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Light curve classification (earlier Dan Cervone’s project)
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@ Data from the MACHO light curve catalog

@ Nine types of sources

@ All light curves are assumed to follow a Gaussian Process

@ The priors for the Gaussian Process parameters are class specific
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Light curve classification
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One slide version

Estimation Testing

/

Previous work?
@ Nicolae et al. (2008): proposed some very natural measures e.g.
KL(f(:101)[1£(:160))
@ Toman (1996): careful choice of loss function gives agreement of
Bayes risk with estimation information
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Estimation information review

@ Shannon (1948) defined entropy: H(w) = Ey[— log 7(0)]

@ Lindley (1956) defined estimation information provided by an
experiment £ with outcome X:

Z(&m) = Prior entropy — Expected posterior entropy
= H(r)— Ex[H(p(-|X))]

@ Linear regression: Z(¢; ) is essentially the D-optimality criterion
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Generalization ... and our parallel version

DeGroot (1962) generalization
I(&m) =U(r) — Ex[U(p(-|X))]

U = uncertainty function
Concave: U(Am; + (1 — \)ma) > AU (71) + (1 — \)U(2)

v

Expected test information

Want to test Hy : 0 € ©g vs. Hy : 6 € ©1. Define expected test info
5 (&00,01,m) = V(1) — Ex[V(BF(X|Ho, Hy))|Hi]

where BF (X |Hy, H;) = %

@ Evidence function V (concave) e.g. V(z) = log(z) gives
KL(f(-[Ho)||f(-|Ho))
@ Second term is f-divergence of Csiszar (1963), Ali and Silvey (1966)

v
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Basic properties - non-negativity

(1) Non-negativity - use Jensen’s inequality ¢(E[Y]) > E[p(Y)]
e DeGroot (1962):

Ex[p(X)] = /X p(2)f@)de = ()
o Testing:

f(x[Ho)
(x| Hy)

Jensen’s inequality: V(1) > Ex[V(BF(X|Ho, H1))|Hi]

Ex[BF(X|Ho, Hy) | Hy] = /X F(a| By = 1
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Basic properties - additivity

(2) Additivity: for two-part experiment £ = (&1, &2) with outcome (X1, X5)

T (¢, T . T .
Iy(&m) = Iy(&sm) + T, (&af&1;5 )
————r —— ————

complete info. experiment 1 info.  conditional info. of experiment 2

e Conditional test information
T} (&alé1; ™) = Ex, [V(BF(X1))|Hi] — Ex, x,[V(BF(X1, X3))|Hi]
e Additivity follows because Z}, (¢; ) =

V(1) = Ex, [VBFEXT))[HL] + Ex, WBFEXT))HL] — Bx, x,[V(BF (X1, X2)) | Hi]

T (&15m) L (&20€15m)
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Canonical example: Bayesian linear regression

Estimation

Model:

X|0,M ~ N(M6,5°I)
6 ~ N(n,0°R)

Estimation based D-optimality criterion:

Lindley (1956): Z(M;7) = H(n) — Ex[H(p(-|X))]

M dependent part: ¢p(M) = det(M* M + R™1)
= det. of posterior precision matrix
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Canonical example: Bayesian linear regression

Testing

Hypotheses Hy : § = 0y and Hy : 0 ~ N(1,0°R)

Expected test information: for V(z) = log(z) we can calculate

(& 60,m) = KL(F(|H, M)||f (165, 1))

TK-optimality criterion

Variance + “Bias”
M) =
dric(M) Standardize

— Penalty for relative vagueness of H;
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Canonical example: Bayesian linear regression
Sense check

Simple linear regression: X; = Oint + Osiopet; + €;
Let r = Cov(bint, eslope’Hl)
(Ag, Ay) = (intercept diff., slope diff.) = (9int — 6o,int> Msiope — P0,slope)

DDy +1=0 DA +r>0 AgA +r<0

N
X

-10 0.0 10 -1I0 00 10 -10" 0.0 " 10
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Probability based measures

