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A shortcut on Dark Matter

o Dark Matter is the substance postulated in the 30s by Fritz Zwicky to
explain the evidence of missing mass in the universe.

@ It is hypothesized to constitute 85% of the total matter in the
universe.

@ It has never been observed.

@ We do not know what it is made of.

@ The best candidate are WIMPs.

How do we detect WIMPs?

LHC = We look for discrepancies in terms of momentum and energy.

Direct detection = We look for a WIMPs-atoms collisions.

Indirect detection = We look for their decay by-products.
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The claim of a discovery

@ When we look for a new particle (e.g. Higgs boson, quark etc.), we look
from the presence of a (50) line/bump (the signal of the particle) on top of

a background flux (what we know).

In the case of the search for Dark Matter, we might have something more
complicated than a bump, and we can even have a fake signal (i.e something
mimicking WIMPs, but not a background to them)
= We might have to deal with an entirely new distribution!

@ E.g.: In the indirect detection scenario we want to make sure that the
gamma rays we observed are due to Dark Matter and not to a different

cosmic source (Pulsars for example).

What statistical tool should we use to do so?
Open question that we aim to address with this talk. }
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Brief review on LRT

@ Suppose we have
f(Ei,p) o< 3E7° + plgizi0y with >0 (1)

and we want to test
Ho:p=1 vs. H,:p#1
@ Problem: | want to know if | have a line of intensity 1 in the 10" energy bin.
@ Solution: Likelihood Ratio Test (LRT)

T f(E,1 H
~210g L MY 2 (2)

[T, F(Ei, fimee)

Important

We can do this just because some regularity conditions hold. Between these, we have:
1. Under Ho, p is on the interior of the parameter space.
2. The model is identifiable.
3. The models under Hy and H, are nested.
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What if condition 1. falls?

1. The parameter of interest lies on the boundary of the parameter space.
E.g:
o We have
f(Ei,pu) o< 3E7° + plyjizioy, 1 >0 (3)

@ we want to test

Hyo:pp=0 vs. Hy:p>0

Practical problem:

If there is a line, we know that it occurs at the 10" energy bin. So, how do |
check if | have a line there or not? )

Theoretical /practical solutions:

Chernoff, 19547 - Bootstrap.

v
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What if condition 2. falls?

2. There exists a nuisance parameters which is defined just under the
alternative model.

E.g:
o We have
f(Eiauaw) X ::)'Eii2 + Ml{i:w} (4)
e we want to test
Hy:p=0 vs. Hy:p>0

Practical problem:

Do | have a line somewhere?

Theoretical solution:

Davies, 1987% .

Practical solution:

Gross and Vitells, 20108 .
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What if condition 3. falls?

3. The plausible models to be tested are non-nested.

E.g:
o We have .
E, 0.73 E
f(Ei, ¢) gcbil and g(Ei, M) x (57)15 exp{—?.SM—} (5)

My

o we want to test:  Hp: f(Ei,¢) vs. H,:g(Ei,M,)

Practical problem:

Are my particles coming from a power law distributed cosmic source or are they coming
from Dark Matter?

v

Theoretical solution:
Cox, 1961-1962; Atkinson, 1970; etc.

Practical solution:

Hopefully, this talk (using f 8 and 8 ) ; Pilla et al., 2005-2006.

v
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The problem in statistical terms

Let f(y, ) and g(y, B) such that f # g for any a and 3
=f(y,a) are g(y, 3) non-nested models.

The goal is to develop a test for the hypotheses:

Ho : f(y, ) is the correct model

VErsus

H, : g(y,3) is the correct model
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Formulation of the problem

@ Consider a comprehensive model which includes f(y, ) and g(y, 3) as
special cases. We have two possibilities:
o Multiplicative form

K{f(y,a)}'""{e(y,B)}" (6)
where
-1
o= ([t etma) ™)
o Additive form
(1 —=n)f(y, ) +ng(y,B) (8)

@ We prefer the formulation in (8), so that we do not have to worry about
dealing with the normalizing constant k.

