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Light curve classification (earlier Dan Cervone’s project)
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Data from the MACHO light curve catalog
Nine types of sources
All light curves are assumed to follow a Gaussian Process
The priors for the Gaussian Process parameters are class specific
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P(correct): 0.846
Entropy: 0.63
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One slide version

Estimation Testing

Previous work?
Nicolae et al. (2008): proposed some very natural measures e.g.
KL(f(·|θ1)||f(·|θ0))

Toman (1996): careful choice of loss function gives agreement of
Bayes risk with estimation information
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Estimation information review

Shannon (1948) defined entropy: H(π) = Eθ[− log π(θ)]

Lindley (1956) defined estimation information provided by an
experiment ξ with outcome X:

I(ξ;π) = Prior entropy− Expected posterior entropy

= H(π)− EX [H(p(·|X))]

Linear regression: I(ξ;π) is essentially the D-optimality criterion
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Generalization ... and our parallel version

DeGroot (1962) generalization
I(ξ;π) = U(π)− EX [U(p(·|X))]

U = uncertainty function
Concave: U(λπ1 + (1− λ)π2) ≥ λU(π1) + (1− λ)U(π2)

Expected test information
Want to test H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1. Define expected test info

ITV (ξ; Θ0,Θ1, π) = V(1)− EX [V(BF(X|H0, H1))|H1]

where BF(X|H0, H1) = f(X|H0)
f(X|H1) .

Evidence function V (concave) e.g. V(z) = log(z) gives
KL(f(·|H1)||f(·|H0))

Second term is f -divergence of Csiszár (1963), Ali and Silvey (1966)
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Basic properties - non-negativity

(1) Non-negativity - use Jensen’s inequality φ(E[Y ]) > E[φ(Y )]

DeGroot (1962):

EX [p(·|X)] =

∫
X
p(·|x)f(x)dx = π(·)

Testing:

EX [BF(X|H0, H1)|H1] =

∫
X

f(x|H0)

f(x|H1)
f(x|H1)dx = 1

Jensen’s inequality: V(1) ≥ EX [V(BF(X|H0, H1))|H1]

13 / 37



Basic properties - additivity

(2) Additivity: for two-part experiment ξ = (ξ1, ξ2) with outcome (X1, X2)

ITV (ξ;π)︸ ︷︷ ︸
complete info.

= ITV (ξ1;π)︸ ︷︷ ︸
experiment 1 info.

+ ITV (ξ2|ξ1;π)︸ ︷︷ ︸
conditional info. of experiment 2

Conditional test information

ITV (ξ2|ξ1;π) = EX1
[V(BF(X1))|H1]− EX1,X2

[V(BF(X1, X2))|H1]

Additivity follows because ITV (ξ;π) =

V(1)−
((((((((((
EX1 [V(BF(X1))|H1]︸ ︷︷ ︸
ITV (ξ1;π)

+
((((((((((
EX1 [V(BF(X1))|H1] − EX1,X2 [V(BF(X1, X2))|H1]︸ ︷︷ ︸

ITV (ξ2|ξ1;π)
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Canonical example: Bayesian linear regression
Estimation

Model:

X|θ,M ∼ N(Mθ, σ2I)

θ ∼ N(η, σ2R)

Estimation based D-optimality criterion:

Lindley (1956): I(M ;π) = H(π)− EX [H(p(·|X))]

M dependent part: φD(M) = det(MTM +R−1)

= det. of posterior precision matrix
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Canonical example: Bayesian linear regression
Testing

Hypotheses H0 : θ = θ0 and H1 : θ ∼ N(η, σ2R)

Expected test information: for V(z) = log(z) we can calculate

ITV (ξ; θ0, π) = KL(f(·|H1,M)||f(·|θ0,M))

TK-optimality criterion

φTK(M) =
Variance + “Bias”

Standardize
− Penalty for relative vagueness of H1
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Canonical example: Bayesian linear regression
Sense check

Simple linear regression: Xi = θint + θslopeti + εi
Let r = Cov(θint, θslope|H1)
(∆0,∆1) = (intercept diff., slope diff.) = (ηint − θ0,int, ηslope − θ0,slope)

−1.0 0.0 1.0

∆0∆1 + r = 0

−1.0 0.0 1.0

∆0∆1 + r > 0

−1.0 0.0 1.0

∆0∆1 + r < 0
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Probability based measures

Problems with power
1 Nuisance parameters and composite hypotheses
2 Observed power? Sequential design stopping rules
3 No maximal information interpretation
4 What if testing and estimation is of interest?
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Probability based measures

Bayesian inspired measure:

Posterior-prior ratio evidence function

V(z) =
z

π1 + π0z
=

1

π0
post. prob. of H0

ITV (ξ) = Relative expected reduction in “probability” of the null

1− EX
[

BF(X)

π1 + π0BF(X)

∣∣∣∣H1

]
=
π0 − EX [post. prob. of H0 |H1]

π0
,

where BF(X) = f(X|H0)/f(X|H1)
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Probability based measures

Coherence – “basic property (3)”:
“Dual” evidence function VD(z) = 1

π1+π0z
, concave in 1/z

Dual measures

ITV (ξ;H0, H1) = 1− EX
[

BF(X)

π1 + π0BF(X)

∣∣∣∣H1

]
ITVD(ξ;H1, H0) = 1− EX

[
1

π1 + π0BF(X)

∣∣∣∣H0

]

Coherence identity

ITV (ξ;H0, H1)

ITVD(ξ;H1, H0)
= 1 or ITV (ξ;H0, H1) = ITVD(ξ;H1, H0) = 0

Consequence: when finding optimal designs for testing it will not
matter which hypothesis is true
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Observed test information

Observed test information

ITV (ξ; Θ0,Θ1, π, x) = V(1)− V(BF(x|H0, H1))

Observed coherence identity

V(BF(x))

VD(BF(x))
= BF(x)

More fundamental – Bayes factor is preserved

Implies expected coherence identity

Examples: posterior-prior ratio and evidence function for symmetrized
KL-divergence 1

2KL(f(·|H1)||f(·|H0)) + 1
2KL(f(·|H0)||f(·|H1)) i.e.

