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Motivation

Time delay estimation between gravitationally-lensed quasar images to
calculate the current expansion rate of the Universe.

I Full posterior density function: π(∆,β,θ | Data).

I Profile likelihood: Lprof(∆) ∝ π(∆ | Data).

I A multimodal posterior distribution of the time delay (∆ in days) for
Quasar Q0957+561



Motivation (cont.)

Popular remedy for multimodality is tempering, i.e., π(x)T .

I Parallel tempering (Geyer, 1991), simulated tempering (Marinari &
Parisi, 1992), tempered transition (Neal, 1996), Equi-energy sampler
(Kou et al., 2006), etc.

I Hard to tune several temperature-related tuning parameters off-line

I Computationally expensive

I Is there a simple and fast way to expedite jumps between modes?



Idea

How would you go to the top of the other mountain?



Idea (cont.)

Let’s make a down-up movement in density to generate a proposal x”



A down-up Metropolis-Hastings

Two-step Metropolis transitions: x (i): Current state
→ x ′: Intermediate proposal
→ x ′′: Final proposal

I How do we make a downhill Metropolis transition from x (i) to x ′?

αD(x ′ | x (i)) = min

{
1,

π(x (i))

π(x ′)

}
I How do we make an uphill Metropolis transition from x ′ to x ′′?

αU(x ′′ | x ′) = min

{
1,

π(x ′′)

π(x ′)

}
I For computational stability,

αD
ε (x ′ | x (i)) = min

{
1,

π(x (i)) + ε

π(x ′) + ε

}
, αU

ε (x ′′ | x ′) = min

{
1,

π(x ′′) + ε

π(x ′) + ε

}



A down-up Metropolis-Hastings (cont.)

Proposal density function of DUMH

qDU(x ′′ | x (i)) =

∫
qD(x ′ | x (i))qU(x ′′ | x ′)dx ′,

where the downhill kernel density is

qD(x ′ | x (i)) = N(x ′ | x (i), σ2)αD
ε (x ′ | x (i)) + rD(x (i))δx (i)(x ′),

rD(x (i)) = 1−
∫

N(x ′ | x (i), σ2)αD
ε (x ′ | x (i))dx ′,

and similarly the uphill kernel density is

qU(x ′′ | x ′) = N(x ′′ | x ′, σ2)αU
ε (x ′′ | x ′) + rU(x ′)δx′(x ′′),

rU(x ′) = 1−
∫

N(x ′′ | x ′, σ2)αU
ε (x ′′ | x ′)dx ′′,



A down-up Metropolis-Hastings (cont.)

Four possibilities of the final proposal:

I Down-Up: Both accepted

I Down-Up: Downhill accepted & uphill rejected (not helpful for jump)

I Down-Up: Downhill rejected & uphill accepted (not helpful for jump)

I Down-Up: Both rejected (x (i) = x ′′) (waste of iterations)

We only need “Down-up” movement to boost jumps between modes!



A down-up Metropolis-Hastings (cont.)

Exclude the last three possibilities via forced Metropolis transitions.

qD(x ′ | x (i)) = N(x ′ | x (i), σ2)αD(x ′ | x (i)) + rD(x (i))δx (i)(x ′),

rD(x (i)) = 1−
∫

N(x ′ | x (i), σ2)αD(x ′ | x (i))dx ′,

→ qD(x ′ | x (i))=
N(x ′ | x (i), σ2)αD(x ′ | x (i))

1− rD(x (i))

I How do we generate x ′ ∼ qD(x ′ | x (i))?

Repeatedly generate x ′ ∼ qD(x ′ | x (i)) until it is accepted!

I Intuition: Flip a coin twice. Restrict the sample space to {HT, HH}.
How do we generate {HT} or {HH}? Flip the coin twice until either
{HT} or {HH} appears, ignoring {TT} and {TH}.



A down-up Metropolis-Hastings (cont.)
Accept x ′′ with an MH acceptance probability

αDU(x ′′ | x (i)) = min

{
1,

π(x ′′)qDU(x (i) | x ′′)
π(x (i))qDU(x ′′ | x (i))

}
= min

{
1,

π(x ′′)(1− rD(x (i)))

π(x (i))(1− rD(x ′′))

}
.