Thus, considering the model in (8) the test reduces to
Ho:n=0 wversus H,:n>0 (9)J
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The Likelihood Ratio Statistics

Assume that:
@ « lies on the interior of its parametric space
@ (3 to be one-dimensional i.e., 3 = .

Notice that for 5 fixed, the model

(I-n)f(y,2)+ngly,8) 0<n<1 (10)

is identifiable and thus the only remaining problem when testing
Hp : n =0 versus H, : n > 0 would be 7 being on the boundary

= WE CAN USE Chernoff, 1954 ie.:

LRT = —210g[L(0, éo,0) — L(i, & B)] ——= 313 + 26(0) (11)

With L(-) being the likelihood function of the model in (10), 7}, & are the
respective ML estimates for 7, o, whereas &g is the MLE for v under Hp.
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The Likelihood Ratio Statistics process

@ Notice that if 3 is not fixed then (7’7,64,3) LN (n, o, B).

@ So, the LRT statistics is asymptotically %X% + %5(0) distributed for 3
fixed.

This means that if we let 3 vary

= {LRT(B), 8 € B} corresponds asymptotically to a %x% + %6(0) random
process indexed by .

@ Thus the p-value of our test Hy : 7 = 0 versus H, : 7 > 0 will
correspond to the excursion probability

P(sup LRT(B) > c) (12)

BeB

e How do we calculate/approximate this?
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Approximation of P(supBeB T(B) > c)

@ From Davies, 1987 we have that if {T(3), 8 € B} is a x2 process, then
as ¢ — +00

P T(3) > )~ PO > )+ =5 & [ s (1)
sup C)~ Xv C m i K

Expected # of upcrossings over ¢

@ if ¢ 4 400 = we have an upper bound for P(sup T(3) > ¢).

@ r(f) is complicated = use the "empirical” version of (13) proposed in
Gross and Vitells, 2010

P(sup T(B) > ) ~ P(x2 > ¢) + E[N(co) | Hole~ 2 (£) T (14)

where ¢y << ¢, E[N(co)|Ho] is the number of upcrossings over ¢y under the
null model (to be estimated via Monte Carlo simulation).
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Approximation of P(supBeB LRT(B) > c)

@ So, how do we adjust such results for the case of a %X% + %5(0)
random process?

We have that
P(sup LRT(B) > c) ~ Poai= g PGV (15)

where ppayies is the approximation in (13) with v = 1 whereas pgy is the
correspective empirical version in (14).

@ This holds because of the following result.
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E— e
Approximation of P(supBeB LRT(B) > c)

Result 1.
Let {Y;,t € T} be a stochastic process such that

Ve T.Y, = W, if E occurs
Vi, if E€ occurs
with Wy ~ X%l,): Vi ~ 8(0) and P(E) = P(E€) = 0.5. Then, for c € R
we have
(sup{ Yt} > C) pD‘;wes
Note: In the case of the our LRT process indexed by 3, the event E
corresponds to %M|n:0< 0, and thus for n — oo we have that

p<w%um4%‘ <0>:%
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Approximation of P(supBeB LRT(B) > c)

Proof of Result 1.

P(sup{Y:} > c) = P(sup{Y:} > c|E)P(E) + P(sup{Y:} > c|E)P(E®)

because of total probabilities

— P(sup{W,} > c)% + P(sup{Vi} > c)é

because ¢ > 0 always (c € RT)

= %P(sup{Wt} > ¢)

__ PDavies
2
because W; ~ X%}/) and c is large.

Note: All we need is the law of total probabilities!
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Alternative method, Pilla et al. 2005-2006

The model of reference is again

(1-n)f(y,a@)+ngly,) 0<n<1 (16)

we want to test Hp: =0 versus H,:n > 0.
Now, we focus on the normalized Score function

S*(B) = \/% The sup of this will be our test statistics (17)
and the associated Score process {S*(3) € B}, where
. g(ynﬂ) :|
S = -1 18
0 =X |fn 1e)
is the Score function of the model in (16) under Hyp and
. . T)
C 7 + :/g(yla/g)g(}/lw@ d,—]. 19
(8.8 e LBy, (19)

is the respective covariance function.
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Approximation of P(supBeB S*(B) > c), a known (Pilla et al. 2005)