Problems with power
@ Nuisance parameters and composite hypotheses
© Observed power? Sequential design stopping rules
© No maximal information interpretation
© What if testing and estimation is of interest?
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Probability based measures

Bayesian inspired measure:
@ Posterior-prior ratio evidence function

1
V(z) = S —post. prob. of H
™ + T2 To

° I$ (&) = Relative expected reduction in “probability” of the null

BF(X) o — Ex|post. prob. of Hy |Hi]
m 4+ mBF(X)| ] T 0 ’

1-Bx |

where BF(X) = f(X|Ho)/f(X|H,)
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Probability based measures

Coherence — “basic property (3):
@ “Dual” evidence function Vp(z) =
@ Dual measures

1
T +mo2’

concavein1/z

BF(X
Ty (& Ho, Hi) = 1_EX|:7T1+7T(§BF)()()‘H1:|

1

T . =
T ) = 1= By | | )

Coherence identity

TL(& Ho, Hy)

=1 or ZL(&Hy H\) =TL (& Hy, Hy) =0
77, (6 Hr. o) PSR ) = S )

@ Consequence: when finding optimal designs for testing it will not
matter which hypothesis is true
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Observed test information

Observed test information

T3 (& 80, O1, 7, ) = V(1) — V(BF (x| Ho, H1))

v

Observed coherence identity

V(BF(z))
Vp(BF(x))

@ More fundamental — Bayes factor is preserved

= BF(z)

@ Implies expected coherence identity

@ Examples: posterior-prior ratio and evidence function for symmetrized
KL-divergence 5 K L(f(-[H1)||f(-|Ho)) + 3 K L(f(-|Ho)||f(-[H1)) i-e.

V(z) = %log(z) _ ézlog(z)
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Coherence identity in sequential design

Observed conditional information

Iy, (&21¢1; w1) = V(BF(21|Ho, H1)) — Ex,[V(BF (21, Xa|Ho, H1))|Hy, 71]

v

Observed conditional coherence identity

ZE (&l&1; 1)
Iy, (&2lé1; 1)

= BF(l‘l)

@ Implied by observed coherence identity

@ Optimal sequential designs do not depend on which hypothesis is true
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Simulations

@ Binary regression non-nested models (link function)
@ Sequential design for cubic regression models
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Sequential design example

@ Model:
X|0,M ~ N(M¥, 1),

where 0 = (Qint, Qslope, Hquad, ecubic)
@ Hypotheses:

H()ZQZQ()VS. H1:9NN(T],R)

@ Observed data: design matrix M, for x;

tin o -t

T 11 ti2 1,

My =1p2 2o t2n1 (1)
b g e
g o o g,

Setn; =5and t; = (—1,-0.5,0,0.5,1)
@ Task: for no = 5 choose design M, for missing data
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Sequential design example

— Null model — Null model
<7 --- True model <7 --- True model
- Observed data fit ---+  Observed data fit

-2
2

-4
4

-10 -05 00 05 10 -10 -05 00 05 10
Three settings (R = 0.21,):
@ Parabola: 6y = (0,0,0,0) and n = (1.1,0, —1.3,0)
@ High curvature:
90,inta ‘90,slope ~ Uniform(—l, 1)
907quad, eo’cubic (ad UnifOI’m(—lO, 10)
n = 6o
© Standard curvature: same except 0y quad; 60,cubic ~ Uniform(—1,1)

25/37



Sequential design example

Method: optimize three criteria
("] I{f(& |€1; 1) for posterior-prior ratio evidence function
Q Il (&)ér;a0) for V(z) = log
© D-optimality criterion

Evaluation: average power for fixed 6 over H; dist. for 6
/ Power (¢, procedure k)m(0|Hy)db,
01

fork=1,2,3
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Sequential design example