The second equality holds because

αD
ε (x ′ | x (i)) = min

{
1,

π(x (i)) + ε

π(x ′) + ε

}
= αU

ε (x (i) | x ′)

and thus

qDU(x′′ | x (i)) =

∫
N(x′ | x (i), σ2)αD

ε (x′ | x (i))

1− rD(x (i))

N(x′′ | x′, σ2)αU
ε (x′′ | x′)

1− rU(x′)
dx′

qDU(x′′ | x (i)){1− rD(x (i))} =

∫
N(x′ | x (i)

, σ
2)αD

ε (x′ | x (i))
N(x′′ | x′, σ2)αU

ε (x′′ | x′)

1− rU(x′)
dx′

=

∫
N(x (i) | x′

, σ
2)αU

ε (x (i) | x′)
N(x′ | x′′, σ2)αD

ε (x′ | x′′)

1− rU(x′)
dx′

=

∫
N(x′ | x′′

, σ
2)αD

ε (x′ | x′′)
N(x (i) | x′, σ2)αU

ε (x (i) | x′)

1− rU(x′)
dx′

= qDU(x (i) | x′′){1− rD(x′′)}.



A down-up Metropolis-Hastings (cont.)

Useless due to the intractable integrations in the acceptance probability

αDU(x ′′ | x (i)) = min

{
1,

π(x ′′)(1− rD(x (i)))

π(x (i))(1− rD(x ′′))

}
= min

{
1,

π(x ′′)
∫
N(x ′ | x (i), σ2)αD

ε (x ′ | x (i))dx ′

π(x (i))
∫
N(x ′ | x ′′, σ2)αU

ε (x ′ | x ′′)dx ′

}
.

Is there any way to cancel out this ratio?



Auxiliary variable approach

If we explore a larger space, then there can be a way to cancel the ratio!
(Møller et al., 2006)
An auxiliary variable A such that πC(A | x) is well-defined.

I Joint target density: πJ(A, x)

I Joint proposal density:

qJ(A′′, x ′′ | A(i), x (i)) = q1(x ′′ | A(i), x (i))q2(A′′ | x ′′,A(i), x (i))

I Joint acceptance probability:

αJ(A′′, x ′′ | A(i), x (i)) = min

[
1,

πJ(A′′, x ′′)qJ(A(i), x (i) | A′′, x ′′)
πJ(A(i), x (i))qJ(A′′, x ′′ | A(i), x (i))

]
= min

[
1,

π(x ′′)πC(A′′ | x ′′)q1(x (i) | A′′, x ′′)q2(A(i) | x (i),A′′, x ′′)

π(x (i))πC(A(i) | x (i))q1(x ′′ | A(i), x (i))q2(A′′ | x ′′,A(i), x (i))

]



Auxiliary variable approach (cont.)

Let’s choose πC, q1, and q2 to cancel out the intractable ratio.

q1(x ′′ | A(i), x (i)) = qDU(x ′′ | x (i))
q2(A′′ | x ′′,A(i), x (i)) = qD(A′′ | x ′′)

πC(A′′ | x ′′) = N(A′′ | x ′′, σ2)

Then,

αJ(A′′, x ′′ | A(i), x (i)) = min

[
1,

π(x ′′)N(A′′ | x ′′, σ2)qDU(x (i) | x ′′)qD(A(i) | x (i))

π(x (i))N(A(i) | x (i), σ2)qDU(x ′′ | x (i))qD(A′′ | x ′′)

]

= min

1,
π(x ′′)N(A′′ | x ′′, σ2){1− rD(x (i))}N(A(i)|x(i),σ2)αD

ε (A(i)|x(i))
1−rD(x(i))

π(x (i))N(A(i) | x (i), σ2){1− rD(x ′′)}N(A′′|x′′,σ2)αD
ε (A′′|x′′)

1−rD(x′′)


= min

[
1,

π(x ′′)αD
ε (A(i) | x (i))

π(x (i))αD
ε (A′′ | x ′′)

]
= min

1,
π(x ′′) min{1, π(x

(i))+ε

π(A(i))+ε
}

π(x (i)) min{1, π(x′′)+ε
π(A′′)+ε}

 .