@ The p-value of the test is of the form P(sup $*(3) > ¢)
@ Pilla et al. show that for n — +o0,

P(sup S*(8) > ¢) — P(sup Z(B) > ¢) (20)

where Z(3) is a mean zero Gaussian process.
@ Using tube formulae they show that for ¢ — oo

P(supZ(B) > ¢) = Ajd%P(X§+1 > )+

d g 2 2 (1)
D k-1 Wﬁ_l_kP(Xd+1—k > c?)

In words: Ratio between the volume of the tube of radius r (function of ¢) built around the manifold

associated to sup Z(/3) on a unit sphere, and the volume of the unit sphere itself.

where d is the dimension of 3, £ with j = 0,..., d are the geometric

constants depending on specific model to be tested and A,, = l?("TW//;)
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Approximation of P(supBeB S*(B) > c), a unknown (Pilla et al. 2006)

@ If the nuisance parameter under the null a is unknown, the
covariance function of the Score process becomes

C*(8,8") = C(B,87) — C(Bla)1™ () C(B'|ex) (22)

This is essentially what is changing!

where « is required to lie on the interior of the parameter space,
I"(a) is the inverse of the Fisher information matrix whereas

C(Bla) = / ¢(yi, B)V log f(y;, c)dy.

@ «a is unknown, in the application: C*(3,3") can be consistely
estimated by C*(3, 8" |a=a-
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Implementation

Motivating Examples

General Problem

We have n of incoming particles in our detector. We want to know if these
n particles come from Dark Matter or from a different cosmic source.

@ We assume that the n particles are distributed as a Marked Poisson
random process with marks corresponding to the energies, i.e,
n ~ Pois(n, () Ei~ h(Ei,0) i=1,...,n; (23)
o Llkelihood:

n

L(0) = Pois(n,¢) | | h(Ei,0) o [17=; h(E;, 6) (24)

i=1

= WE CAN FOCUS JUST ON THE DISTRIBUTION OF THE MARKS!
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Implementation

Example 1: Power law vs. Dark Matter

In this example, the goal is to distinguish the Dark Matter signal from a power
law distributed cosmic source. The models for the marks are

Power law (Pareto Type I)

OEY
=3 % (25)

Dark Matter (from Bergstrom et al., 1998)

073 [ E\ ' gE
w(MX)(Aﬂx) eXp{'M}

X

073 [ E\ *° E
with (M, ) = 1/)(/\7/7X)(’\/Ix) exp{—?.SMX}dE

where E > Eg, Eg > 0, M, > Eg and ¢ > 0. In our specific case: Eg =1,
E, M, € [1;100].

—~~

26)
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Implementation

Example 2: Power law + power law vs. power law + Dark Matter.

We consider a generalized version of Example 1 which includes a background
source also distributed as a power law. The signal can be either power law or
Dark Matter. The models for the marks become

Power law + power law

OBy | ¢E
(1-=2) Eo+1 + )‘E¢+1 (27)
Power law + Dark Matter
SES 073 [ E\*° E
1-9) =2 47— () exp{—7.8} (28)
Eé+1 (M) \ M, M, )

where E > Eg, Eg >0, M, > Eg, ¢,0 > 0and 0 < A\,n < 1. Also in this case Ey
is chosen equal to 1, E € [1;100] and M, € [1;100].
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Implementation

Example 3: Pulsar Spectrum vs. Dark Matter.

The aim of considering such example is to extend to the statistical framework the
difficulty of distinguishing between Dark Matter and pulsar origins discussed in
Baltz, 2007. The models in analysis are

Pulsar Spectrum (from Baltz, 2007)

Eexp{—(£)"}
JE-rexp{—(£)}dE

Dark Matter

i) ool )

where E > Eg, M,, > Eg and p,7 > 0.