(a) Parabola (b) High curvature (c) Std. curvature
o 7 h— o D-optimal
g ,; | A P-optimal
8 /° + TK-optimal
c T °
8
n
£ o +
— ‘\
5 | \ % +\
& . —
o | °
o T T T T T T
Unconstrained Constrained Unconstrained Constrained Unconstrained Constrained
(a) Parabola (constrained) (b) High curvature (constrained) (c) Std. curvature (constrained)
g
58
[
S 3
o]
$ 2
&
|
o —// —//

D-opt P-opt TK-opt D-opt P-opt TK-opt D-opt P-opt TK-opt

Constrained optimization: either to = t; or put all points near where null

and posterior (for 1) mean model differ most
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Future goal: design for testing and estimation

Fraction of observed information

T, (&1;21)
(&1;21) + T (alér; 1)

FIL (&6 1) = r

Single numerical summary of
@ How much more test information may be obtainable

@ How difficult it is to collect that test information

Fisher information analogue (estimation):

Iob
Iob + Imis’
where
9% lo 1|0 9% lo x1,X2|z1,0
IOb = - gajgcg 19) 7Imis = EX2 [_ gf(aé2 2|z )‘xhe:H
GZQMLE GZGMLE
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Future goal: design for testing and estimation

No evidence approximation

Conditions:
@ Precise prior: Hy : 8 ~ Uniform(6; — 4,6, + 0) for small &
@ Null is approximately correct: |6y — OuLe| small

© Prior mean better still: |61 — OyLe| smaller
Then:

Iob
FI£(§2|€L xob) ~ 7;// 1 9

ob Tl())lmis

7]}//(1)
V(1)
@ Characterization: LRT C'y, = 1, Bayesian hypothesis testing Cy = oo

@ Conversion number: Cy, =
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Questions regarding work on lightcurve classification

Brightness (mag)

Posterior probability is Cepheid = 0.54
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Questions regarding work on lightcurve classification

Posterior probability is Cepheid = 0.54
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Questions regarding work on lightcurve classification

Brightness (mag)

Posterior probability is Cepheid = 0.66
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Questions regarding work on lightcurve classification

@ Taking a step back, what should the model be?
© How should we assess the success of our optimal designs?
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Lightcurve model?

Current model: Gaussian process with class specific priors

yi~ fi+ €
e; ~ N(0,V;), V; known
f~ N(HLKc(tvt; ¢))

2
e.g. Periodic kernel: K. (s,t; ) = 0% exp (_5 sin <7f(758)> )

T

Class C specific prior based on previously classified lightcurves:
o Ho,c
C~N S )L
(10% ¢) ‘ ( <¢0,0) O’C)
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Best way to assess design performance?

@ Should we measure how close we get to the optimal gain in posterior
probability of the correct class? (Through simulation from a precisely
fit lightcurve).

@ For general V, should we still consider posterior probability?
@ Which measures are more robust when there are few observations?

@ We could also base the assessment on success of “the test” but it is
not clear what the test should be

35/37



References |

S. Ali and S. D. Silvey. A general class of coefficients of divergence of one
distribution from another. Journal of the Royal Statistical Society. Series
B (Methodological), pages 131-142, 1966.

Csiszar. Eine informationstheoretische ungleichung und ihre anwendung
auf den beweis der ergodizitiit von markoffschen ketten. Publications of
the Mathematical Institute of the Hungarian Academy of Science, 8:
85-108, 1963.

M. H. DeGroot. Uncertainty, information, and sequential experiments. The
Annals of Mathematical Statistics, pages 404—419, 1962.

D. V. Lindley. On a measure of the information provided by an experiment.
The Annals of Mathematical Statistics, pages 986—1005, 1956.

D. L. Nicolae, X.-L. Meng, and A. Kong. Quantifying the fraction of missing
information for hypothesis testing in statistical and genetic studies.
Statistical Science, 23(3):pp. 287-312, 2008. ISSN 08834237. URL
http://www. jstor.org/stable/20697638.

36/37


http://www.jstor.org/stable/20697638

References Il

C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423, 623-656, 1948.

B. Toman. Bayesian experimental design for multiple hypothesis testing.
Journal of the American Statistical Association, 91(433):185-190, 1996.

37/37



	Introduction

