synthesis

Model selection

$$P(M|\{\vec{x}_f\}) \propto P(M) \prod_{\text{all } \vec{x}_f} \frac{1}{N} \sum_j P(\vec{x}_f | \vec{x}_{i,j}, M) P(\vec{x}_i | M)$$

Observational prediction

$$P(\vec{x}_f) \approx \frac{1}{N} \sum_{j} P(\vec{x}_f | \vec{x}_{i,j}, M) \ P(\vec{x}_i | M)$$

Individual system analysis $P(\vec{x}_i | \vec{x}_f, M) \propto P(\vec{x}_f | \vec{x}_i, M) P(\vec{x}_i | M)$

Essentially all the same calculation: **identify** the binary initial conditions of relevance

Demonstrative example: double neutron stars

Eccentricity _ Orbital period

	B15
0 1 : 1	B19
8 high quality	J073
oratomo	J151
Systems	J175

	Ŧ	¥			
DNS	e^{d}	P ^d (days)	<i>P</i> _s (ms)]	Pulsar Mass (M_{\odot})	Companion Mass (M_{\odot})
B1534+12	0.274	0.421	37.9	1.3332(10)	1.3452(10)
B1913+16	0.617	0.323	59.0	1.4408(3)	1.3873(3)
J0737-3039	0.088	0.102	22.7	1.337(5)	1.250(5)
J1518+4904	0.249	8.634	40.9	$1.56^{+0.13}_{-0.45}$	$1.05_{-0.11}^{+0.45}$
J1756-2251	0.181	0.320	28.5	1.341(7)	1.230(7)
J1811-1736	0.828	18.779	104.2	$1.62^{+0.22}_{-0.55}$	$1.11_{-0.15}^{+0.53}$
J1829+2456	0.139	1.176	41.0	$1.14_{-0.48}^{+0.28}$	$1.36_{-0.17}^{+0.50}$
J1906+0746 ^a	0.085	0.166	144.1	1.248(18)	1.365(18)
J1753-2240 ^b	0.304	13.638	95.1		
B2127+11C ^c	0.680	0.335	30.5	1.35(4)	1.36(4)

Can ignore observational uncertainties and biases

Andrews et al. (2015)

Double neutron star orbit distribution

But, how to determine the likelihood?

Kaaret et al. (2004)

HMXBs in nearby galaxies

M82, NGC 1569, NGC 5253

HMXB population synthesis

Can reproduce general trends

Zuo & Li (2010)

University of Crete/FORTH

Core project idea

Back to the math: Our model

$$P(\vec{x}_{f}|M) = \int d\vec{x}_{i} \ P(\vec{x}_{f}|\vec{x}_{i},M) \ P(\vec{x}_{i}|M)$$
Marginalize
$$\vec{x}_{i} = \{M_{1,i}, M_{2,i}, a_{i}, e_{i}, \vec{v}_{k}, \alpha_{i}, \delta_{i}, t_{i}\}$$
Initial binary parameters
$$\vec{x}_{f} = \{\alpha, \delta, P'_{\text{orb}}, e', M'_{2}\}$$
Observations

Marginalize again to account for observational uncertainties $P(\vec{x}_f|M) = \int dv_{\text{sys}} \, dP_{\text{orb}} \, de \, dM_2 \, d\vec{x}_i \, P(\vec{x}_f, v_{\text{sys}}, P_{\text{orb}}, e, M_2 | \vec{x}_i, M) \, P(\vec{x}_i | M)$

$$\begin{split} P(\vec{x}_{f}|M) &= \int d\vec{x}_{i} \ dv_{\rm sys} \ dP_{\rm orb} \ de \ dM_{2} \\ &\times P(P_{\rm obs}'|P_{\rm orb}) \ P(e'|e) \ P(M_{2}'|M_{2}) \quad \text{Observational uncertainties} \\ &\times P(\alpha, \delta|v_{\rm sys}, \vec{x}_{i}, M) & \text{Distance traveled} \\ &\times P(v_{\rm sys}, P_{\rm orb}, e, M_{2}|\vec{x}_{i}, M) & \text{Binary evolution} \\ &\times P(\vec{x}_{i}|M) & \text{Initial binary probabilities} \end{split}$$

Binary evolution

$$\begin{split} P(\vec{x}_{f}|M) &= \int d\vec{x}_{i} \ dv_{\text{sys}} \ dP_{\text{orb}} \ de \ dM_{2} \\ &\times P(P'_{\text{obs}}|P_{\text{orb}}) \ P(e'|e) \ P(M'_{2}|M_{2}) \\ &\times P(\alpha, \delta|v_{\text{sys}}, \vec{x}_{i}, M) \\ &\times P(v_{\text{sys}}, P_{\text{orb}}, e, M_{2}|\vec{x}_{i}, M) \\ &\times P(v_{\text{sys}}, P_{\text{orb}}, e, M_{2}|\vec{x}_{i}, M) \\ &\times P(\vec{x}_{i}|M) \\ &\text{Integral reduces:} \\ P(\vec{x}_{f}|M) &= \int d\vec{x}_{i} \ P(P'_{\text{obs}}|P_{\text{orb}}) \ P(e'|e^{*}) \ P(M'_{2}|M^{*}_{2}) \\ &\times P(\alpha, \delta|v_{\text{sys}}^{*}, \vec{x}_{i}, M) \ P(\vec{x}_{i}|M) \end{split}$$
Starred quantities are solutions to delta functions