Algorithmic specification

The DUMH algorithm is composed of eight steps for each iteration.

Set initial values A(0) and x (0). For i = 0, 1, . . . , n − 1,

Step 1: Sample x ′ ∼ N(x ′ | x (i), σ2) and u1 ∼ Unif(0, 1).

Step 2: Repeat Step 1 until u1 < αD
ε (x ′ | x (i)) for forced downhill move.

Step 3: Sample x ′′ ∼ N(x ′′ | x ′, σ2) and u2 ∼ Unif(0, 1).

Step 4: Repeat Step 3 until u2 < αU
ε (x ′′ | x ′) for forced uphill move.

Step 5: Sample A′′ ∼ N(A′′ | x ′′, σ2) and u3 ∼ Unif(0, 1).

Step 6: Repeat Step 5 until u3 < αD
ε (A′′ | x ′′) for forced downhill move.

Step 7: Sample u4 ∼ Unif(0, 1).

Step 8: Accept (A′′, x ′′) as (A(i+1), x (i+1)) if u4 < αJ(A′′, x ′′ | A(i), x (i)),

or otherwise set (A(i+1), x (i+1)) to (A(i), x (i)).



Example 1
A mixture of 20 bivariate Gaussian distributions (Kou et al., 2006)

π(x) ∝ 1

20

20∑
i=1

1

2πσ2
i

exp

(
− 1

2σ2
i

(x − µi )
>(x − µi )

)
,

where x = (x1, x2)>, σi = 0.1, and the 20 mean vectors,
(µ1, µ2, . . . , µ20)>, are given in Kou et al. (2006).



Example 1 (cont.): RWM vs DUMH
50,000 iterations after discarding the first 50,000 iterations.

σ Accept. Rate Sample size CPU time (sec.)

RWM 4 0.015 50,000 535
DUMH 4 0.045 50,000 2,758



Example 1 (cont.): RWM vs DUMH

σ Accept. Rate Sample size CPU time (sec.)

RWM 4 0.013 257,757 2,663
DUMH 4 0.046 50,000 2,758

”Do (DU) MH instead of the naive RWM!”



Example 1 (cont.): EE vs PT vs DUMH
Equi-Energy & Parallel Temp. (Kou et al., 2006) DUMH

E(X1) E(X2) E(X 2
1 ) E(X 2

2 )
True value 4.478 4.905 25.605 33.920
DUMH 4.5014 (0.095) 4.8847 (0.141) 25.5858 (0.977) 33.6423 (1.371)
EE 4.5019 (0.107) 4.9439 (0.139) 25.9241 (1.098) 34.4763 (1.373)
PT 4.4185 (0.170) 4.8790 (0.283) 24.9856 (1.713) 33.5966 (2.867)

MSE(EE)
MSE(DUMH)

1.26 1.03 1.37 1.12
MSE(PT)

MSE(DUMH)
3.39 3.98 3.47 4.25

Better than the EE and PT in terms of accuracy! (Do MH!)



Example 2: Quasar Q0957+561

MH within Gibbs sampler for p(X(t∆),∆,β,θ | Data).

Step 1: Sample (X(l)(t∆(l)

),∆(l)) ∼ p(X(t∆),∆ | β(l−1),θ(l−1))

= p(X(t∆) | ∆,β(l−1),θ(l−1))× p(∆ | β(l−1),θ(l−1)) by M-H

Step 2: Sample β(l) ∼ p(β | θ(l−1),X(l)(t∆(l)

),∆(l))

Step 3: Sample θ(l) ∼ p(θ | X(l)(t∆(l)

),∆(l),β(l))

RWM, tempered transition (Neal, 1996), and DUMH applied to

p(∆ | β(l−1),θ(l−1)).



Example 2: Quasar Q0957+561
Each chain (among 10 chains) has 10,000 samples after discarding the
first 5,000.

σ Accept. Rate Sample size CPU time/chain

RWM 600 0.018 100,000 48
TT 300 0.041 100,000 903

DUMH 1100 0.053 100,000 493



Discussion

How do we fairly evaluate various MCMC samplers for multimodality?

I How do we measure the time for the off-line tuning work involved in
all the temperature-based samplers?

I How do we theoretically evaluate the MCMC samplers?


