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Introduction

Light rays are bent by a strong gravitational field of a lensing galaxy.

I Each route has different length.

I Difference between arrival times of light rays → time delay

Why time delay?

I Hubble constant, H0, expansion rate of the Universe

I Equation of state of dark energy, e.g., accelerating Universe



Data

Doubly-lensed quasar

Data comprise of two time series with measurement errors.

I Observation times t′ ≡ {t1, t2, . . . , tn}
I Observed magnitudes x(t)′ ≡ {x(t1), x(t2), . . . , x(tn)}, and y(t)

I SD of measurement errors δ(t)′ ≡ {δ(t1), δ(t2), . . . , δ(tn)} and η(t)

Our job is to estimate time delay (shift in x-axis) between two time series.



State-space model

I Assumption 1: ∃ latent light curves representing the unobserved true
magnitudes in continuous time (red and blue dashed curves).

X(t) = (X (t1),X (t2), . . . ,X (tn))> and Y(t), values on curves at t

I Assumption 2 (Curve Shifting): Y(t) = X(t−∆) + c



Probability Distributions

Observed data: Independent Gaussian measurement errors

I x(tj) | X (tj) ∼ N[X (tj), δ
2(tj)]

I y(tj) | Y (tj) ∼ N[Y (tj), η
2(tj)]

y(tj) | X (tj −∆),∆, c ∼ N[X (tj −∆) + c , η2(tj)].

Latent data: Ornstein-Uhlenbeck process for X(·)
I Kelly et al. (2009), Kozlowski et al. (2010), MacLeod et al. (2010),

Zu et al. (2013) have supported the O-U.

I dX (t) = − 1
τ

(
X (t)− µ

)
dt + σdB(t)

I Solution: Sampling distribution on X(t) via Markovian property:

X (tj) | X (tj−1), µ, σ, τ ∼ N
[
µ+ Bj

(
X (tj−1)− µ

)
, τσ2

2 (1− B2
j )
]



Bayesian and Profile Likelihood Methods

Bayesian method

I Prior distributions for the model parameters; ∆, c , µ, σ2, τ

I Metropolis-Hastings within Gibbs sampler

I Pros: Complete investigation on all the model parameters

I Cons: Computationally expensive implementation

Profile likelihood method

I Lprof (∆) ≡ maxc,µ,σ2,τ L(∆, c , µ, σ2, τ)

I p(∆|Dobs) ≈ (2π)2

u2−u1 Lprof (∆) ∝ Lprof (∆)

I Pros: Simple and fast implementation

I Cons: The time delay only



Example 1: Simulated Data

Simulated data of doubly-lensed quasar



Example: Simulated Data (cont.)

Table 1 : Estimation summary for ∆

Method Truth Post. Mean Post. Mode Post. SD

Bayesian
45.85

46.26 N/A 0.41
Profile likelihood 46.26 46.51 0.40



Microlensing

I Microlensing effect occurs when stars inside the lensing galaxy
introduce independent flickering noises into the paths of light
(Tewes, Courbin and Meylan, 2012).

I If timescale of microlensing is larger than that of quasar variability,
light curves can have different long-term trends, e.g., polynomial.



Modes near edges: A sign for microlensing

I Curve shifting assumption does not hold because one of the latent
curves is no longer a shifted version of the other.

I A small overlap between two light curves → the only similar
fluctuation patterns detectable by shifting one of the light curves →
several modes near margins of the entire range of ∆.



Time delay estimation with microlensing

I One way to reduce the microlensing effect is to remove the
long-term trend by fitting a regression on each light curve, treating
residuals as observed light curves (Courbin et al., 2011).

I The intrinsic quasar variability remains even after removing the
independent extrinsic variability.

I Posterior mean (6.32) catches the blinded true time delay (5.86)
within 1.7 posterior standard deviations (SD=0.27).

I Cons: Ignoring uncertainties in estimating regression coefficients.
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I Analysis on a limited range, [300, 600], based on previous analyses.

I Analysis on the entire range (the mode is shifted to the right a little).



Discussion

I Next: I am incorporating the regression into the model and
Integrating out all the mean parameters.

I Next Next: We will consistently analyze quadruply-lensed data in
one model.