 $\begin{array}{l} \text{MCMC Approach:} \\ \vec{x_i} \quad \text{Model parameters} \\ P(\vec{x_i}|M) \quad \text{Prior probabilities} \\ P(P_{\text{obs}}'|P_{\text{orb}}^*) \ P(e'|e^*) \ P(M_2'|M_2^*) \\ \times \ P(\alpha, \delta | v_{\text{sys}}^*, \vec{x_i}, M) \end{array} \right\} \text{ Likelihood} \end{array}$

Priors: binary/kick parameters

$$\vec{x}_i = \{M_{1,i}, M_{2,i}, a_i, e_i, \vec{v}_k, \alpha_i, \delta_i, t_i\}$$
 $P(\vec{x}_i|M) =$

$$(\vec{x}_i|M) = P(M_{1,i}) P(M_{2,i}|M_{1,i}) P(a_i)$$
$$\times P(e_i) P(v_k) P(\theta_k) P(\phi_k)$$
$$\times P(\alpha_i, \delta_i, t_i|M_{1,i}, M_{2,i}, a_i, e_i, \vec{v}_k)$$

Likelihood 1: Orbital parameters

Future direction: use photometry directly

How to deal with uncertainties here?

Jeff J. Andrews

Likelihood 2: Position

$$J_{\text{coor}} = \begin{vmatrix} \frac{d\theta_{\text{proj}}}{d\alpha} \frac{d\phi}{d\delta} - \frac{d\phi}{d\alpha} \frac{d\theta_{\text{proj}}}{d\delta} \end{vmatrix}$$

$$P(\alpha, \delta | v_{\text{sys}}^*, \vec{x}_i, M) = \int d\omega \ P(\alpha, \delta, \omega | v_{\text{sys}}^*, \vec{x}_i, M)$$

$$\downarrow$$

$$P(\alpha, \delta | v_{\text{sys}}^*, \vec{x}_i, M) = \int d\omega \ P(\alpha, \delta, \omega | v_{\text{sys}}^*, \vec{x}_i, M) \ J_{\text{coor}}$$

$$= \int d\omega \ P(\theta_{\text{proj}}, \phi, \omega | v_{\text{sys}}^*, \vec{x}_i, M) \ J_{\text{coor}}$$

$$= \int d\omega \ P(\theta_{\text{proj}} | \omega, v_{\text{sys}}^*, \vec{x}_i, M) \ P(\phi) \ P(\omega) \ J_{\text{coor}}$$

$$P(\omega) = \sin \omega; \ \omega \in [0, \pi] \quad P(\theta_{\text{proj}} | \omega, v_{\text{sys}}^*, \vec{x}_i, M) = \delta \ [G(\omega)]$$

$$P(\phi) = \frac{1}{2\pi}; \ \phi \in [0, 2\pi] \quad G(\omega) = \theta_{\text{proj}} - \theta_C \sin \omega$$

$$P(\alpha, \delta | v_{\text{sys}}^*, \vec{x}_i, M) = \begin{cases} 0, & \theta_{\text{proj}} \ge \theta_C \\ \frac{\tan \omega^*}{2\pi\theta_C} \ J_{\text{coor}}, & \theta_{\text{proj}} \ge \theta_C \\ \frac{\tan \omega^*}{2\pi\theta_C} \ J_{\text{coor}}, & \theta_{\text{proj}} \le \theta_C \end{cases}$$

Andrews et al. (in prep.)

 $\theta_{\rm proj}$

 $\sin \omega^{\star} =$

Model summary

10 model parameters

- 4 initial binary
- 3 supernova kick
- 2 birth coordinate
- 1 birth time

 $\vec{x}_i = \{M_{1,i}, M_{2,i}, a_i, e_i, \vec{v}_k, \alpha_i, \delta_i, t_i\}$

Likelihood: binary evolution, star formation history

> Priors: orbital parameters, present day position

Numerical Tool: emcee Affine invariant MCMC ensemble sampler (Foreman-Mackey et al. 2012) http://dan.iel.fm/emcee/current/

Model Test: Generate mock data and "observe." Can we recover input parameters?

SMC J0045-7319

Observed Parameters (Bell et al. 1995) $\alpha = 00:45:35.26$ $\delta = -73:19:03.32$ $P_{\rm orb} = 51.169 \,\,{\rm days}$ e = 0.808 $M_2 = 8.8 \ M_{\odot}$

27

Test system 2 - Multiple burn-ins

28

Run with 4 separate burn-ins - 5000 steps each

After first 3 burn-ins, move lowest posterior probability chains

Last burn-in should spread distribution around parameter space

> Run chains for 10,000 steps

Discussion questions / future directions

Question 1: How do I add multiple evolutionary channels?

Question 2: How do I simulate multiple systems simultaneously?

Question 3: Evaluate goodness of model?

Making the model hierarchical - if time

Currently, I can calculate individual posterior probabilities separately and combine after $P(\vec{x}_{f}|M) = \int d\vec{x}_{i} P(\vec{x}_{f}|\vec{x}_{i}, M) P(\vec{x}_{i}|M)$ $P(\{\vec{x}_{f}\}|M) = \prod P(\vec{x}_{f}|M)$ Test binary evolution hierarchical parameter priors $P(M|\{\vec{x}_{f}\}) \propto \int d\alpha_{i} P(\alpha_{i}|M) \prod_{\text{all } \vec{x}_{f}} \frac{1}{N} \sum_{j} P(\vec{x}_{f}|\vec{x}_{i,j}, \alpha_{i}, M) P(\vec{x}_{i}|\alpha_{i}, M)$

Number of parameters: $10 \times n + \text{len}(\alpha_i)$

Need a new numerical algorithm to handle high dimensionality