V(z) =
1

2
log(z)− 1

2
z log(z)
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Coherence identity in sequential design

Observed conditional information

ITV (ξ2|ξ1;x1) = V(BF(x1|H0, H1))− EX2 [V(BF(x1, X2|H0, H1))|H1, x1]

Observed conditional coherence identity

ITV (ξ2|ξ1;x1)

ITVD(ξ2|ξ1;x1)
= BF(x1)

Implied by observed coherence identity

Optimal sequential designs do not depend on which hypothesis is true
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Simulations

1 Binary regression non-nested models (link function)
2 Sequential design for cubic regression models
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Sequential design example

Model:

X|θ,M ∼ N(Mθ, I4),

where θ = (θint, θslope, θquad, θcubic)

Hypotheses:

H0 : θ = θ0 vs. H1 : θ ∼ N(η,R)

Observed data: design matrix M1 for x1

MT
1 =


1 1 · · · 1
t1,1 t1,2 · · · t1,n1

t21,1 t21,2 · · · t21,n1

t31,1 t31,2 · · · t31,n1

 (1)

Set n1 = 5 and t1 = (−1,−0.5, 0, 0.5, 1)

Task: for n2 = 5 choose design M2 for missing data
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Sequential design example
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Null model
True model
Observed data fit

Three settings (R = 0.2I4):
1 Parabola: θ0 = (0, 0, 0, 0) and η = (1.1, 0,−1.3, 0)
2 High curvature:

θ0,int, θ0,slope ∼ Uniform(−1, 1)

θ0,quad, θ0,cubic ∼ Uniform(−10, 10)

η = θ0

3 Standard curvature: same except θ0,quad, θ0,cubic ∼ Uniform(−1, 1)
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Sequential design example

Method: optimize three criteria
1 ITV (ξ2|ξ1;x1) for posterior-prior ratio evidence function
2 ITV (ξ2|ξ1;x1) for V(z) = log

3 D-optimality criterion

Evaluation: average power for fixed θ over H1 dist. for θ∫
Θ1

Power(θ, procedure k)π(θ|H1)dθ,

for k = 1, 2, 3
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Sequential design example
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(a) Parabola (constrained)

D−opt P−opt TK−opt

(b) High curvature (constrained)

D−opt P−opt TK−opt

(c) Std. curvature (constrained)

Constrained optimization: either t2 = t1 or put all points near where null
and posterior (for x1) mean model differ most
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Future goal: design for testing and estimation

Fraction of observed information

FITV (ξ2|ξ1;x1) =
ITV (ξ1;x1)

ITV (ξ1;x1) + ITV (ξ2|ξ1;x1)

Single numerical summary of

How much more test information may be obtainable

How difficult it is to collect that test information

Fisher information analogue (estimation):

Iob

Iob + Imis
,

where

Iob = −∂2 log f(x1|θ)
∂θ2

∣∣∣
θ=θMLE

, Imis = EX2

[
−∂2 log f(x1,X2|x1,θ)

∂θ2

∣∣∣x1, θ
]∣∣∣
θ=θMLE
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Future goal: design for testing and estimation

No evidence approximation
Conditions:

1 Precise prior: H1 : θ ∼ Uniform(θ1 − δ, θ1 + δ) for small δ
2 Null is approximately correct: |θ0 − θMLE| small
3 Prior mean better still: |θ1 − θMLE| smaller

Then:

FITV (ξ2|ξ1;xob) ≈ Iob

Iob + −V ′′(1)
V ′(1) Imis

,

Conversion number: CV = −V ′′(1)
V ′(1)

Characterization: LRT CV = 1, Bayesian hypothesis testing CV =∞

29 / 37



Questions regarding work on lightcurve classification
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Questions regarding work on lightcurve classification
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Questions regarding work on lightcurve classification
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Posterior probability is Cepheid = 0.66
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Questions regarding work on lightcurve classification

1 Taking a step back, what should the model be?
2 How should we assess the success of our optimal designs?
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Lightcurve model?

Current model: Gaussian process with class specific priors

yi ∼ fi + εi

εi ∼ N(0, Vi), Vi known

f ∼ N(µ1,Kc(t, t;φ))

e.g. Periodic kernel: Kc(s, t;φ) = σ2 exp

(
−β sin

(
π(t− s)

τ

)2
)

Class C specific prior based on previously classified lightcurves:(
µ

log φ

)∣∣∣∣C ∼ N ((µ0,C

φ̃0,C

)
,Σ0,C

)
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Best way to assess design performance?

Should we measure how close we get to the optimal gain in posterior
probability of the correct class? (Through simulation from a precisely
fit lightcurve).

For general V , should we still consider posterior probability?

Which measures are more robust when there are few observations?

We could also base the assessment on success of “the test” but it is
not clear what the test should be
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