Ep is chosen to be equal to 0.1, E € [0.1;5], M, € [0.1;5] and « will be fixed to
2 to guarantee the two models to be non-nested.
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Specify the comprehensive additive model

Let 7 be the parameter of interest to be tested and let M, be the nuisance parameter
defined just under the alternative model. Then we have:

@ Power law vs. Dark Matter

a0y (i) ee{ i)

where Eg =1, M, , E € [1,100], 0 <7 < 1. ¢ is unknown.
@ Power law + power law vs. power law + Dark Matter

6B | OEY SES 073 [ E\ *° E
(177]){(17)\) Eori +)\E¢+1 }Jrn{(lfv) Eo1 +’Y¢(Mx) (ﬁx) exp{f7.8vx}}

where Eg =1, My,E € [1;100],0<7n <1, A=v=0.2, § =2. ¢ is unknown.

@ Pulsar Spectrum vs. Dark Matter

- )flf ;{{ ((EO)) }}dE ey (Af)p{‘mﬂj}

where £y = 0.1, M,,E € [0.1;5],0<n <1, p=4/3, 7=2.
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Verify that Chernoff, 1954 applies

@ We have seen above that if M, is fixed

1, 1
LRT % G+ 500 when 0 too

@ How big must n be to guarantee that this result holds?

e Simulate from some values for LRT and from 3x3 + 15(0). Compare
them using:

Wilcoxon rank sum test

qq-plots

histograms

empirical cdf graphs

etc.
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Implementation

Empirical cdf
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Figure 1: The left panels refer to the the original simulated values for the LRT statistics. The
right panels refer to the adjusted LRT statistics obtained imputing the negative values to be
equal to 0 in order to correct for the effect of floating points.
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Compute the approximate p-values

@ LRT-based method

P(xi > ¢)

)+ E@)IHe] < (5)T 6
—_——

we need this

P(sup LRT(M,) > c) =

o Pilla et al., 2005-2006

we need this

—~
o

P(sup Z(M,) > ¢c) ~ o

1
P(x3 > ¢?) + EP(xf >c?) (32)
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Computing E[N(cy)|Ho]

Model Fixed Unknown | Sample E[N(c0)|H0]
parameters | parameters size co =0.1
Power Taw
Vs. Ec=1 o, My 5000 0.906
Dark Matter
Power Taw + power law Ec=1
Vs. A=~v=02 ¢, My 5000 0.867
power law + Dark Matter 6=2
Pulsar Spectrum Ec=0.1
vs p=12 M, 1000 0.219
Dark Matter T = 3

Table 1: Estimated number of upcrossings of the process LRT (M, ) assuming the null model to
be true (i.e., E[N(co)|Ho] ). For all the models 1000 Monte Carlo simulations has been
generated. A grid of resolution 100 for the parameter M, over the range [1;100] has been
considered for the first two models; whereas a grid of size 20 over the range [0.1;5] was selected
for the model in our third example. For all the three cases, the threshold ¢y has been set to 0.1.

The sample size has been chosen large enough to guaranteed the %X% + %6(0) for fixed values of
M, as discussed in the previous slide.
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Formulae for &

o If the null model is completely specified

2 i T T
‘C(MX, ML)d C(MX,I\:X) _ dC(/\;lif,,MX) dC(MX%MX)
dMy M, X am, ml =y
& = / T dM,, (33)
s c(My, M)
e If it is not
~ d? My, M
& = / p*( X x) . dM,, (34)
iy dMy dM mi=my a=&

with p*(M,, M}}) being
C* (M, M)

Ve mocr i, M)

p*(My, Mf) =

They look pretty complicated!

But notice that to compute them we only need the covariance function of
the Score process and a good numerical algorithm to solve the integrals.
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Computing &

Model Fixed Unknown &o
parameters | parameters
Power law
Vs. Ehb=1 o, M, 5.3379
Dark Matter
Power law + power law Ec=1
Vs. A=v=02 ¢, My 5.3635
power law + Dark Matter 6=

Pulsar Spectrum Ey
Vs p
Dark Matter T

2
0.1
7

3

Table 2: Geometric constants £. When the null model (n = 0) is fully specified, & is calculated
according to equation (33). When a nuisance parameter is present under the null model, its
estimate is provided via MLE and & is calculated according to equation (34).

M, 2.7397
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@ Results
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Power law vs. Dark Matter

LRT-based method Pilla et al.
I3 ] N
Sample Size: 10000 Sample Size: 50000
N MC simulations: 10000 MC simulations: 50000
N Grid resolution: 100 Grid resolution: 200
o
o 37
« «
f) f
2 =2
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Lo <3
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° |
o
g
gl
S 3
3
10 15 0 1 2 3 4
c

Figure 2: Blue curves: Approximation for P(sup LRT (M, ) > c) (left panel) and

P(sup S*(My) > c) (right panel). Gray dotted curve: Monte Carlo p-values. Gray area: Monte

Carlo errors.
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Power law + power law vs. Power law + Dark Matter

LRT-based method

Pilla et al.

Sample Size: 10000
MC simulations: 10000
Grid resolution: 100

logso(p.values)
0. ?1

0.001 3-0

(ogyo(p.values)
G.Pl

3-0

0. 0‘01

Sample Size: 50000
MC simulations: 50000
Grid resolution: 200

Figure 3: Blue curves: Approximation for P(sup LRT (M, ) > c) (left panel) and
P(sup S*(My) > c) (right panel). Gray dotted curve: Monte Carlo p-values. Gray area: Monte

Carlo errors.
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Pulsar Spectrum vs. Dark Matter

LRT-based method Pilla et al.
. -]
Sample Size: 1000 N Sample Size: 100000
MC simulations: 50000 T~ MC simulations: 10000
Grid resolution: 40 N Grid resolution: 1000
“ 24 h
o oS \
E) Sd \
E 23 \
g3 g3 \
Eo 5 \
E 3o | \
8o 8, <
P
™ o N
2| )\
g 2 \
& \
s N
3 N\
o I N T
K
T T T T T T T T T T T
0 5 10 15 4 1 2 3 4 5 6
c

Figure 4: Blue curves: Approximation for P(sup LRT (M, ) > c) (left panel) and
P(sup S*(My) > c) (right panel). Gray dotted curve: Monte Carlo p-values. Gray area: Monte

Carlo errors.
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Power/Type | error comparison

Figure 5: Power function at 3o (left panel) and Type | error at 20 (right panel) at different
values of My for the model power law vs. Dark Matter.
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Which method is better when?

We identified two methods to pursue a test for non-nested models. Which one is better when?

Pros LRT-based method Cons Pilla et al. 2005-2006
-If o is unknown the theory does not change. -If o is unknown the theory changes.
-We can do intermediate checks . -Intermediate checks cannot be done easily.
-The theory is fairly simple. -The theory is quite complicated.
-It appears more powerful. -It appears less powerful.
-Lower Type | error. -Higher Type | error.
-It requires smaller n to reach the asymptotic. -It requires larger n to reach the asymptotic.
-It requires Monte Carlo simulations. -It requires numerical integrations.
-1t works for Pulsar Spectrum vs. Dark Matter. -It does not work for Pulsar Spectrum vs. Dark
-If ¢ small, we still have an upper bound. Matter.
Cons LRT-based method Pros Pilla et al. 2005-2006
-It cannot be applied (yet) if 3 is multidimen- - if B is multidimensional the theory does not
sional. change.
-To simulate from the null model might not be -Numerical integrations might be simpler.

easy.
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@ Future developments
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Future developments

@ Refinements of the LRT-based method.
e Loosen the assumption on 3 being one-dimensional.
e Loosen the assumption on « being in the interior of the parameter
space.

@ Evaluate the effect of the resolution of the grid for the nuisance
parameter under the alternative model (i.e., M, in our three
examples).

@ Apply both the LRT-based and the Score-based methods to real data
taking in account the measurement of the error.

o Identify a Bayesian solution for testing non-nested models and

compare it the LRT-based approach proposed.

@ Build an R package to implement the procedures presented in this
talk.
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